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ABSTRACT

Kernel-based K-means clustering has gained popularity due to its
simplicity and the power of its implicit non-linear representation
of the data. A dominant concern is the memory requirement since
memory scales as the square of the number of data points. We pro-
vide a new analysis of a class of approximate kernel methods that
have more modest memory requirements, and propose a specific
one-pass randomized kernel approximation followed by standard K-
means on the transformed data. The analysis and experiments sug-
gest the method is accurate, while requiring drastically less memory
than standard kernel K-means and significantly less memory than
Nyström based approximations.

Index Terms— Kernel methods, Unsupervised learning, Low-
rank approximation, Randomized algorithm

1. INTRODUCTION

Kernel-based approaches are popular methods for supervised and
unsupervised learning [1]. The (i, j) entry of a kernel matrix K rep-
resents the inner product between the representations of data points
xi and xj in a lifted space, and this lifting allows one to use linear
techniques in the higher (or infinite) dimensional space which cor-
respond to non-linear techniques in the original space. For example,
the two classes of data in Fig. 1 are not linearly separable, but they
become linearly separable after applying a suitable kernel (Fig. 2).

With n data points, the kernel matrix is n × n, and for large
modern data sets this is infeasible to store or compute with. For
this reason, there is a long history of low-rank approximations of K,
starting with incomplete Cholesky factorizations in [2], and excel-
lently summarized in [3]. In particular, [3] argues that the design
of the approximation must go hand-in-hand with the learning algo-
rithm, and proceeds to analyze the case of kernel regression.

The aim of this paper is to analyze kernel approximations in
hard clustering and suggest a specific one-pass randomized kernel
approximation. This approximation is based on a one-pass variant of
the popular randomized approach described in [4]. Such an approach
had previously been used to approximate a small innerm×mmatrix
in the Nyström method [5], but with accuracy limited by the large
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sampling requirements of the Nyström approach. Instead, we pre-
condition the kernel matrix in a streaming manner and then sample,
which allows us to take drastically fewer samples while maintaining
excellent clustering performance (cf. Table 1). Our algorithm is not
necessarily faster than the Nyström approach, but has lower memory
requirements, such as around 10 times lower memory for both the
synthetic data in Table 1 and the real data in Fig. 3. A particular
benefit to our proposal is that it consists of a distinct preprocessing
phase followed by the standard K-means algorithm on transformed
data, thus allowing one to leverage existing algorithm libraries.

1.1. Notation
We denote column vectors with lower-case bold letters and matri-
ces with upper-case bold letters. Let ‖K‖F and ‖K‖2 denote the
Frobenius norm and spectral norm respectively. Moreover, ‖K‖∗ =
tr((KTK)1/2) represents the trace norm, where tr(·) is the trace
operator.

Also, we represent the entry in the i-th row and the j-th column
of K as [K]ij . We let ei denote the i-th vector of the canonical basis
in RK , where entries are all zero except for the i-th one which is 1.

2. PRELIMINARIES
2.1. K-means Clustering

Consider a collection of n data samples in Rp, where X =
[x1, . . . ,xn] ∈ Rp×n represents the data matrix. The K-means
algorithm is a popular hard clustering technique that splits the data
set into a known number of K clusters. The resulting K-partition
S = {S1, . . . ,SK} is a collection ofK non-empty pairwise disjoint
sets that covers the data set. Moreover, each cluster Sk is represented
using a vector µk ∈ Rp that is associated with the k-th cluster.

Hence, the K-means objective is to find the optimal K-partition
by minimizing the total sum of the squared Euclidean distances of
each data sample to the closest cluster:

F (S) =
n∑

i=1

K∑
k=1

tik‖xi − µk‖
2
2 (1)

where tik ∈ {0, 1} is a binary indicator variable and ti =
[ti1, . . . , tiK ]T is the k-th canonical basis vector in RK if and
only if xi belongs to the k-th cluster Sk.

Minimizing the objective function in (1) is known to be NP-hard,
so the standard approach is to look for an approximate solution by
an iterative method that guarantees convergence only to a local min-
imum [6]. In the first step, the assignment of data samples is updated
with {µk}Kk=1 held fixed. In the next step, the cluster representatives
{µk}Kk=1 are updated based on the most recent assignment.

K-means clustering works well only if all pairs of clusters are
linearly separable, and does not perform well on finding non-linearly
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separable clusters of varying densities and distributions [7]. A
prominent approach to tackle this problem is to employ a non-linear
distance function using the kernel trick [8] in machine learning.
The resulting algorithm is the so-called Kernel K-means which we
explain in the next section.

