
LEARNING FROM UNEQUALLY RELIABLE
BLIND ENSEMBLES OF CLASSIFIERS

Panagiotis A. Traganitis†, Alba Pagès-Zamora?, and Georgios B. Giannakis†
† Dept. of ECE and Digital Technology Center, University of Minnesota, USA
?SPCOM Group, Universitat Politècnica de Catalunya BarcelonaTech, Spain

Abstract—The rising interest in pattern recognition and data
analytics has spurred the development of a plethora of machine
learning algorithms and tools. However, as each algorithm has
its strengths and weaknesses, one is motivated to judiciously fuse
multiple algorithms in order to find the “best” performing one,
for a given dataset. Ensemble learning aims to create a high-
performance meta-algorithm, by combining the outputs from
multiple algorithms. The present work introduces a simple blind
scheme for learning from ensembles of classifiers, using joint
matrix factorization. Blind refers to the combiner who has no
knowledge of the ground-truth labels that each classifier has
been trained on. Performance is evaluated on synthetic and real
datasets.

Index Terms—Ensemble learning, multi-class classification,
unsupervised

I. INTRODUCTION

Nowadays, as vast amounts of data are constantly gener-
ated [8], there is a need to efficiently extract information from
them. To this end, a number of algorithms have been designed
by the machine learning, data mining, and signal processing
communities [2], [15]. However, no one algorithm is suited for
all tasks, as each relies on different assumptions and exhibits
different strengths and weaknesses. Ensemble learning refers
to the task of designing a skillful meta-learner by combining
the results provided by multiple different learners or annota-
tors.1 In particular, ensemble classification refers to fusing the
results provided by different classifiers. Such a setup emerges
in diverse disciplines including medicine [28], biology [24],
and economics [27], and has recently gained attention with the
advent of crowdsourcing [4], [16] as well as services such as
Amazon’s Mechanical Turk [20] and Clickworker, to name a
few.

Multiple approaches have been developed for supervised
ensemble learning [10], the most popular ones being ran-
dom forests [6], boosting [12], [13], and bagging [5]. These
methods use labels to learn the optimal combination of
algorithm responses. In many cases however, labeled data
are not available to train the combining meta-classifier, or,
the individual classifiers cannot be retrained, justifying the
need for unsupervised (or blind) ensemble methods. One
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1The terms annotator, learner, and classifier will be used interchangeably.

such paradigm is provided by crowdsourcing, where people
are tasked with providing classification labels. Probably the
simplest scheme for blind ensemble classification is majority
voting, where the estimated label of a datum is the one that
most annotators agree upon. This scheme, while relatively
easy to implement, implicitly presumes that all annotators are
equally “reliable,” which is a typically unrealistic assumption,
both in crowdsourcing as well as in ensemble learning setups.
Other blind ensemble methods aim to estimate the parameters
that characterize the annotators’ performance, namely the
sensitivity and specificity in binary classification problems, or
the entries of the so-called confusion matrix [26] in multi-class
settings. A joint maximum likelihood (ML) estimator of the
unknown labels and the confusion matrices has been reported
using the expectation-maximization (EM) algorithm [9]. As
the EM algorithm does not guarantee convergence to the ML
solution, recent works pursue alternative estimation methods.
For instance, [17] advocates a spectral decomposition tech-
nique for binary classification, that yields the sensitivity and
specificity of annotators, assuming class probabilities are a pri-
ori unknown. In the multi-class setting, [18] and [29] introduce
tensor-based methods to estimate the unknown parameters and
then initialize the EM algorithm of [9].

The present work puts forth a novel scheme for multi-class
blind ensemble classification, built upon simple concepts from
probability, linear algebra and optimization theory that enable
assessing the reliability of multiple annotators and combining
their answers.
Notation: Unless otherwise noted, boldface capital letters X
denote matrices, boldface lowercase letters x denote vectors,
and brackets indicate the entry of a vector or matrix; RD stands
for the D-dimensional real Euclidean space, diag(x) for the
diagonal matrix with x in its diagonal, 1 for the all ones vector,
Pr for probability, or the probability mass function; ∼ denotes
"distributed as," and E[·] denotes expectation.

II. PRELIMINARIES AND PROBLEM FORMULATION

Consider a dataset consisting of N data (possibly vectors)
{xn}Nn=1 each belonging to one of K possible classes with
corresponding labels {yn}Nn=1, e.g. yn = k if xn belongs
to class k. The pairs {(xn,yn)} are drawn independently
from an unknown joint distribution P , and X and Y denote
random variables such that (X, Y ) ∼ P . Consider now M
annotators that observe {xn}Nn=1, and provide estimates of



labels. Let fm(xn) ∈ {1, ... ,K} denote the label assigned to
datum xn by the m-th annotator. The task of unsupervised
ensemble classification is, given only the annotator responses
{fm(xn), m = 1, ... , M}Nn=1, to estimate the ground-truth
labels of the data {yn}. Before proceeding, we adopt the
following assumptions.

