
ar
X

iv
:1

60
9.

04
62

3v
1 

 [s
ta

t.M
L]

  1
4 

S
ep

 2
01

6

DISTRIBUTED ESTIMATION OF THE OPERATING STATE OF A SINGLE-B US DC
MICROGRID WITHOUT AN EXTERNAL COMMUNICATION INTERFACE

Marko Angjelichinoski∗, Anna Scaglione†, Petar Popovski∗ andČedomir Stefanović∗
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ABSTRACT

We propose a decentralized Maximum Likelihood solution fores-
timating the stochastic renewable power generation and demand in
single bus Direct Current (DC) MicroGrids (MGs), with high pene-
tration of droop controlled power electronic converters. The solution
relies on the fact that the primary control parameters are set in ac-
cordance with the local power generation status of the generators.
Therefore, the steady state voltage is inherently dependent on the
generation capacities and the load, through a non-linear parametric
model, which can be estimated. To have a well conditioned estima-
tion problem, our solution avoids the use of an external communica-
tion interface and utilizes controlled voltage disturbances to perform
distributed training. Using this tool, we develop an efficient, decen-
tralized Maximum Likelihood Estimator (MLE) and formulatethe
sufficient condition for the existence of the globally optimal solu-
tion. The numerical results illustrate the promising performance of
our MLE algorithm.

Index Terms— MicroGrid, droop, training, MLE

1. INTRODUCTION

Low Voltage Direct Current (LVDC) MicroGrids (MGs) are gaining
popularity due to the flexibility of the control, the absenceof reactive
power component and the easy integration with emerging renewable
generation technologies [1–3]. They usepower electronic convert-
ers to interface the Distributed Energy Resources (DERs) with the
LVDC distribution infrastructure. The converters implement a set of
controlalgorithms, organized in a hierarchy that consists ofprimary,
secondaryandtertiary levels [2, 4–6]. The primary controller regu-
lates the steady state bus voltage, keeping the balance between the
supplied power and the load demand. It is commonly implemented
via thedroopcontrol law in decentralized configuration, where each
controller uses only the local output current to control thevoltage
as the load varies [2,4,6]. On the other hand, the secondary/tertiary
controllers, which perform various system optimization procedures,
require regular updates of the power generation status of remote
DERs and the current load [2]. Traditionally, a communication net-
work is used to send those updates, which increases the complexity
and the implementation cost of the MG system, as well as makesits
reliability dependent on an external system [1–3].

Motivated by the shortcomings of external communication sys-
tems, in this paper we propose a novel framework for single-bus
DC MGs, which enables DER units to estimate the power genera-
tion capacities of all other DERs, as well as the load power demand
by relying solely on the capabilities of power electronic controllers.

The work presented in this paper was supported in part by EU, under
grant agreement no. 607774 “ADVANTAGE”.

The proposed framework enables DERs to learn theoperating state
of the MG that can be used by various control applications, such as
optimal economic dispatch [7,8], optimal power flow [9] and market
optimizations [10]. Since each DER learns the status of all remote
units, the optimal control decisions can be made without anyfurther
coordination, allowing for a fullydecentralizedcontrol architecture.

The proposed solution reuses the existing primary control inter-
face and it does not require any additional hardware and/or external
communication support. Its main principle of operation exploits the
fact that the configuration of theprimary droop controllermakes the
steady state bus voltage functionally dependent on the variable gen-
eration capacities of the DERs and on the current value of theload.
Specifically, thevirtual admittancecontrol parameter of each droop
controller is nominally set to be proportional to the power capacity
of the DER, while the feedback loop is closed via the output current
of the unit that varies with changes in the load [11–13]. Thus, the
steady state voltage can be described through a non-linear model,
parametrized by the DER generation capacities and the load power
demand. To make the parameters of the model identifiable, thecon-
trollers, for alimited time period, simultaneously switch between
different operating points of the droop control following predeter-
mined patterns calledtraining sequences. These sequences area pri-
ori known to all controllers and they cause deviations of the steady
state voltage, which are observed locally and enable each DER to
apply decentralized Maximum Likelihood Estimation (MLE).The
specific contributions of this paper can be summarized as follows:
(i) formulation of the estimation problem based on the modelof the
primary droop control, (ii) identification of the sufficientcondition
for unique identifiability of the MG configuration (i.e., thestates of
the DERs and of the load), and (iii) solution to the MLE problem.
We also illustrate the potential of the proposed framework in an ex-
ample MG system.