2.2. The Kernel K-means Algorithm

Kernel-based methods have provided a straightforward way to deal
with non-linear structure in datasets. To be formal, each xi is
mapped to a higher dimensional feature space using the non-linear
mapping Φ, xi 7→Φ(xi) for i=1, . . . ,n. The kernel trick is based on
the observation that many algorithms only need to compute the inner
product between data points, and not see the data points themselves.
Thus the trick avoids the explicit mapping by allowing one to com-
pute inner products between mapped data points in the feature space
using a non-linear similarity measure used in Euclidean space Rp:

〈Φ(xi),Φ(xj)〉 = κ(xi,xj), ∀i, j ∈ {1, . . . , n} (2)

where κ(·, ·) is a Mercer kernel function such that κ induces a
positive semidefinite matrix [K]ij = κ(xi,xj) for all input data
{xi}ni=1. Examples of such kernels include polynomial kernels
κ(x,y) = (〈x,y〉 + γ)d and Gaussian radial basis function ker-
nels κ(x,y) = exp(−γ‖x − y‖22) with parameters γ ∈ R+ and
d ∈ N [9, 10].

The Kernel K-means algorithm finds a K-partition of the
mapped data {Φ(xi)}ni=1 by minimizing:

L (S) =
n∑

i=1

K∑
k=1

tik‖Φ(xi)− µk‖
2
2. (3)

The optimization problem of minimizing (3) can be solved using the
same iterative procedure of K-means. To see this, consider the cen-
troid of the j-th cluster µj = 1

|Sj |
∑

Φ(xl)∈Sj
Φ(xl). This centroid

cannot be computed explicitly, but we can compute the distance be-
tween each mapped data sample Φ(xi) and the centroid:

‖Φ(xi)− µj‖
2
2 = 〈Φ(xi)− µj ,Φ(xi)− µj〉

= [K]ii −
2

|Sj |
∑

Φ(xl)∈Sj

[K]il +
1

|Sj |2
∑

Φ(xl),Φ(x′
l
)∈Sj

[K]ll′ . (4)

Hence, we see that Kernel K-means is an iterative algorithm that
requires access to the full kernel matrix K without the need to ex-
plicitly map the data points. However, this clustering technique re-
quires the storage and handling of a large kernel matrix K in each
iteration. Therefore, the quadratic complexity of O(n2) to store or
O(n2p) to compute the kernel matrix for each iteration makes the
Kernel K-means algorithm non-scalable to large data sets.

2.3. Prior Work on Efficient Kernel-Based Learning

Much research has focused on approximating the kernel matrix us-
ing a low-rank decomposition; more recent works focus on a sum of
low-rank and diagonal or low-rank and sparse decompositions, but
similar memory and computation considerations apply. Note that the
kernel matrix is a symmetric positive semidefinite matrix. Thus, its
eigenvalue decomposition can be used to express a low-rank approx-
imation:

K ≈ UrΛrU
T
r =

(
UrΛ

1/2
r

)(
Λ1/2

r UT
r

)
= YTY (5)

where Λr ∈ Rr×r , r < n, is a diagonal matrix containing the top r
eigenvalues of K in descending order and Ur ∈ Rn×r contains the

associated orthonormal eigenvectors. Note that the eigenvalues of
the kernel matrix are non-negative since K is positive semidefinite.
The decomposition K≈YTY in (5) essentially linearizes the ker-
nel matrix. Therefore, one can directly work with the new samples
Y = [y1, . . . ,yn] embedded in Euclidean space Rr , while respect-
ing the non-linear similarities in the kernel matrix K. Hence, this
technique can be viewed as a preprocessing stage that eliminates the
need to store and manipulate the kernel matrix during the learning
process. Moreover, it is shown that the eigenvalue decomposition of
the kernel matrix can be used to infer the number of clusters [11].

However, direct eigenvalue decomposition of large kernel matri-
ces is often a demanding task that requires O(n2) space and O(n3)
time. The popular Nyström method is an efficient algorithm to find
low-rank approximations of large symmetric positive semidefinite
matrices. The original Nyström method that was introduced in [12]
is based on sampling a small subset of m columns of K using uni-
form sampling without replacement. This one-pass algorithm was
revisited in [13], where a data-dependent non-uniform sampling dis-
tribution was presented that requires at least two passes over the
kernel matrix. The variants of the Nyström method have been pro-
posed in the literature to analyze various sampling strategies, includ-
ing [14, 15, 16]. The recent paper [17] reviews different kinds of
Nyström methods for large-scale machine learning.

