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ABSTRACT

Approximate message passing (AMP) is an efficient iterative
signal recovery algorithm for compressed sensing (CS). For
sensing matrices with independent and identically distributed
(i.i.d.) Gaussian entries, the behavior of AMP can be asymp-
totically described by a scaler recursion called state evolu-
tion. Orthogonal AMP (OAMP) is a variant of AMP that im-
poses a divergence-free constraint on the denoiser. In this
paper, we extend OAMP to incorporate generic denoisers,
hence the name D-OAMP. Our numerical results show that
state evolution predicts the performance of D-OAMP well for
generic denoisers when i.i.d. Gaussian or partial orthogo-
nal sensing matrices are involved. We compare the perfor-
mances of denosing-AMP (D-AMP) and D-OAMP for recov-
ering natural images from CS measurements. Simulation re-
sults show that D-OAMP outperforms D-AMP in both con-
vergence speed and recovery accuracy for partial orthogonal
sensing matrices.

Index Terms— Compressed sensing, approximate mes-
sage passing (AMP), denoising, orthogonal AMP, partial or-
thogonal matrix.

1. INTRODUCTION

Compressed sensing (CS) is a new paradigm for signal ac-
quisition [1]. The CS measurement process can be modeled
as

y = Ax0 + w, (1)

where A ∈ RM×N is the sensing (or measurement) matrix,
x0 the signal and w ∼ N (0, σ2I) the measurement noise.
This paper is concerned with the signal recovery problem,
namely, estimating x0 from y.

Approximate message passing (AMP) [2] is a low-cost
iterative signal recovery algorithm. There are two modules
involved in AMP: a linear filter and a component-wise non-
linear processor. The linear filter estimates the signal from
compressed measurements, and the nonlinear processor re-
fines the estimate by exploiting structural information of the
signal (e.g., sparsity). A distinctive feature about AMP is that,
when A has i.i.d. entries, the linear filter output can be mod-
eled as an observation of the signal corrupted by white Gaus-
sian noise [2, 3]. Furthermore, the variance of the Gaussian

noise can be tracked through a scalar recursion called state
evolution (SE) [2, 3]. The SE framework is useful for algo-
rithm tuning. For instance, [4] develops a parametric AMP
algorithm where the nonlinear processor is a linear combi-
nation of multiple elementary nonlinear functions, see also
[5]. Based on SE analysis, the combination coefficients can
be adaptively optimized in each iteration [4].

The original AMP algorithm mainly focuses on sparse
signal recovery. To exploit more general signal structure,
[6] proposed a denoising-based AMP (D-AMP) framework
where generic denoisers are used as the nonlinear processor.
A large number of popular image denoisers were examined in
[6]. The numerical results showed that D-AMP with off-the-
shelf denoisers achieve state-of-the-art recovery performance
for i.i.d. Gaussian sensing matrices. Due to complexity con-
siderations, it is also of interest to use sensing matrices con-
structed from fast implementable operators like discrete co-
sine transform (DCT). A potential problem for D-AMP with
such partial orthogonal matrix is that the SE framework might
be inaccurate and the recovery performance cannot be guar-
anteed. In [7], the authors adopted the turbo recovery algo-
rithm in [8] to incorporate image denoisers such as BM3D
[9]. However, the results in [7] showed that their proposed
BM3D-turbo is inferior to D-AMP in reconstruction accuracy.

Orthogonal AMP (OAMP) [10] is an extension of the
turbo signal recovery algorithm in [8], and can be viewed as a
special case of AMP where the denoiser is divergence-free. It
was shown in [8, 10] that OAMP outperforms AMP for par-
tial orthogonal sensing matrices when the entries of x0 are
independently drawn from a known distribution. However,
this random signal model does not hold for image processing
applications considered in this paper.