The rest of the paper is organized as follows. This section is
concluded with a brief review of the related work. Section 2 intro-
duces the system model and formulates the problem of estimating
renewable generation and the load. Section 3 presents the MLE as
the main result of the paper. Section 4 presents the numerical results
and section 5 briefly discusses our ongoing work on the topic.

Related Work: Switching between different operating points
of the converters was previously used for active impedance estima-
tion for the Thevenin equivalent model [14–16]. However, this ap-
plication is confined to very simple scenarios where only a single
converter disturbs the state of the bus and only one parameter gets
estimated. In our framework, multiple controllers deviateprimary
control parameters in order to “train” the system simultaneously, ex-
tracting significantly more information about the system state. Fi-
nally, we note that the proposed framework is in line of recent works
in MGs [1, 2, 17–22] that suggest to avoid installing a separate cy-
ber infrastructure to support the control architecture, due to reliabil-
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Fig. 1. Single bus DC MicroGrid in steady state.

ity/availability concerns and installation costs. Instead, recent ad-
vances advocate to use the signal processing potential residing in
the power electronic converter measurements and control circuits,
allowing for a fully self-contained MG implementation [20–22].

2. SYSTEM MODEL AND PROBLEM FORMULATION

2.1. Primary Control and Steady State Characterization

We focus on a single bus DC MG system (see Fig. 1), assuming that
all units are connected to a common point, i.e., thebus, described
by a steady-state voltagev. Note that this is a valid MG model for
small, localized systems that span a limited geographical areas and
the effect of the distribution lines can be neglected [2,3,11–13]. We
assume thatU DER units are interfaced by the bus through power
electronic converters. The primary control executed by theconvert-
ers is implemented via thedroop control lawthat has two control-
lable parameters: thereference voltageand thevirtual admittance.
In Fig. 1, the droop controlled units are modeled as Voltage Source
Converters that jointly regulate the bus voltage as follows[11,12]:

v = xu + s
−1
u iu, u = 1, ..., U, (1)

wherexu andsu denote the reference voltage and virtual admittance,
respectively, andiu is the output current of the unit,u = 1, ..., U .
The power generation ratings of the droop controlled DERs are de-
noted byWu, u = 1, ..., U . In standard applications for single bus
systems, the reference voltagesxu, u = 1, ..., U are set to be equal
to therated system voltage, denoted byx, while the virtual admit-
tances are set to enable proportional power sharing among the DERs
based on their respective current/power ratings:

su =
iu,max

xu − vmin
= αuWu, u = 1, ..., U, (2)

whereαu = ((xu − vmin)vmin)
−1, vmin is the minimal bus voltage

that the system is configured to tolerate, andiu,max = Wuv
−1
min is

the current rating of the unit whose value corresponds to thepower
rating for proportional power sharing [2, 11–13]. The aggregate
load hosted by the bus is modeled through a constant admittance
scr = pcr

x2 , a constant currenticc = pcc
x

and a constant powerpcp
component;pcr, pcc andpcp are the rated power consumptions at
voltagex.

The behavior of the system in steady-state is governed by the
Ohm’s and Kirchoff’s laws, which for the system shown in Fig.1,
under the described primary control configuration, producethe fol-

lowing current balance equation:

U
∑

u=1

(xu − v)su − v
pcr

x2
−

pcc

x
−

pcp

v
= 0. (3)

Replacingsu with (2) and solving forv yields the following unique
solution [12]:

v =

√

(
∑U

u=1 xuαuWu − pcc
x
)2 − 4pcp(

∑U

u=1 αuWu + pcr
x2 )

2(
∑U

u=1 αuWu + pcr
x2 )

+

+

∑U

u=1 xuαuWu − pcc
x

2(
∑U

u=1 αuWu + pcr
x2 )

. (4)

We observe that the bus voltagev is functionally dependent on the
power generation capacitiesWu, u = 1, ..., U , and the rated power
consumptionspcr, pcc, pcp through the non-linear model (4).