3. LINEARIZED KERNEL K-MEANS CLUSTERING

In this section, we analyze the quality of Kernel K-means clustering
under the low-rank decomposition of the kernel matrix K = YTY
given in (5). This low-rank decomposition can be done by using any
low-rank approximation technique and we do not make any assump-
tions in this section. Our analysis compares the optimal solution of
Kernel K-means on the new samples Y = [y1, . . . ,yn] ∈ Rr×n

with the optimal solution of Kernel K-means on X = [x1, . . . ,xn].
To do this, we first present an alternative formulation of the Kernel
K-means objective function in equation (3). This type of analysis
that we follow in this paper is commonly used in the literature for
K-means clustering, e.g., [18, 19].

To begin, let us consider the matrix of mapped data samples
Φ(X)=[Φ(x1), . . . ,Φ(xn)]. We also define the cluster indicator
matrix C=[c1, . . . , cn]∈ RK×n, where each row corresponds to
a cluster. Each column of C represents the cluster membership of
Φ(xj) with only one nonzero entry such that cj=(1/

√
|Si|)ei if

and only if Φ(xj) belongs to the i-th cluster Si; denote the set of all
such indicator matrices by C. Given the matrix C, the matrix product
Φ(X)CT consists of K centroids as columns, where the i-th col-
umn is

√
|Si|µi. Hence, Φ(X)CT cj =(1/

√
|Si|)(

√
|Si|µi)=µi

selects the centroid of the i-th cluster Si that Φ(xj) belongs to it.
Thus, the Kernel K-means objective function (3) can be written as:

L(C) =

n∑
j=1

‖Φ(xj)−Φ(X)CT cj‖22=‖Φ(X)−Φ(X)CTC‖2F

=tr
(
(In×n −CTC)K(In×n −CTC)

)
(6)

where we used ‖A‖2F = tr(ATA).
Next, we present some properties of the matrix C defined above.

Note that under the mild assumption that every cluster has at least
one member, the cluster indicator matrix has K orthonormal rows,
i.e., CCT = IK×K . This follows from the normalization in our
definition of C and the fact that Kernel K-means is a hard clustering
algorithm. As a result, we get (CTC)2 = CTC which shows that
both CTC and (In×n −CTC) are projection matrices.



In the following theorem, we characterize the accuracy of Ker-
nel K-means under the low-rank decomposition of the kernel matrix
K. In this case, one should replace the kernel matrix K with its
low-rank decomposition YTY in the reformulated objective func-
tion (6). This process can also be viewed as applying standard K-
means on the new samples Y = [y1, . . . ,yn] in Rr . Before stating
the result, we emphasize that even though finding an optimal solu-
tion for K-means clustering is computationally difficult (NP-hard),
the set of possible K-partitions of a finite number of data samples is
finite. Thus, an optimal solution exists regardless of the difficulty in
finding the optimal solution.
Theorem 1. Let C∗ be an optimal solution of Kernel K-means in
feature space using the full kernel matrix K:

C∗ ∈ argmin
C∈C

L(C) (7)

where L(C) = tr
(
(In×n −CTC)K(In×n −CTC)

)
. Moreover,

let Ĉ be an optimal solution of the approximate Kernel K-means
using an approximation K̂ = K − E with K̂ = YTY positive
semidefinite:

Ĉ ∈ argmin
C∈C

tr
(
(In×n −CTC)YTY(In×n −CTC)

)
. (8)

Then, we have:
L(Ĉ)− L(C∗) ≤ 2‖E‖∗ (9)

where E is the low-rank approximation error of the kernel matrix K.
Furthermore, if K̂ is the best rank r approximation to K, then E is
positive semidefinite and we can improve Eq. (9) to

L(Ĉ)− L(C∗) ≤ tr(E). (10)

Proof. The proof follows from the properties of the cluster indicator
matrix C and applying Hölder’s inequality, i.e., the trace norm and
spectral norm are dual.

This theorem indicates that the optimal objective value under
the approximate matrix is not far from the true objective value. The
bound is tight to within a small constant, as one can construct adver-
sarial examples in any dimension where L(Ĉ)−L(C∗) ≥ 1

2
‖E‖∗.

4. THE PROPOSED METHOD
In this section, we present an efficient method for Kernel K-means
clustering on large-scale data sets. The key component of our
method is to use highly efficient and accurate low-rank approxima-
tion techniques that require just a single pass over the kernel matrix
to eliminate the need to store or recompute large kernel matrices.
In [4], a class of randomized algorithms were proposed to construct
low-rank approximations of large matrices, and tail bounds given on
the spectral and Frobenius norm of the error E = K − K̂ (from
which one can bound ‖E‖∗ as well). We show how these random-
ized methods can be employed to achieve improved performance
compared to the standard Nyström approximation in applications
with limited memory resources.

