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ABSTRACT (@), the non-convek-norm-constrained optimizationl(2) can

The Orthogonal Least Squares (OLS) algorithm sequentially® "ePlaced by a sparsity-promotihgnorm optimization
selects columns of the coefficient matrix to greedily find an minimize |x||; subjectto [ly — Ax|, <z, (3)
approximate sparse solution to an underdetermined system x
of linear equations. In this paper, conditions under whichwheree > 0 is a predetermined measure of noise power. In
OLS recovers sparse signals from a low number of randorthe noise-free scenario whesein (@) ande in (@) are both
linear measurements with probability arbitrarily closeotee  zero and whereA satisfies certain properties, it is known
are stated. Moreover, a computationally efficient genemali that a sufficiently sparse can be reconstructed exactly [8].
tion of Orthogonal Least-Squares which relies on a recarsivHowever, while the convexity df-norm enables finding the
relation between the components of the optimal solution t@ptimal solution to the reformulated sparse vector recpver
selectL columns at each step and solve the resulting overdgsroblem, the complexity of doing so (by means of, e.g., it-
termined system of equations is proposed. This generalizegtative shrinkage-thresholding algorithms suchlas [9hler
OLS algorithm is empirically shown to outperform existing ternating direction method of multipliers [10]) is oftenopr
greedy algorithms broadly used in literature. hibitive when one deals with high dimensional data. For this
reason, a number of fast greedy heuristics that attemphte so
@) directly by successively identifying columns Af which
correspond to non-zero componentsdiave been proposed
[11,/22]. Among those, particular attention has been paid to
1. INTRODUCTION the orthogonal matching pursuit (OMP) algorithm |[13], 14]
. ) . which has an intuitive geometric interpretation and is abar
The problen_1 of finding sparse s_olutlt_)nto an underdetermme@rized by high speed and competitive performance; numer-
system of linear equations arises in a number of practicg},,s modifications of OMP that explore the trade-off between
scenarios. Examples include compressed sensing [1].eSpargecracy and speed have been proposed in literaturie [15, 16]

channel estimation in communication systerisZ], com- A yelated Orthogonal Least-Squares (OLS) method [17], pro-
pressive DNA microarrays [3] as well as a number of othet, s a5 an identification algorithm for parameter estimati

applications in signal processing and machine learningji4— ¢ generally multivariable non-linear systems which are li

Consider the linear measurement model ear in parameters, has recently been employed in compressed
sensing([18]. In general, OLS outperforms OMS in settings
where the columns oA are non-orthogonal but it does so

wherey € R" denotes the vector of observatioAsc R**™  at a moderate increase in complexity. The existing analysis
is the coefficient matrix (i.e., a collection of featuresamed ~ and performance guarantees for OLS are limited to the case
to be full rank,e € R™ is the additive observation noise vec- of non-random measuremerits [18-20].

tor, andx € R™ is a vector known to have at mashon-zero In this paper, we provide a result establishing that in the
components (i.e is the sparsity level ok). We are inter- noiseless scenario where the coefficient matrix is drawn at
ested in finding a sparse approximatioxtan particular, we  random from a Gaussian or a Bernoulli distribution, with

would like to solve the so-calleld-constrained least-squares O (klog(m)) linear random measurements OLS guarantees
recovery ofx with high probability. This result is comparable

minimize ||y — Ax||; subjectto |x|, <k. (2) tothose previously provided for OMP[13]21]. Moreover, we
* propose a generalization of OLS, the Generalized Orthdgona
The number of possible locations of non-zero entriesin Least-Squares (GOLS), an efficient algorithm which relies o
scales combinatorially with which renderd{2) computation- a recursive relation between the components of the optimal
ally challenging; in fact, the problem is NP-hard. To enablesolution to [(1) to select a pre-determined number of columns
computationally efficient search for sparseapproximating and provide performance superior to existing methods.

Index Terms— linear regression, compressed sensing
greedy algorithm, orthogonal least-squares

y =Ax+e, 1)
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2. PERFORMANCE GUARANTEE FOR B, denote the sub-matrix oA constructed by selecting

ORTHOGONAL LEAST-SQUARES 1 of its columns and lefP; = BiBZT denote the projec-
tion matrix onto the span of the columns &;, where
The OLS algorithm sequentially projects columnsiobnto gt — B-TBl-)A BT is the Moore-Penrose pseudo-inverse

a residual vector and each time selects the column that Iea@{Bi_ Then, after appendirB; with another column vector
to the smallest residual norm. Specifically, OLS chooses g to formB,; = [B; a], we can write

new indexj, as
1

Piy1 =By (B Bip1) B},

_ B B/B;, Bla] ' [BY
_[ g a] a’B; aTa aT

. . _ af
Js = argrjnel%l Hy ASi*lU{J}ASi—lu{j}ny

whereZ is the set of indices that are not yet selected. This

procedure is computationally more expensive than OMP since (a) N (BfBi) ! 0 BT

. ” : ) = [B; Pfa —1| [,TpL
in addition to solving the least-square problem to update th 0 (aTPiLa) a'P;
residual vector, orthogonal projection of each column seed L Tl

to be found at each step of OLS. Perhaps in part due to this ) P, m

increase in complexity, OLS has not played as prominent role |Pial;

in sparse signal recovery literature as OMP did. 4)

