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ABSTRACT Here\ is a nonnegative trade-off parameter. A key assumption lead
ing to the success of such model is the sub-Gaussianity ofserr
However, in many applications, the measurements of theta.gesy

be seriously contaminated or even missing due to uncegaistich

as sensor failure or transmission errors. This kind of messent
errors are often spars&(]. Hence, a natural extension @)(is to
exploit the structures of both the signal mafiixand the sparse error
matrix S by solving

This paper considers the recovery of group sparse signatsaov
multi-agent network, where the measurements are subjegiaise
errors. We first investigate the robust group LASSO modelitnd
centralized algorithm based on the alternating directi@thmd of
multipliers (ADMM), which requires a central fusion centercom-
pute a global row-support detector. To implement it in a daed-
ized network environment, we then adopt dynamic averagseson

sus strategies that enable dynamic tracking of the glolmakupport min Y21 + S| )
detector. Numerical experiments demonstrate the effautiss of Y.S ’ ’
the proposed algorithms. st. M=[Amy1, -, AwyL] +S.

Index Terms— Decentralized optimization, dynamic average
consensus, group sparsity, alternating direction metHfiodudtipli-
ers (ADMM)

This model is termed as robust group LASSO, whose performanc
guarantee is given irlfl]. Under mild conditions, the robust group
LASSO model is able to simultaneously recover the true \wabfe
Y andS with high probability.

1. INTRODUCTION

1.2. Our Contributions

Suppose thaf distributed agents constitute a bidirectionally con-
nected network and sense correlated signals under spaeseirae
ment errors. The measurement equation of agent

This paper develops efficient algorithms to solve the rolgustp
LASSO model 4). Our contributions are as follows.

(i) We propose a centralized algorithm that is based on tiee-al
nating direction method of multipliers (ADMM), a powerful
operator-splitting technique. One subproblem of the egntr
ized algorithm is the traditional group LASSO model, which

m; = Apy: + si, (1)

wherem; € R™ is the measurement vecta ;) is the sensing

) N . v
matrix, y; € R™ is the unknown signal vector, and € R™ is is approximately solved by a block coordinate descent (BCD)
the unknown sparse error vector. We are particularly nstgdaln approach through successively estimating the row-suggort
a certain correlation pattern of the signal vectors, wheeesignal the signal matrixy’
; NXL; ; :
matrixY = [y1,...,yz] € R is group sparse, meaning tit . . . .
is sparse and its nonzero entries appear in a small numbenwhon (i) We develop decentralized versions of the above algorithat
rows. DefineM € RM*L as the measurement matrix aSde are suitable for autonomous computation over large-seie n
RM*L as the sparse error matrix, the matrix form of the agents’ works. Since estimating the row-support of the signal matri
measurement equations is Y requires collaborative information fusion of all the agent
we propose to achieve inexact information fusion through dy
M=[Auy -, Amyyc] +S. 2) namic average consensus techniques, which only require in-

formation exchange among neighboring agents.
GivenM andA ;)’s, the goal of the network is to recovaf andS
from the linear measurement equati@j. ( 1.3. Notations

Matrices are denoted by bold uppercase letters and veaterdea

1.1. Robust Group LASSO Model noted by bold lowercase letters. For a matk d’ denotes its
The recovery of group sparse (also known as block spdiser[ #-th row, d; denotes itgj-th column, whiled;; denotes itg(i, 5)-
jointly sparse 2]) signals finds a variety of applications such asth element. Thelz:-norm of D is |D|2,1 2 > (02 a2,
direction-of-arrival estimationd, 4], collaborative spectrum sens- the ¢,-norm is |[D|; £ .. |di;|, and the Frobenius norm is
ing [5-7] and motion detectiong]. A well-known model to recover e

91577] ™ ID|r 2 (5, 5, d2)'7>.