As1. Class prior probabilities πk := Pr(Y = k) are known and
π := [π1,...,πK ]>

As2. Responses of different annotators for a datum, are con-
ditionally independent, given the ground-truth label of
the same datum Y ; that is, for m 6= m′, it holds that
Pr(fm(X),fm′(X)|Y ) = Pr(fm(X)|Y )Pr(fm′(X)|Y )

As3. The majority of annotators are better than random.
As1 is used to simplify the proposed algorithm, while As2
suggests that annotators make decisions independently of each
other, which is rather a standard assumption in most prior
works [9], [17], [25], [29]. As3 ensures convergence of the
iterative algorithm in Sec. III.

Reliability per annotator fm can be quantified by the so
called confusion matrix Γm, whose (k,k′)-th entry is

[Γm]kk′ := Γm(k,k′) = Pr(fm(X) = k|Y = k′). (1)

The K × K matrix Γm has non-negative entries that obey
the simplex constraint,

∑K
k=1Pr(fm(X) = k|Y = k′) = 1, for

k′= 1,...,K, hence columns of Γm sum up to 1, Γ>m1 = 1 and
Γm≥0. Each column of Γm showcases the average behavior
of annotator m, and its probability of providing the correct
answer, when presented with a datum from each class. For
annotators that are better than random, the largest elements of
each column of their confusion matrix will be those on the
diagonal of Γm; that is [Γm]kk ≥ [Γm]k′k, for k′,k= 1,...,K.

A. Maximum a posteriori label estimation
Given only annotator responses for all data, a straight-

forward approach to estimating their ground-truth labels is
through maximum a posteriori (MAP) [19] estimation. In
particular, for datum x the MAP estimate of y is

ŷmap(x) = argmax
k∈{1,...,K}

log(L(k,x)Pr(Y = k)) (2)

where L(k, x) := Pr (f1(x),...,fM (x)|Y = k) denotes the
likelihood of x. Since annotators make independent decisions
it holds that L(k,x) =

∏M
m=1Pr(fm(x)|Y = k) and thus the

MAP estimator for y can be rewritten as

ŷmap(x) = argmax
k∈{1,...,K}

logπk +

M∑
m=1

log(Γm(fm(x),k)) (3)

If all classes are equiprobable, then (3) yields the ML estimator
of y. In order to obtain the MAP or ML estimate of the label,
{Γm}Mm=1 must be available. Interestingly, the next section
will show that these matrices can be recovered by the statistics
of the annotator responses.

B. Statistics of annotator responses
Consider each label represented by the annotators using

the canonical K × 1 vector ek, meaning the k-th column
of the K × K identity matrix I. Let fm(X) denote the

m-th annotator’s response in vector format. Since fm(X)
is just a vector representation of fm(X), we can write
Pr (fm(X) = k|Y = k′) ≡ Pr (fm(X) = ek|Y = k′). With
γm,k denoting the k-th column of Γm, it thus holds that

E[fm(X)|Y = k] =

K∑
k′=1

ek′Pr
(
fm(X)= k′|Y = k

)
=γm,k (4)

where the first equality comes from the definition of condi-
tional expectation, and the second one holds because ek’s are
columns of I. Using (4) and the law of total probability, the
mean vector of responses from annotator m, is hence given
by

E[fm(X)] =

K∑
k=1

E[fm(X)|Y = k]Pr(Y = k) = Γmπ (5)

The K × K cross-correlation matrix between the re-
sponses of annotators m and m′ 6= m, namely Rmm′ :=
E[fm(X)f>m′(X)], can be expressed as

Rmm′ =
K∑

k=1

E[fm(X)|Y = k]E[f>m′(X)|Y = k]Pr(Y = k)

= Γmdiag(π)Γ>m′ (6)

where we successively relied on the law of total probabil-
ity, As2, and (4). Accordingly, and upon defining Π :=
diag(π) − ππ>, the cross-covariance matrix Cmm′ :=
E
[
(fm(X)−E[fm(X)])(fm′(X)−E[fm′(X)])>

]
is given by

Cmm′ = ΓmΠΓ>m′ . (7)

With Fm := [fm(x1),fm(x2),...,fm(xN )] the sample mean of
the m-th annotator responses can be readily obtained as

µm =
1

N

N∑
n=1

fm(xn) =
1

N
Fm1. (8)

Accordingly, the sample cross-covariance Smm′ matrices be-
tween the responses of annotators m and m′ 6=m, are given
by

Smm′ =
1

N−1
(Fm−µm1>)(Fm′−µm′1>)>. (9)

Clearly, Smm′ = S>m′m, and as N increases, {µm} and
{Smm′} approach their ensemble counterparts in (5) and (7).