In this paper, we propose a denoising-based OAMP al-
gorithm (D-OAMP) for recovering natural images from CS
measurements. D-OAMP generalizes OAMP by integrating
generic denoisers. We consider both i.i.d. Gaussian sensing
matrices and partial orthogonal matrices. We develop an SE
framework for D-OAMP. Our numerical results show that the
SE for D-OAMP is accurate for both i.i.d. Gaussian and par-
tial orthogonal sensing matrices. Unlike [7], our proposed D-
OAMP outperforms D-AMP in both convergence speed and
recovery accuracy when a partial orthogonal sensing matrix
is involved and the BM3D denoiser is adopted.
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2. DENOISING-BASED AMP

2.1. D-AMP Algorithm

Algorithm 1 D-AMP algorithm

1: inputs: AM×N ,yM×1, x̂0 = 0, z0 = y
2: for t = 0, 1, 2, 3, . . . , k do
3: σ̂2

t = ‖zt‖2
M

4: rt = xt + ATzt
5: x̂t+1 = Dt(rt, σ̂t)
6: zt+1 = y −Ax̂t+1 + ztdiv{Dt(rt)}/M
7: end for
8: outputs: x̂out = x̂k

Before presenting D-OAMP, we first review the D-AMP
algorithm in [6]. The details of D-AMP are described in Al-
gorithm 1.

In D-AMP, D(rt) represents a denoiser.1 From [6] the
divergence of D(rt) is defined as

div {D(rt)} ≡
1

N

N∑
i=1

∂ (D(rt))i
∂rti

. (2)

Many denoisers do not have explicit expressions. In such
cases, we can use the following Monte Carlo method [6] to
compute the divergence. Let e ∼ N (0, I) be an i.i.d. random
Gaussian vector. The divergence of D(rt) can be estimated
as [6]

div
{
D(rt)

}
≈ Ee

{
eT
(
D(rt + δe)−D(rt)

δ

)}
, (3)

where δ is a small constant. The expectation in (3) can be
approximated by sample average. It is observed in [6] that
one sample is good enough for high-dimensional problems.

2.2. State Evolution

When A has i.i.d. Gaussian entries, it is found empirically
[6] that the mean square error (MSE) of D-AMP in each it-
eration can be characterized by the following state evolution
(SE) recursion

τ2t =
1

δ
v2t + σ2, (4a)

v2t+1 =
1

N
E
{
‖Dt (x0 + τte)− x0‖2

}
, (4b)

where the expectation is taken over e ∼ N (0, I). In the first
iteration, v0 = ‖x0‖2/N .

The intuition behind the state evolutions is that rt is an ef-
fective observation for x0 with additive white Gaussian noise
(AWGN) [2]. This is rigorously proved in [3] for AMP when

1In general, the noise variance σ̂2
t is a parameter of the denoiser. How-

ever, we sometimes writeD(rt) instead ofDt(rt, σ̂t) for notational brevity.

A is an i.i.d. Gaussian sensing matrix. For D-AMP, the va-
lidity of this property is examined through extensive simu-
lations [6]. This “effective AWGN observation” property is
attributed to the Onsager term [2, 6] ztdiv{Dt(rt)}/m (See
line 7 in Algorithm 1).

3. DENOISING-BASED OAMP

We now present the proposed denoising-based OAMP (D-
OAMP) algorithm.

Algorithm 2 D-OAMP algorithm

1: inputs: AM×N ,yM×1, σ2, x̂0 = 0, z0 = y
2: for t = 0, 1, 2, 3 . . . , k do
3: v̂t = ‖zt‖2−Mσ2

tr(ATA)

4: rt = x̂t + Wtzt
5: σ̂2

t = Φ(v̂2t )
6: x̂t+1 = Dt(rt, σ̂t)
7: zt+1 = y −Ax̂t+1

8: end for
9: outputs: x̂out = Dout

k (r̂k; θk)

3.1. D-OAMP Algorithm

The D-OAMP algorithm is shown in Algorithm 2. In Algo-
rithm 2, Wt is a linear filter. Readers are referred to [10, Sec-
tion III-A] for details. Φ(·) (which depends on A and Wt)
[10, Eqn. (31)] is used to estimate the noise variance of rt.
Different from D-AMP, the denoiser D(rt) is required to be
divergence-free [10], i.e. div{D(rt)} = 0. (We will discuss
how to construct divgence-free denoisers in Section 3.3.) The
estimate of D-OAMP is produced by Dout

t (rt), which is not
restricted to be divergence-free [10].

3.2. State Evolution

Following [10], we use the SE recursion below to characterize
D-OAMP

τ2t = Φ(v2t ), (5a)

v2t+1 =
1

N
E
{
‖Dt (x0 + τte)− x0‖2

}
, (5b)

where the expectation is taken over e ∼ N (0, I), and v0 =
‖x0‖2/N . Notice that the final estimate of D-OAMP is pro-
duced by Dout

t (which is not restricted to be divergence-free),
and the corresponding MSE is predicted as

1

N
E
{∥∥Dout

t (x0 + τte)− x0

∥∥2} . (6)

We will show that SE for D-OAMP is accurate for both i.i.d.
Gaussian sensing matrices and partial orthogonal sensing ma-
trices (with appropriate randomization). In comparison, the
SE of D-AMP in Section 4 can be inaccurate for partial or-
thogonal matrices.