g;?:gizﬁagsgg%?glsﬁh?gﬁ L;%hL/QSS SO (least absolute siyenéad The multi-agent network is described as a bidirectionaplgra
P ' (L,€). Iftwo agents-, I € L are neighbors, then they can communi-
i Y MM — (A A 2 (3 cate with each other within one hop, aftd/) € £ is a bidirectional
min - [[Yllzx + Al Ay Awyille @) (G0 nication edge.
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2. CENTRALIZED ROBUST GROUP LASSO

2.2. Using BCD to Solve})

Optimally solving @) is nontrivial since the objective function is a 10 Set up the iterative BCD algorithm that solvég &t timet, we

weighted summation of two nonsmooth functigfg||2,» and||S||1,

divide timet into P slots. Attimet slotp (p = 0,1,--- , P—1), we

where'Y ands are entangled in the constraint. Therefore we resorfinearize the Frobenius norm term i) (with respect toY (¢ + %)

to the alternating direction method of multipliers (ADMM) split

the two entangled variabl& andS such that the resulting subprob-

lems are easier to solve.

2.1. Using ADMM to Solve @)
The augmented Lagrangian function dj (s
Y|z, + AlISI = (Z, [Awyr, - s Aqyye] +8 — M)

o Aawyn - Awyil +8 - M,

whereZ € RM*I is the Lagrange multiplier and is a positive
penalty parameter. The ADMM alternatingly minimizes they-au
mented Lagrangian function with respectYoandS, and then up-
dates the Lagrange multipli& [12]. At time ¢, the ADMM works
as follows.

First, fixing S = S(t) andZ = Z(t), we minimize the aug-
mented Lagrangian function respectYoto getY (¢t + 1). Simple
manipulation shows that it is equivalent to

Yt +1) = argmin [ Y]]z, ®)
Z(t)

o lAwyL Ayl + 860 - M- 2D,

Note that b) is a standard group lasso problem that generally does

not have a closed-form solution. We will develop an efficielgfo-
rithm to solve B) later in this section.

Second, fixingY = Y (¢ + 1) andZ = Z(¢), we minimize the
augmented Lagrangian function respecbtm getS(¢ + 1). Again,
combining the linear term with the quadratic ternSoyields
S(t+1) = argmsin S| (6)

Z(t
2 lAwy e+ D Ayl 1] +8 - M- 2D
DenotingW (t+1) = M — [A(l)y1 (t+1),---, A(L)yL (t+1)]—
Z(t)/p, (6) has a closed-form solution given by

ot (£ 4 1) = SGRwant (£ + 1)) max (0, wa (¢ + 1)] — %)7 )

where sgii) is the sign functions,,; (¢ + 1) andw,,; (¢ + 1) denote
the (m, I)-th entries ofS(¢ + 1) and W (¢ + 1), respectively. Note

that the terms,; (¢+1)| can be viewed as the support detector of the

and add an extra quadratic regularization term, which gives

e+ B0V + B),3) + DIy - v+ B, @

min Y] P

where is a positive proximal parameter and th¢h column of
V(t+ &) e RV*" is defined as

p T p z(t)
vi(t+ ﬁ) =Ay(Apyi(t+ ﬁ) +si(t) —my — 3

). (10)
Note that ) is equivalent to

()

By — P Py
2,1+2T||Y Y(t+P)+TV(t+ Nz,

min Y] P

which has a closed-form solution given by the soft-thredimgl op-
erator [L6]. DenoteU (t+£) = Y(t+ &) -7V (t+ &) e RV*F
whosen-throwis givenbyu" (t+ &) = y" (t+ 8) —7v"(t+ 5).
Also denoteY (¢ + 2£L) € RV *" as the solution of{1). Then-th
row of Y (¢ + 254) is

u7l(t+ %)
lun(t+ 5)ll2

p+1)_
)=

max (0, [lu" (¢ + %)H2 - %).
Again, note that the terrfiu” (¢ + %)||2 can be viewed as the
row-support detector of the-th row of Y. If ||u™(t + 5)]2 is

smaller than the threshole/ 3, theny™ (¢ + 251 ) is set to be zero.