Note that the performances of OLS and OMP are identiwhere ¢) follows after the LDU decomposition of the inter-
cal when the columns & are orthogonzﬂ.lt is beneficialto mediate matrix inverse, i.e., we use the identity [22]
further clarify the difference between OMP and OLS. In each .
iteration of OMP, an element that best correlates with tire cu @ E} o [I AlE} {Al 0 ] { I 0]
rent residual is chosen. OLS, on the other hand, selects D |0 I 0 Al'||lcATt I
column that has the largest portion which is inexpressigle b
previously selected columns which, in turn, minimizesteda  Where we identifyA = B/ B;, E = Bfa,C = a’"B;, D =
approximation error. aTa,andA = D — CA'E, and intl’OdUC&’f‘ =1-P,.
The following theorem states that for Gaussian andhe identity ¢) follows from the idempotent property of the
Bernoulli matrices with normalized columns, which are nfte Projection matrix. Alternatively, we writ¢ {4) as

considered in compressed sensing problems, in the naseles L Tl
. P;aa ' P;

scenario OLS is with high probability capable of the exact Z_LH = P; L (5)
recovery of sparse signals if the number of measurements |Pial|;

grows linearly with the sparsity level and logarithmically

with the dimension of the unknown signal. Note that, [(b) is related to order-recursive least-squi@ls

However, this specific derivation makes it suitable fordtee
Theorem 2.1. Suppose that x € R™ is an arbitrary sparse  sparse reconstruction applications.
vector with sparsity level k. Consider a random matrix A € Now, the OLS algorithm in each step selects a column
R™>™ such that its entries are drawn uniformly and indepen-  with index j, from the setZ of the previously non-selected
dently from either A/(0,1/n) or {+1/y/n,—1/\/n}. Given  columns according to
the noiselessobservationy = Ax, the OLSalgorithmcanre-
cover x in k iterations with probability of success exceeding ;= argmin Hy _ ASTHU{J‘}ALFN{J’}}’H
1—4difn=0(klog(m/J)) for some0 < ¢ < -y, where~ is 7€ 2
a positive constant which is independent of n, m, and k. (@) argmin || — P;) |2
JET
The proof, which exploits the fact that the columns of
A are spherically symmetric random vectors and relies on

Johnson-Lindenstrauss lemma, is omitted for brevity. (b) . T T
= argminy’y —y Piy
JE

= argmin yiy-y'Piy—y ' Ply+y P/ Py

3. GENERALIZED ORTHOGONAL P} a;a] P},

© argmaxy P;_1y +y7T
LEAST-SQUARES jez ! P+ a; ||§
To formulate generalized OLS, we start by establishing a (4 HyTPf_lasz r Ptia;
recursive relation between the components of the optimal — afg?ggm = arglax\y P o,
solution to thely-constrained least-squares problem. Let =112 (R ?6)

. . l
1In fact, orthogonality of the columns af leads to a modular objective Where @) TOIIOWS from the. deflnmon OPiv (b) is due toP;
function in [2), implying optimality of both methods. being an idempotent projection matrix;) follows from eq.



(), and ¢) is due to the fact thag” P;_,y is not a function ~Algorithm 1 Generalized Orthogonal Least-Squares
of the optimization variable.

We propose a straightforward extension of OLS which
selects multiple (sayL) columns ofA in each step rather
than choosing a single column, ultimately replacing the un- Initialize: Sy =0, Py =1, Z = {1,2,...,m}
derdeterminedi x m system of equations by an overdeter- . . n
mined Lk x k one. This strategy is motivated by the obser- for i =1to mu_l{k’ LZJ,} do )
vation that the candidate columns whose projection onto the 1+ Select{is,,...,is, } corresponding tol largest
space orthogonal to that spanned by the previously selected terms: yT@
columns is strongly correlated with the observation vector [P sas],
but not chosen in the current step of OLS will likely be se- 2.8 =81 U{isy, .y is, t, I =T\S;

Input: observatiory, coefficient matrixA, sparsityk
Output: recovered suppo8y, estimated signat;

forje”

lected in subsequent steps of the algorithm; thereforecsel 3.D=PL, ,
ing several “good” candidates in each step accelerates the

. . . for [=1toL do
selection procedure and enables sparse reconstructibn wit Da,, .
fewer steps (and, therefore, fewer calculations of the alutu d= 7|‘Dajsl ;,D=D —dd
correlations needed to perform the selection). More specifi end for L
cally, the proposed generalized OLS algorithm performs the PL_D