First, we briefly explain the one-pass eigenvalue decomposition
algorithm from [4]. Given a symmetric matrix K ∈ Rn×n, the first
step is to find a good basis for both the column space and the row
space of K. To this end, a standard Gaussian random matrix Ω ∈
Rn×r′ whose entries are i.i.d. N (0, 1) variables is generated with
r′=(r + l) for some rank r and oversampling l. The oversampling
parameter is often used to increase the accuracy of the method. Then,

Algorithm 1 One-Pass Kernel K-means

Input: kernel matrix K ∈ Rn×n, rank r, oversampling l, number
of clusters K, number of iterations
Output: cluster indicator matrix C

1: r′ ← r + l, R ∈ Rn×r′ : random sampling matrix
2: W ∈ Rn×r′ ← (RTHDK)T

3: find an orthonormal matrix Q ∈ Rn×r by QR decomposition or
r leading left singular vectors of W

4: solve B(QTΩ) = (QTW)
5: B = VΣVT

6: Y = Σ1/2VTQT ∈ Rr×n

7: perform standard K-means on Y = [y1, . . . ,yn] in Rr

W=KΩ is computed and one finds Q ∈ Rn×r whose columns
form an orthonormal basis for the range of W; this can be done by
computing the r leading left singular vectors of W or via the QR
decomposition. Therefore, we have K≈Q(QTKQ)QT for which
a naive approach requires one more pass over K to compute B =
QTKQ and find its low-rank decomposition. However, the matrix
B can be computed by solving the equation B(QTΩ) = (QTW)
without revisiting K [4]. Finally, the eigenvalue decomposition of
B ∈ Rr×r yields the desired rank r approximation of K.

The major drawback of this approach is the memory and compu-
tation burden associated with the Gaussian random matrix Ω. Com-
puting the matrix W takes O(n2r′) time which is quadratic in the
number of samples. To address this problem, the Gaussian ran-
dom matrix is replaced with a much more efficient structured ran-
dom matrix Ω = DHR [20, 4]. The matrix D = DT ∈ Rn×n

is a stochastic diagonal matrix whose entries on the main diago-
nal are random variables drawn uniformly from {±1}. The ma-
trix H = HT ∈ Rn×n is the Hadamard matrix for which matrix-
vector multiplication can be implemented in O(n log(n)) complex-
ity, hence it is inexpensive to multiply and store compared to the
Gaussian matrix. The matrix H is not stored explicitly, and apply-
ing H to a matrix is efficient in parallel and distributed environ-
ments; our implementation uses the pthread library and sees a 11
times speedup over the non-parallel version when using 16 threads.
The sub-sampling matrix R ∈ Rn×r′ consists of r′ columns of the
identity matrix In×n drawn uniformly random without replacement.

Our proposed efficient Kernel K-means clustering method is pre-
sented in Alg. 1. We emphasize that our method requires only one
pass over the columns of the kernel matrix K, and that batches of
columns of K can be constructed on-the-fly, so the entire kernel ma-
trix K is never formed in memory: the minimal memory require-
ment isO(r′n). Furthermore, the computation cost in each iteration
of K-means is O(rnK) and the rank r determines the error in the
low-rank approximation of the kernel matrix K.

We also compare various aspects of our proposed approach with
the Nyström method. The basic idea behind the Nyström method is
to sample m columns from the kernel matrix K. It is obvious that
the more columns are sampled, the more accurate the resulting low-
rank approximation is. The sampling strategy plays an important
role in the accuracy of the Nyström method. The basic method orig-
inally proposed by [12] is a one-pass algorithm that employs uniform
sampling without replacement. Hence, our method in this paper is
similar to the standard one-pass Nyström method as they both use
uniform sampling without replacement. However, our method takes
advantage of the preconditioning transformation of the kernel matrix
K 7→ (HD)K before sub-sampling. As shown in [20], the transfor-
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Fig. 1. Original data. The centroids estimated by K-means are
shown, which are clearly unhelpful at finding the true clusters.
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(b) Our Method
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(d) Nyström, m=100

Fig. 2. Mapping of the original data using the low-rank approxima-
tion K ≈ YTY. Applying K-means on the mapped data Y ob-
tained by (a) the exact eigenvalue decomposition, or (b) our method,
identifies the two underlying clusters accurately.

mation HD equilibrates row norms which eliminates the necessity
to use more sophisticated sampling strategies.