y(t+

2.3. Implementation of Centralized Robust Group LASSO

The centralized ADMM to solve the robust group LASSO modg! (
is summarized in Table I. Each iteration of the ADMM includes
inner-loop BCD subroutine that updat®sthrough solving %), the
update ofS that has a closed-form solutior)( and the update d&
in (8). The ADMM parametei3 can be any positive value, though
its choice may influence the convergence rate. The BCD padesme
7 is set to be the minimum of largest eigenvaluesAgf) A, | =
1,2,---, L that guarantees the convergence of the BCD subroutine
[13-15]. As long asT is properly chosen ané is large enough,
the BCD subroutine is able to solve the subprobl&m(th enough
accuracy such that the ADMM converges to the global minimd@im o
the convex progranvyj.

The algorithm outlined in Table | is centralized, which mgan

(m, 1)-th element ofS. If |s,,; (¢ + 1) is smaller than the threshold that a fusion center is necessary to gather information fatirthe

A/B, thens.,,;(t 4+ 1) is set to be zero.
Finally, givenY = Y (¢ + 1) andS = S(¢ + 1), the Lagrange
multiplier Z is updated according to the following formula
Z(t+1)=17(t) (8)
- B([Ayyi(t+1), -, Ayyc(t+1)] +S(t+ 1) — M).
Since the update @& in (7) and the update dZ in (8) are both

simple, now we focus on the updatefin (5) that is the bottleneck
of the ADMM. Observe that ing) the ¢5 ;-norm term is separa-

ble with respect tg/;'s but nonsmooth, while the Frobenius term is

smooth but nonseparable with respecytts. Therefore, in this pa-

agents and conduct optimization. This centralized schenserisi-
tive to the failure of the fusion center, requires multi-fegmmuni-
cation within the network, and is hence unscalable witheesjo
the networks size. In view of the need of decentralized dgtm
tion for large-scale networks, we discuss how to implemeirt a
decentralized manner, as shown in the next section.

3. DECENTRALIZED ROBUST GROUP LASSO

Observe that Algorithm 1 is naturally distributed, exceptthe up-

per we solve ) with the block coordinate descent (BCD) algorithm date ofy,,; (¢t + P—jgl), which involves calculating the global row-

that has shown to be an efficient tool to handle this specailpm
structure 13-15].

support detectoflu™(t + %)||2 across agents. Hence, given the
vectoru”(t + &), the key to the decentralized implementation of



Table 1. Algorithm 1: Centralized Robust Group LASSO Table 2. Algorithm 2: Decentralized Robust Group LASSO

Given: measuremeiI; sensing matriced (;); parametersl andr Given: measuremeiI; sensing matriced ;y; parameters andr

Initialize: signalY (0) = 0; errorS(0) = 0; multiplier Z(0) = 0 Initialize: signalY (0) = 0; errorS(0) = 0; multiplier Z(0) =
while not convergedt(= 0,1, ---) for all { do while not convergedt(= 0, 1, - - - ) agentl do

forp=0,1,--- ,P—1 forp=0,1,---,P—1

vi(t+ £) = Al (Apyi(t + &) +su(t) — my — 2) vilt+ &) = Al (Apyi(t + &) +su(t) — my — 21)

Unt(t+ B) =y (t + %) —Tonl(t+ %), Vn Unt(t+ B) =yt +5) — Tou(t + 5),Vn

n (t+ ) n T P
Yt (t + p+1) “znz(H PP)H2 max (0 ™ (¢ + &)z — E)'Vn hnl((t + ;i)ll)s updzztagih%r())ugh an(average cz)nsezs)us st;ategy
endfor ynlt+T :ﬁmax 07 Lhnlt-‘rﬁ —%,Vn
V Lhni(t+5)

wi(t+1)=m —Ayyi(t+1) - ZZT“) end for

Smi(t + 1) = SgMw (t + 1)) max (0, [wp (¢ 4+ 1)| — %), vm wi(t+1)=m; —Ayyi(t+1) - zzét)’