7: =

following: in each step, the algorithm seleEtcolumns of
matrix A such that their normalized projection onto the or- end for
thogonal complement of the subspace spanned by previouslyx, = Agky
chosen columns have the highest correlation with the obser
vation vector among the non-selected columns. After such
columns are identified, we update the orthogonal projection
matrix by repeatedly applyin@l(5) times. We continue un-
til a stopping criterion is met. Generalized orthogonaktea
squares algorithm is formalized as Algorithm 1.

sian distribution with zero-mean and variance'. We then
consider two different scenarios for this choice of coedfiti
matrix: (1) the non-zero elements sfare independent and
identically distributed normal random variables, and (&) t
3.1. Computational complexity non-zero components afare drawn uniformly from alphabet

+1,—1}. Second, the entries & are drawn independently

To gnalyze t.he computatiopal complexity O.f GOLS, note that uniformly from{+1/\/n,—1/y/n}. In all settings, the
its first step involves a matrix-vector multiplication andesc- locations of non-zero entries sfare drawn uniformly at ran-
tor inner product; the computational cost of these two isdomdom The number of equations is — 64, the dimension

inated by the former and thus Tequ"@s(m"Q) operati(_)ns. of x is m = 128; the experiment is repeated 1000 times.
The pther (_)peratmns are.those_m Step 3 vyhere amatrixVectd e tormance of each algorithm is characterized by three met
r_nulnphcanon and a matrix addition, ngedn@](n?) calcula- rics: (i) exact recovery rate (ERR), defined as the fraction o
tion, need to be repeated%n{hl%u tlmes..Therleore, Fhe the correctly recovered signal components, (i) mean{sjua
aggregate cost of operations in this stepﬂsémkn ) Fi- error (MSE), measuring the distance between the unknown

nallgi f|nd|rr1]g :]he esk;urr_latal enta'tlstOI_\t/;]ng a Ieﬁ\f{tés%uares signal and its estimate, and (iii) the running time of theoalg
probiem which can be Impiemented with a Sma stn) rithm. Results for the Gaussian coefficient matrices ansll

by relying on a QR factorization ok s,. Therefore, the total trated in Fig. 1 and Fig. 2. Fig. 1 shows the performance of

complexity of the algorithm i€) (mkn? + kn). the algorithms for non-zero values &fbeing normally dis-

tributed while Fig. 2 corresponds to the second scenari. Fi

4. SIMULATION RESULTS 3 shows the performance of the methods forbeing con-

structed according to the second option while the non-zero
To evaluate the algorithm, we compared its performance withralues ofx are normally distributed. As can be seen from
four other sparse recovery algorithms as a function of th&ig. 1 and Fig. 3, the generalized OLS (GOLS) outperforms
sparsity levek. In particular, we considered OMP, OLG;  all the competing methods in terms of the exact recovery rate
norm minimization[[8], and Least Absolute Shrinkage and Seand is better than OLS and OMP in terms of the MSE. More-
lection Operator (LASSO) [24]. As typically done in bench- over, the runtimes of GOLS is 2nd only to OMP but the accu-
marking tests[[25], we used CVX [26] to implement the racy of the latter is significantly worse than that of GOLS. In
minimization and LASSO. The tuning parameter in LASSO isthe case of +1, —1} non-zero entries at studied in Fig. 2,
found by means of 10-fold cross validation. We draw entrieg;-norm/LASSO methods perform the best (and are the slow-
of the coefficient matrixA from two distributions. First, we est) while the GOLS offers reasonably accurate performance
generate entries ok by drawing independently from a Gaus- at relatively high speed.
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Fig. 1. Performance comparison of GOLS, OLS, ONI{Pnorm minimization and LASSO for = 64, m = 128, A having
GaussianV'(0, 1/n) entries, and thé non-zero components afdrawn fromA\ (0, 1) distribution.
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Fig. 2. Performance comparison of GOLS, OLS, ONI{Pnorm minimization and LASSO for = 64, m = 128, A having
GaussianV'(0, 1/n) entries, and thé non-zero components afrandomly and equally likely set tbor —1.

5. CONCLUSION

We show that for Gaussian and Bernoulli coefficient matri-
ces, Orthogonal Least-Squares (OLS) is with high probtgbili
guaranteed to recover any sparse signal from a low numbe[3]
of random linear measurements. Moreover, we introduced
a greedy algorithm for sparse linear regression that génera
izes OLS and forms the subset of features (i.e., columns of
a coefficient matrix in an underdetermined system of equa-
tions) by sequentially selecting multiple candidate catsm
Since multiple indices are selected without additionalt,cos
the running time of the algorithm is reduced compared to
OLS. Thus, generalized OLS is more favorable than convex
optimization based methods whose complexity grows faster

[5]

squares algorithm outperforms competing greedy methods,
OLS and OMP, while being computationally more efficient

with the dimension of the problem, i.es,andm. Simula-
tion studies demonstrate that the generalized orthogeastH

thani;-norm minimization and LASSO.
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