III. CONFUSION MATRIX ESTIMATION

Having available first- and second-order statistics of annota-
tor responses {µm}Mm=1 and {Smm′}Mm,m′=1, estimates of the
confusion matrices can be readily extracted from them [cf.(7)].
This procedure can be cast as the following constrained
optimization problem, which requires joint factorization of the
matrices {Smm′}. Specifically, consider

min
{Γm}Mm=1

h({Γm}Mm=1) (10)

s.to Γm≥0, Γ>m1 = 1, m= 1,...,M

where

h({Γm}) :=
1

2

M∑
m=1

‖µm−Γmπ‖22+
1

2

M∑
m=1
m′>m

‖Smm′−ΓmΠΓ>
m′‖2F .



Algorithm 1 Blind Multi-class Ensemble Classifier
Input: Annotator responses {Fm}Mm=1; priors π; λ> 0
Output: Estimates of data labels {ŷn}Nn=1; Estimates of an-

notator confusion matrices {Γ̂m}Mm=1

1: Compute {µm},{Smm′} using (8), and (9).
2: Initialize {Γm} and {Φm} according to Sec. III-B.
3: do
4: Update {Γm}Mm=1 using (15).
5: Update {Φm}Mm=1 using (16).
6: Update {∆m}Mm=1 using (17).
7: while not converged
8: for n= 1,...,N do
9: Estimate label yn using (11).

10: end for

Collect the set of constraints per matrix to the convex set
C := {Γ ∈ RK×K : Γ ≥ 0,Γ>1 = 1}, where essentially each
column lies on a probability simplex. After obtaining estimates
{Γ̂m}Mm=1, estimates of the labels {ŷn}Nn=1 can be obtained
using the ML/MAP estimator described in Section II-A; that
is for n= 1,...,N ,

ŷmap(xn) = argmax
k∈{1,...,K}

logπk +

M∑
m=1

logΓ̂m(fm(xn),k) (11)

where Γ̂m(k′,k) = [Γ̂m]k′k. The ensuing section provides an
iterative algorithm for solving (10).

A. ADMM algorithm for estimating confusion matrices
In this section, the alternating direction method of multipli-

ers (ADMM) is employed to solve the constrained optimiza-
tion problem (10); see e.g. [3] and [14]. The ADMM allows
for decoupling the constraints across annotators, resulting in
a simple and efficient iterative algorithm.

Consider the following optimization problem that is equiv-
alent to (10),

min
{Γm}Mm=1,{Φm}Mm=1

h̄({Γm,Φm}Mm=1)

s.to Γm = Φm, m= 1,...,M
(12)

with {Φm} being auxiliary variables,

h̄({Γm,Φm}Mm=1) =h({Γm}Mm=1)+
M∑

m=1

ρC(Φm)

and ρC is an indicator function for the constraints of (10),
namely

ρC(A) :=

{
0 if A∈C
∞ otherwise.

(13)

The augmented Lagrangian of (12) is then

g= h̄({Γm,Φm}Mm=1)+
λ

2

M∑
m=1

‖Γm−Φm +∆m‖2F (14)

where the K × K matrices {∆m}Mm=1 contain the scaled
Lagrange multipliers, and λ is a positive scalar.

Per ADMM iteration, (14) is minimized in an alternating
fashion, with respect to (w.r.t.) {Γm} and {Φm} before

performing a gradient ascent step for {∆m}. Specifically,
the update for Γm at iteration ` + 1 is obtained by setting
the gradient of g w.r.t. Γm to 0, and solving for Γm. Since
Sm′m = S>mm′ and Π = Π>, it is easy to see that the update
w.r.t. Γm can be expressed as

Γ(`+1)
m

(
λI+ππ>+

M∑
m′ 6=m

Π>Γ
(`)
m′
>Γ

(`)
m′Π

)

=µmπ
>+

M∑
m′ 6=m

S>m′mΓ
(`)
m′Π+µΦ(`)

m −µ∆(`)
m . (15)

Here superscripts denote iteration indices. Accordingly, the
update for Φm is given by

Φ(`+1)
m =PC

(
Γ(`+1)
m +∆(`)

m

)
(16)

where PC is the projection operator onto the convex set C with
each column of Γ

(`+1)
m + ∆

(`)
m projected onto the probability

simplex. This projection can be performed using efficient
methods [11]. Finally, a gradient ascent step is performed per
∆m, as follows