2.2. Formulation of the Estimation Problem

2.2.1. Parameter Vector

Every controllerk, k = 1, ..., U , wants to estimate the generation ca-
pacities of the other droop controlled generatorsWu, u = 1, ..., U ,
for u 6= k, as well as the demand of the bus load, i.e.,pcr, pcc and
pcp. The vector of unknown parameters is:

θk = [WT
k , p

T
L ]

T ∈ R
(U+2)×1

, k = 1, ..., U, (5)

Wk = [Wu]
T
u=1,...,U,u 6=k ∈ R

(U−1)×1
, (6)

pL = [pcr, pcc, pcp]
T ∈ R

3×1
, (7)

whereWk andpL are the power generation and load demand vector,
respectively. Since the steady-state bus voltage is a function ofθk, it
is possible for controllerk to estimateθk in a decentralized manner
using local observations ofv. Because (4) is a mappingv(θk) :

R
(U+2) 7→ R, the excitation of the state of the system is necessary

to ensureidentifiability of θk. This excitation comes in the form of
discrete-time training sequences, embedded in the reference voltage
control parameter, as elaborated in the following subsection1.

2.2.2. Training Sequences and Measurement Vector

The training period is divided intoN slots of durationTS . The
controllers are assumed to be slot- and training period- synchro-
nized, i.e., their training sequences start at the same slot. In slot
n = 1, ..., N , each controller changes its steady state operating point
by applying small deviations on the reference voltage parameters
(see Fig. 1):

xu[n] = x+∆xu[n], n = 1, ..., N, u = 1, ..., U, (8)

where the deviations∆xu[n] satisfy:

|∆xu[n]| ≤ δx, n = 1, ..., N, u = 1, ..., U, (9)

andδ ≪ 1 is a small positive number, determined by the system
application, that limits the amount of bus voltage ripple. In other
words, the controllers simultaneously inject training sequences of
durationN , which are compactly denoted with the vectors∆xu =

1Section 3 formulates the condition that the training sequences need to
satisfy for unique identifiability of the parameter vectorθk, k = 1, ..., U .



[∆xu[1], . . . ,∆xu[N ]]T ∈ R
N×1, u = 1, ..., U and areknownto

all controllers. Using (8) in (2), the virtual resistances in slot n are:

su[n] =
v−1
minWu

x+∆xu[n]− vmin
= αu[n]Wu, u = 1, ..., U. (10)

The reference voltage deviations lead to changes of the bus voltage
which are observed and measured by the controllers:

v[n; θk] = v(θk) +∆v[n; θk], n = 1, ..., N, (11)

wherev[n; θk] is the bus voltage in slotn. v(θk) is the bus voltage
level in the absence of training, which can be calculated from (4)
after replacing the reference voltagesxu, u = 1, ..., U with the rated
voltagex, while ∆v[n; θk] is the voltage deviation due to training
in slot n. It is important to note that condition (10) guarantees that
the output powers of the units will not violate the ratingsWu and the
bus voltagev[n] will not drop belowvmin as long asδ ≤ 1−xv−1

min.
In the following, we omit the explicit dependence of the bus volt-

age onθk as it is clear from the context. To obtainv[n], controller
k samples the bus voltage with frequencyfS . The durationTS com-
plies with the bandwidth limits of the primary control channel and
allows the bus to reach a steady state in timeτ where0 < τ

TS
≪ 1.

The controller averages(TS − τ )fS bus voltage samples at the end
of each slot, acquired in the steady state period, to obtain the noisy
measurement:

ṽk[n] = v[n] + zk[n], k = 1, ..., U, u = 1, ..., U, (12)

wherezk[n] is the noise term. In vector notation:

ṽk = v + zk, k = 1, ..., U, (13)

whereṽk = [ṽk[1], . . . , ṽk[N ]]T ∈ R
N×1, v = [v[1], . . . , v[N ]]T

∈ R
N×1 andzk = [zk[1], . . . , zk[N ]]T ∈ R

N×1. The central prob-
lem is to obtain an estimate ofθk, denoted witĥθk, using onlyṽk

and the non-liner parametric model (4).