7 (t —|—.1) =z(t) — B(A(l)yl(t +1)+si(t+1) — mz) Smi(t + 1) = sgnwm(t + 1)) max (07 |wmi(t 4+ 1)| — %)' vm
end while zi(t+1) = z(t) - B(A@yi(t +1) +si(t + 1) — my)

end while
Algorithm 1 is how to calculate ité>-norm ||u” (¢ + &)]|2 in a de-

centralized manner. Recall that

L
Hu”(t+%)||2 — Lt (% ;uiz(ﬂr %)) = (Lhnz(t+ %))

where

3.2. Dynamic Average Consensus

2 The above-mentioned dilemma motivates us to introduce a new

scheme to dynamically calculate the row-support detedorsim-
plify the algorithmic protocol, we allow neighboring agsnto
exchange only one round of information. Under this settien,

A ery agent holds a dynamic valug, (¢t + %), while all the agents
-1 Z Uni(t + manage to track their dynamic average with one round of comvmu
cation. Apparently, if the values af’, (¢ + £) change irregularly,

[N

hnl t +

is the average of the squares. Therefore, the problem bec®ue-  he agents have no chance to reach their exact dynamic averag

2
pose each ageritholds the value ofi;, (¢ + ), how can we de-  Neyertheless, observe that if the valuesudf (t + 2) converge
sign efficient strategies to (exactly or inexactly) calteldeir mean g their steady states, convergence of the dynamlc averdbew

hnl (t +

#) in a decentralized manner? Below we consider threg,sssible. We consider two dynamic average consensusgéste

approaches to obtain the average. proposed by18].

First-order dynamic average consensusCalculate

3.1. Static Average Consensus

1
The first strategy comes from the classic average consefgos a  fni( t+ Zarl (hm t+ T) = hn(t + T))
rithm [17]. Calculate r#l
n p n P2 —1
(4 2) == (ut+ 8)) il + E22) i+ B) — (e + 250,
whereh™ (t+ %) c R**L is a row vector containing afl,,; (t+ %), Second-order dynamic average consensuSalculate
(u™(t + £))* means element-wise squaresusf(t + 2), K isa . — —9

P 2 P 2 p—1 2 P
large iteration number, ank is the mixing matrix. The mixing /ni(t + 5) = wni(t + 5) = 2un(t + =) + uut + =5=)
matrix X is doubly stochastic, and its, /)-th element,; is nonzero

if and only if (r,1) € £ orr = [. Atypical choice ofX follows the

+an(t+p;1)+zarz (Em-(t + p;l) — A (t + —1)) ,

Metropolis-Hastings rulel[7], P o P P
in{ L L i : -
mintar ak Tnhes; Pt + 2) = Rt + 2)
orl = Z(”)Eg maX{O,di— dil}, ifr=1; (12) P P
il T 1 1
0, else. P (t+—— w2y e+ 20 )
+ nl + +Zgrl< + P ) nl( + P )

Hered, is the degree of agent 7

Obviously, the graph-sparse structure of the mixing maxix

enables decentralized computationlgf(t 4+ &). According to
the theory of average consensud][ if K goes to infinity, then

3.3. Implementation of Centralized Robust Group LASSO

all the elements oh™ (¢ + %) converge to the expected average The decentralized group LASSO algorithm is outlined in Eal!