3.3. Divergence-free Denoisers for OAMP

3.3.1. Construction of divergence-free denoisers

The state evolutions in Section 2.2 and Section 3.2 are based
on the AWGN model r = x0 + τe, where e ∼ N (0, I). For
brevity, we omit the iteration index t for r. Given a denoiser
D̂(r), we construct a divergence-free denoiser as follows [10]

D(r) = C
(
D̂(r)− div

{
D̂(r)

}
r
)
, (7)

where C is an arbitrary constant. From (2), the divergence of
D(r) in (7) can be expressed as

div{D(r)} =

C

(
div{D̂(r)} − div{D̂(r)} − 1

N

N∑
i=1

∂div{D̂(r)}
∂ri

ri

)
≈ 0,

(8)

where we assume that the contribution of each individual ri
in div{D̂(r)} is negligible for a high-dimensional problem,
and so the third term in (8) is approximately zero.

To see the rationale behind (8), consider the following
special case. Let x0 be an i.i.d. vector and D̂(·) a component-
wise function of r (i.e., (D̂(r))i = D̂(ri)). In this case,
div{D̂(r)} converges to a constant (independent of each in-
dividual ri) as N → ∞ by the law of large numbers. For
non-random x0 and generic D̂, we still expect div{D̂(r)} to
be self-averaging, although this may not be true in a strict
sense. Nevertheless, our numerical results in Section 4 show
that the SE framework developed based on this assumption is
reasonably accurate for real images and practical denoisers.

3.3.2. Parameter tuning based on SURE

For the divergence-free denoiser in (7), C is a free-parameter.
Ideally, we choose C that minimizes

MSE =
1

N
E
{
‖D(r)− x0‖2

}
, (9)

where r = x0 + τe and the expectation in (9) is with respect
to e. The problem is that we cannot compute the MSE in
(9) since x0 is unknown. Following [4, 5], we choose C that
minimizes Stein’s unbiased risk estimate (SURE) [11]

M̂SE =
1

N
‖D(r)− r‖2 +

2τ2

N
div{D(r)} − τ2 (10a)

=
1

N
‖D(r)− r‖2 − τ2 (10b)

=
1

N
‖C
(
D̂(r)− div{D̂(r)}r

)
− r‖2 − τ2 (10c)

where the second equality is due to the fact that D(r) is
divergence-free (c.f., (8)). The optimal C that minimizes (10)

(which is a quadratic function of C) is given by

C? =
rT
(
D̂(r)− div{D̂(r)}r

)
‖D̂(r)− div{D̂(r)}r‖2

. (11)

3.3.3. The SURE-LET framework

The SURE-LET framework in [4, 5] can also be integrated
into the D-OAMP algorithm. In SURE-LET, the denoiser
D(r) is given by a linear combination of multiple elementary
denoisers:

D(r) =

K∑
k=1

Ck

(
D̂k(r)− div{D̂k(r)}r

)
. (12)

Here, each elementary denoiser is divergence-free (c.f., (7)),
and so D(r) is also divergence-free.

Denote C? ≡ [C?1 , C
?
2 , . . . , C

?
K ]T where {C?k} are the

optimal values of {Ck} that minimize the SURE. Let Gk ≡
D̂k(r) − div{D̂k(r)}r, and define Mi,j ≡ GT

i Gj , b ≡
[GT

1 r,G
T
2 r, . . . ,G

T
Kr]T . Following similar derivations as

(11), we obtain the following optimal combining coefficients:

C? = M−1b. (13)

4. NUMERICAL RESULTS

In this section, we provide numerical results of D-AMP and
D-OAMP in CS image recovery. The recovery accuracy is
measured by both normalized mean square error (NMSE) and
peak signal-to-noise ratio (PSNR):

NMSE =
‖x̂− x0‖2

‖x0‖2
, (14)

PNSR = 10 log10

(
MAX2

MSE

)
, (15)

where MAX denotes the maximum pixel values of the image.
We consider two denoisers, the piecewise linear kernel in [4]
and BM3D denoiser [9] to construct denoiser D(r) respec-
tively. The corresponding algorithms are denoted respectively
as LET-AMP, LET-OAMP, BM3D-AMP and BM3D-OAMP.