3. MAXIMUM LIKELIHOOD ESTIMATOR

As each voltage entry iñvk is obtained by averaging, the noise is
assumed to follow Gaussian distribution,zk ∼ N (0, σ2IN ) [23].
The log-likelihood function ofθk, for a givenṽk is:

L(θk|ṽk) ∼ −(ṽk − vk)
T (ṽk − vk) ≥ 0. (14)

The Maximum Likelihood Estimator (MLE) is defined as:

θ̂k,ML = min
θk

{−L(θk|ṽk)} . (15)

To avoid solving a non-linear optimization problem, with possibly
non-convex objective function over high-dimensional parameter
space, we establish Theorem 1. For this purpose, we introduce the
following matrix:

H̃k = [Π̃k, Ξ̃k] ∈ R
N×(U+2)

, k = 1, ..., U (16)

where

Π̃k = diag(ṽk)∆̃k ∈ R
N×(U−1)

, (17)

∆̃k = [αu ◦ (ṽk − x1N −∆xu)]u=1,...,U,u 6=k ∈ R
N×(U−1)

,
(18)

αu = [αu[1], . . . , αu[N ]]T ∈ R
N×1 (19)

Ξ̃k = [x−2
ṽk ◦ ṽk, x

−1
ṽk, 1N ] ∈ R

N×3
, (20)

where◦ denotes the Hadamard product. Then, we establish the fol-
lowing condition.

Condition 1. (Sufficient Excitation). The matrix̃Hk has full column
rank, i.e.,rank(H̃k) = U + 2.

We are now ready to state the following result:

Theorem 1. If Condition 1 holds, then the unique global minimizer
of (15) is the following Least Squares solution:

θ̂k,ML = (H̃T
k H̃k)

−1
H̃

T
k π̃kWk, (21)

where

π̃k = −diag(ṽk)(αk ◦ (ṽk − x1N −∆xk)) ∈ R
N×1

, (22)

andθk andH̃k are given with(5) and (16), respectively.

Proof. Any solution of the MLE problem (15) must satisfy the sta-
tionary point condition:

∂L(θk|ṽk)

∂θk

= −
1

σ2
(ṽk − vk)

T ∂vk

∂θk

= 0. (23)

The trivial solution to (23) is̃vk − vk = 0, or v[n] = ṽk[n], n =
1, ..., N . Plugging the solution in (3) and multiplying on both sides
with ṽk[n] 6= 0, gives the power balance equation:

ṽ
2
k[n](

U
∑

u=1

αu[n]Wu+
pcr

x2
)−ṽk[n](

U
∑

u=1

αu[n]xu[n]Wu−
pcc

x
)+pcp = 0.

(24)
Reorganizing (24) in matrix form, produces the linear system:

H̃kθk = π̃kWk, (25)

whereH̃k and π̃k are given with (16) and (22), respectively. If
(H̃T

k H̃k)
−1 exists, then the unique solution to (25) in least squares

sense is (21). Moreover, (21) is the global minimizer of (15)since
L(θk|ṽk) = 0 whenvk = ṽk.

In practice, the sufficient excitation condition will hold if the
training sequences are properly designed. Specifically, they should
satisfy: 1)N ≥ U + 2, i.e., the duration of the excitation should
be at least as long as the number of estimated parameters, and, 2)
the sequences should be linearly independent. The linear indepen-
dence can be achieved by choosing the training sequences from a
well known orthogonal codes such as Walsh, Gold, Hadamard etc.

Estimating the Load Consumption: In many monitoring and
control applications, detailed knowledge of the load components is
not necessary, i.e., the aggregate information about the total power
demand is sufficient [7,10]. Therefore, at this point we consider esti-
mating only the total load demandpL = pcr+pcc+pcp. Multiplying
both sides of (3) byv[n] and replacingv[n] with (11) yields:

v
2[n]

U
∑

u=1

αu[n]Wu − v[n]
U
∑

u=1

αu[n]xu[n]Wu + p
⋆
L[n] = 0,

(26)

p
⋆
L[n] = ω + χ∆v[n] + ζ∆v

2[n], (27)

ω =
v2

x2
pcr +

v

x
pcc + pcp, χ = 2v

pcr

x2
+

pcc

x
, ζ =

pcr

x2
, (28)

wherep⋆L[n] is the total power consumed by the load in slotn, con-
sisting of (i)ω, which is the total power consumed at bus voltagev,
and (ii) the resistive and constant current components described by
parametersχ andζ, respectively. In practice,v is tightly regulated
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Fig. 2. Performance of the MLE for generation capacity and load estimation.

around the rated voltagex [2, 6], which makesω a good approx-
imation of the total power demand, i.e,ω ≈ pL. We define the
transformed parameter vector:

θ
⋆
k = [WT

k , p
⋆T
L ]T ∈ R

(U+2)×1
, k = 1, ..., U, (29)

p
⋆
L = [ω, χ, ζ]T ∈ R

3×1
, (30)

wherep⋆
L is the power consumption vector andWk is given with

(6); the mapθ⋆
k(θk) : R(U+2)×1 7→ R

(U+2)×1 is bijection. The-
orem 1 can then be restated forθ

⋆
k, using (26) with the matrix̃Hk

obtaining the following form:

H̃
⋆
k = [Π̃k, 1N , ∆ṽk, ∆ṽk ◦∆ṽk] ∈ R

N×(U+2)
, (31)

where∆ṽk = ṽk − v1N .
Estimation Error : To characterize the statistical performance

of the MLE (21), we evaluate the Cramer-Rao Bound (CRB) on the
Mean Squared Error (MSE) matricesMSE(θ̂k) andMSE(θ̂

⋆

k) [24].
Omitting the derivation, we state only the final result:

MSE(θ̂k) �

( N
∑

n=1

σ2

λ2[n]
qk[n]q

T
k [n]

)−1

, (32)

where the scalarλ[n] andqk[n] ∈ R
(U+2)×1 can be calculated as:

λ[n] =

U
∑

u=1

(2v[n] − xu[n])αu[n]Wu + 2v[n]
pcr

x2
−

pcc

x
,

qk[n] =

[

..., αu[n]v[n](v[n] − xu[n]), ...,
v[n]2

x2
,
v[n]

x
, 1

]T

u 6=k

.

Similarly, the MSE matrix of̂θ
⋆

k, is lower bounded as:

MSE(θ̂
⋆

k) �

( N
∑

n=1

σ2

λ2[n]
(qT

k [n]∇
−1
θk

θ
⋆
k)

T
q
T
k [n]∇

−1
θk

θ
⋆
k

)−1

,

(33)

where∇θk
θ
⋆
k is the Jacobian ofθ⋆

k with respect toθk.

4. NUMERICAL EVALUATION

We test the performance of the MLE in a system withU = 5 DERs
with the following generation capacities:W1 = 0.1 kW, W2 =

1 kW, W3 = 2 kW, W4 = 4 kW andW5 = 15 kW. The load
components are fixed to the valuespcr = 3.5 kW, pcc = 2.5 kW and
pcp = 5 kW. For brevity, we focus only on the MLE performed by
controller5. The rated voltage of the MG isx = 400V andvmin =
390V. The noise varianceσ2 is calculated asσ2 = ϕ2((TS −
τ )fS)

−1 whereϕ is the sampling noise variance of the converter
ADC. In our evaluationsϕ = 0.01V/sample [22, 23],TS − τ =
50ms andfS = 10 kHz. For illustration, we fix the number of
slots to the lower limitN = 7 which is necessary for Condition 1
to hold. To ensure that Condition 1 is fully satisfied, we use binary
orthogonal Hadamard training sequences with amplitude∆xu[n] ∈
{−δx,+δx} , u = 1, ..., 5 and vary the value ofδ ∈ [0.01%, 1%].
The performance metric is the Relative Root Mean Squared Error.

Fig. 2 shows the performance of (21) for the generation capac-
ities Wu, u = 1, 2, 3, 4 as function ofδ. The low value of the es-
timator variance indicates that the DERs’ generation capacities can
be identified with practically negligible estimation errorwith quite
short training sequences and relatively small voltage deviation am-
plitudes. Fig. 2 also shows the performance of the load estimators.
Although the individual components of the load are identifiable and
the estimatorŝpcr, p̂cc and p̂cp are unbiased, the variance might be
unsatisfactory for some applications. The reason for this behavior
lies in the fact that the load is a passive component and it does not
transmit training sequences which makes the identificationmore un-
certain. However, as in many applications only the total load is of
practical interest [7, 10], Fig. 2 also depicts the performance of the
estimator of the total load consumption̂ω. Similarly to the case of
the generation capacities, the results show promising performance
since the controllers are capable to identify the load consumption
with uncertainty lower than0.1% of the true value, withN = 7 and
δ < 0.5% of the rated MG voltagex. Taking also into account the
simplicity of (21), these results highlight the great practical potential
of the proposed approach.

5. ONGOING AND FUTURE WORK

Our on-going work focuses on the analysis of the performanceof
the estimator for various different training protocols under practical
system constraints on both the voltage ripple and the training length.
We are also working on extension of the approach for the practical
case of multiple-bus DC/AC MG systems, as well as extension to
other applications such as topology identification. The CRBanalysis
shows highly encouraging results with promising practicaloutlook.
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