(1/L) 3

1 uZ, (t + %), in which the decentralized implementa- It is very close to the centralized algorithm in Table |, excthat

tion is equivalent to its centralized counterpart. Howgeirareasing  the row-support detector is successively approximatemlititr static
K means introducing more rounds of communication and computaand dynamic average consensus strategies.

tion, implying that setting< large is inefficient. On the other hand, If the static average consensus strategy is adopted, theneat
setting K’ small (say,K = 1) often leads to unsatisfactory result. ¢ slotp, the network need&” rounds of information exchange. The
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sparse signal matri¥ € R*°°*3% has10 nonzero rows (row spar-
sity ratio is5%), whose positions are uniformly randomly chosen.
The amplitudes of the nonzero elements follow i.i.d. umfatistri-
bution within [-50, 50]. Elements of every sensing matu, €
R30%200 follow i.i.d. standard normal distribution. The sparseoerr
matrixS € R3°*3% has90 nonzero elements (sparsity ratiolis%),
whose positions are uniformly randomly chosen and the autgs
follow i.i.d. uniform distribution within[—50, 50].

In the robust group LASSO model, the weight paramater 1.
The ADMM parameters is also set ad. The BCD parameter
is set to be the minimum of largest eigenvaluesAgfy A ), | =
1,2,---, L. Every iteration of the ADMM algorithm is divided into
P = 50 slots so as to run the BCD subroutine. For the static average
consensus strategy, we [t = 50, meaning that each slot requires
50 rounds of communication. For the dynamic average consensus
strategies, we let the safeguarlsi, = 1 and Amax = oo. The
performance metric is relative error, defined as the Fralsedis-

T QT H H
Fig. 1. Comparison between the centralized algorithm and the thretance between the try& ™ S7] solving @) and the estimated one

decentralized ones. The curve of the centralized algorabimcides
with that using static average consensus.

number of round reduces to one in the two dynamic average corpiPl€ Ones) i$0%.

sensus strategies. Observe that in each round of first-dye@mic
average consensus, ageéntequiresh,, from all of its neighbors
r. However, in each round of second-order dynamic average co
sensus, ageritrequires bothh,,,, andh.,,. from all of its neighbors
r. Therefore, the second-order strategy doubles the conuatiom
cost per time slot, compared to its first-order counterpart.

With particular note, wherk is set to be large enough in the
static average consensus strategy, the average consensxact.
Therefore, the resulting decentralized algorithm enjdys $ame
convergence guarantee as the centralized one, at the casabf
fordable communication cost. Embedding the two dynamicage
consensus strategies saves remarkable communication matst
makes convergence analysis a challenging task. We wilkl@aas
our future work.

In addition, to avoid possible computational instabilite also
set safeguards to the valuefof; (¢4 & ). If going beyond the region
Of [Amin, hmax], its value is set to the nearest boundary.

4. NUMERICAL EXPERIMENTS

In the numerical experiments, we consider a networl.o& 30
agents. The dimension of every signal vectoNis= 200, while
the dimension of every measurement vectalis= 30. The group

by ADMM, normalized by the Frobenius norm ¥ S7].

We first compare the centralized algorithm and the threerdece
tralized ones, as depicted in Fid- The connectivity ratio of the
network (the percentage of randomly connected edges olitmis
The curve of the centralized algorithm coincides
with that using static average consensus. Recall that staéirage
consensus incurS0 round of communications at every time slot,

/nd is hence expensive. In contrast, the dynamic averagensus

strategies demonstrate satisfactory convergence pregethough
yielding slightly degraded estimates. Particularly, teeand-order
dynamic average consensus is close to the centralized deenis
of the relative error.

In the second set of numerical experiments, we vary the @aenne
tivity ratio to observe its impact on the decentralized alms, as
shown in Fig. 2. When the connectivity ratio decreases, the per-
formance of the static average consensus degrades sigtiifiCBhe
reason is that a lower connectivity ratio reduces the speeetaork
information fusion, and hence makes the static averageecsns
less accurate under a givéi The two dynamic average consensus
strategies, on the other hand, are not very sensitive toahation
of connectivity ratio.

The numerical experiments validate the effectiveness fgus
dynamic average consensus to decentralize computatiannete
works. Though its theoretical properties in tracking peobh$ have
been investigated1p), its interplay with the overall optimization
scheme is still unclear, and shall be our future researalsfoc
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