To gain some intuition, we consider a synthetic data set shown
in Fig. 1. This data set consists of n=4000 samples in R2 that are
non-linearly separable but not linearly separable. Thus, standard K-
means is not able to identify these two clusters, and the two centroids
selected by standard K-means do not describe the true clusters.

We compute the kernel matrix K whose elements are obtained
by using the polynomial kernel of order d = 2, i.e., κ(xi,xj) =
〈xi,xj〉2. The rank parameter is r = 2 and our goal is to find
Y ∈ R2×n using the low-rank approximation of the kernel matrix.
Our proposed method with the oversampling parameter l = 10 is
compared with the standard Nyström method with both m=20 and
m = 100 sampled columns. We show the visualization of the new
samples {yi}4000i=1 in Fig. 2. Note that the accuracy of our approach
is almost identical to the exact r = 2 eigenvalue decomposition of
the kernel matrix. Moreover, we see that our method is able to iden-
tify these two clusters using the standard K-means on the mapped
samples Y. However, the Nyström method does not provide an ac-
curate solution even for a large value of m = 100 ≈ 8r′. We
also compare the normalized kernel approximation error defined as

Table 1. Accuracy of Kernel K-means methods, on data from Fig. 1,
r=2. For reference, (non-kernel) K-means has only 0.53 accuracy.
Our method takes the equivalent of m=12 columns in the Nyström
approach.

Method Kernel Approx.
Error

Clustering
Accuracy

Exact Decomposition 0.40 0.99
Our Method 0.40 0.99
Nyström, m=20 0.56 0.74
Nyström, m=100 0.44 0.75
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Fig. 3. Results for image segmentation data set. Plot of (a) normal-
ized approximation error of the kernel matrix (b) kernel clustering
accuracy for varying number of sampled columns m.

‖K − K̂‖F /‖K‖F and the clustering accuracy in Table 1. We see
that our method outperforms the Nyström technique on this data set.

Finally, we present the experimental evaluation of our method
in Alg. 1 on a real-world data set. Our proposed approach is im-
plemented in MATLAB (with the Hadamard code in C/mex) and
compared against the standard Nyström method as well as the exact
eigenvalue decomposition. We use the MATLAB kmeans function
with 10 different initializations, the maximum number of iterations
is set to 20 and r = 2 is used for low-rank approximations of kernel
matrices. Since Nyström and our method are stochastic, we re-run
each experiment 100 times and report the average over these trials.

We consider the image segmentation data set that can be down-
loaded from the UCI Repository. This data set contains n = 2310
instances from K = 7 outdoor images. Each instance represents a
3 × 3 region with p = 19 attributes that are normalized to unit `2
norm. Here, we choose the homogeneous polynomial kernel of order
d = 2, i.e., κ(xi,xj) = 〈xi,xj〉2.

Fig. 3(a) shows the normalized approximation error of the kernel
matrix ‖K− K̂‖F /‖K‖F for varying number of sampled columns
m and fixed oversampling parameter l = 5 in our method. As we
see, sampling r′ = 2+5 = 7 rows of the preconditioned kernel ma-
trix (HD)K leads to a more accurate decomposition that sampling
m = 50 ≈ 7r′ columns of the kernel matrix K in the Nyström
method. Moreover, the accuracy of our approach is very close to the
optimal exact eigenvalue decomposition.

In Fig. 3(b), the clustering accuracy of our method is compared
with the other kernel clustering techniques. Again, we see that our
approach has higher accuracy than the the Nyström decomposition
approach. In this example, the accuracy of full Kernel K-means (r =
rank(K)) is 0.46 and both our method and the approximate Kernel
K-means using the exact eigenvalue decomposition (with r = 2)
have higher accuracy than the full Kernel K-means.



5. CONCLUSIONS
We considered a class of approximate Kernel K-means algorithms in
which the kernel matrix is replaced by its low-rank approximation.
Our theoretical analysis provides insights into the effect of the ap-
proximation on the objective function of Kernel K-means, showing
that the optimal objective value under the low-rank approximation is
not far from the true objective value. Our theoretical result is appli-
cable to any low-rank approximation technique.

Furthermore, we introduced a specific one-pass randomized al-
gorithm for Kernel K-means. Some benefits of our approach are ease
of implementation, tunable accuracy vs. memory/speed tradeoff us-
ing the parameter r, and low-memory requirements. The parameter
r is typically chosen with cross-validation on a subset of data.
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