4.1. Accuracy of State Evolution

4.1.1. Gaussian sensing matrix

Consider an i.i.d. Gaussian A with each Ai,j ∼ N (0, 1/M).
In this case, we choose Wt to be the linear minimum mean
square error estimation (LMMSE) matrix [10, Eqn. (38)]. The
Φ function in (5a) is given by [10, Eqn. (43c)]

Φ(v2t ) =
σ2 + cv2t +

√
(σ2 + cv2t )2 + 4σ2v2t

2
, (16)

where c = (N −M)/M . The simulated MSEs and SE pre-
dictions are shown in Fig. 1a. We see that the SE predictions
match well with simulated MSEs for both D-AMP and D-
OAMP.
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Fig. 1: State evolution of D-AMP and D-OAMP

Images Lena Boat Barbara Fingerprint
Measurement rate 30% 50% 70% 30% 50% 70% 30% 50% 70% 30% 50% 70%
EM-GM-AMP 26.89 29.50 32.38 24.70 27.78 30.95 24.47 27.69 32.14 22.51 26.04 29.58
LET-AMP 22.53 30.78 33.74 21.51 29.00 32.42 19.69 28.92 32.46 17.48 27.25 31.11
LET-OAMP 27.72 31.12 34.80 25.70 29.44 33.54 25.49 29.36 33.70 23.60 27.82 32.48
BM3D-AMP 34.72 38.20 38.98 34.09 34.70 37.92 35.15 38.24 41.39 28.97 33.18 37.00
BM3D-OAMP 35.50 38.26 42.36 34.59 37.60 41.28 36.51 39.83 43.35 31.01 35.24 39.79

Table 1: PSNR of reconstructed images under orthogonal matrix

Images Lena Boat Barbara Fingerprint
Measurement rate 30% 50% 70% 30% 50% 70% 30% 50% 70% 30% 50% 70%
LET-AMP 12.68 12.47 12.29 12.48 12.7 12.75 12.49 12.45 12.83 12.74 12.41 13.57
LET-OAMP 4.60 3.97 2.72 4.39 3.86 3.33 4.32 3.72 3.45 7.95 5.1 4.92

Table 2: Reconstruction time of images under orthogonal matrix

4.1.2. Partial orthogonal sensing matrix

We use the following partial orthogonal matrix:

A =
√
N/MSF TΘ1FΘ2, (17)

where S is a selective matrix, F is a DCT matrix and Θ1,Θ2

are diagonal matrices with diagonals being 1 or -1 with equal
probability. Here, Θ1 and Θ2 are introduced to properly ran-
domize A. The SE in (5a) now becomes [10, Eqn. (45)]

Φ(v2t ) =
N −M
M

v2t + σ2. (18)

Figs. 1b and 1c plot, respectively, the MSE performances
of LET-AMP/LET-OAMP and BM3D-AMP/BM3D-OAMP.
In these simulations, we use the “fingerprint” from the Javier
Portillas dataset [12]. More comprehensive numerical com-
parisons will be provided in Table 1. We find that LET-AMP
in Algorithm 1 does not work well (diverge under the current
scenario) for partial orthogonal matrices. To address this, we
adopt more robust median estimator for σ̂2 proposed in [13]
in D-AMP. Even after tuning, the D-AMP algorithm in both
Figs. 1b and 1c deviate from SE prediction and does not work

well under low sampling rate (like Fig. 1b). In contrast, the
SE for D-OAMP well predicts the simulated MSEs.

4.2. Performance Comparison

In Table 1, we report the PSNR of noiseless image recovery
(of size 512×512) under the orthogonal matrix given in (17).
We see that D-OAMP uniformly outperforms D-AMP and
EM-GM-AMP [14]. We further compare the reconstruction
time of LET-AMP and LET-OAMP in Table 2. Both algo-
rithms are run until convergence is reached. We see that LET-
OAMP also converges faster than LET-AMP. This is consis-
tent with the observation in Fig. 1b.

5. CONCLUSION

In this paper, we proposed D-OAMP algorithm for com-
pressed sensing. D-OAMP does not require the knowledge
of distribution of input signal and therefore can be adopted
in many applications. Numerical results show that D-OAMP
outperforms D-AMP in terms of both recovery accuracy and
convergence speed for partial orthogonal sensing matrices.
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