∆(`+1)
m = ∆(`)

m +Γ(`+1)
m −Φ(`+1)

m . (17)

The entire ensemble classification procedure is tabulated in
Alg. 1 and the ADMM algorithm is listed in steps 2-7. Note
that the computational complexity per ADMM iteration is
dominated by (15). Thus, the ADMM algorithm incurs com-
putational complexity of approximately O(IM2K3), where I
is the number of required iterations until convergence.
Remark 1. The total number of unknowns in (10) is MK(K−
1), since each column of a confusion matrix must sum up to
1. The total number of equations is then, M(M −1)K2/2 +
MK, where the factor M(M−1)/2 comes from the fact that
Smm′ = S>m′m for m 6=m′. This implies that problem (10) is
solvable with at least three annotators.
Remark 2. The estimates {ŷn} and {Γ̂m} provided by Alg. 1
can also be employed to initialize the EM algorithm of [9].
Remark 3. With {Γ̂m} available, annotator reliability can
be determined by inspecting the columns of the confusion
matrices.

B. Algorithm initialization
Problem (10) is non-convex due to the multiplicative cou-

pling between confusion matrices of different annotators.
Thus, initialization plays an instrumental role to ensure con-
vergence of {Γm} to a point that will provide sensible results.
Since, by As3, most annotators are better than random, a
simple initialization scheme is to generate a random Γ

(0)
m such

that Γ
(0)
m ∈C, and [Γ

(0)
m ]kk ≥ [Γ

(0)
m ]k′k, for k′,k= 1,...,K and

m= 1,2, ... ,M . As corroborated by our numerical tests, this
initialization scheme is very effective in practice.

IV. NUMERICAL TESTS

The performance of the proposed algorithm was evaluated
using synthetic and real datasets. Using both MAP and ML
estimation in step 9, Alg. 1 is compared to majority voting, and
in the case of synthetic data, also to “oracle” estimators, that
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Fig. 1: Classification ER for synthetic datasets with K = 5,
K = 10, and M = 20 annotators.

is MAP/ML estimators that know the true confusion matrices
of the annotators. The metric utilized in all experiments is
the classification error rate (ER), defined as the percentage of
misclassified data, where ER = 100% indicates that all N
data have been misclassified, and ER= 0% indicates perfect
classification accuracy. All results represent averages over 10
independent Monte Carlo runs, using MATLAB [23]. In all
experiments λ is set to 10−1.

A. Synthetic data

For the synthetic data tests, N ground-truth labels {yn}Nn=1,
each corresponding to one out of K possible classes, were
generated i.i.d. at random according to π, that is yn ∼ π,
for n = 1, ... , N . Afterwards, {Γm}Mm=1 were generated at
random, such that Γm ∈ C, for all m = 1, ... , M . Then
annotators responses are generated as follows: if yn = k,
then the response of annotator m will be generated randomly
according to γm,k, that is fm(xn) ∼ γm,k. This value will
then be converted to the appropriate vector format fm(xn),
as described in Sec. II-B. In all cases, bM/2c+ 1 annotators
were generated to be better than random, as per As3, and
bM/2c−1 were generated completely at random. Fig. 1 shows
the classification ER for a synthetic dataset with M = 20
annotators for varying N , for two different cases: one with
K = 5, and one with K = 10. For K = 5, data were
generated with π = [0.1365,0.3396,0.1961,0.0973,0.2305]>,
while for K = 10 the prior probabilities were π =
[0.1806, 0.1991, 0.1241, 0.1334, 0.0425, 0.0118, 0.0002,
0.1201, 0.1506, 0.0376]>. Clearly, the proposed scheme (de-
noted as Alg. 1 MAP and Alg. 1 ML) outperforms majority
voting, and as N increases its ER approaches that of the “ora-
cle” ones. This makes sense since as N increases, the sample
averages (8) and (9) approach their ensemble counterparts in
(5) and (7), enabling more accurate estimation of the confusion
matrices. Fig. 2 shows the same experiment, but for fixed
N = 106, and varying number of annotators M . Again, Alg. 1
markedly outperforms majority voting, and as M increases it
approaches the performance of the “oracle” estimators. This
result suggests that more annotators are always preferable,
as long as the majority of them are better than random.
Furthermore, note that the proposed algorithms perform well,
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Fig. 2: Classification ER for synthetic datasets with K = 5,
K = 10, and N = 106 data.

in spite of the presence of possibly unreliable annotators,
which speaks for the potential of the novel approach in
adversarial learning setups [1], [7].

B. Real data
Further tests were conducted using two real datasets. The

MNIST [21] dataset, and the Connect-4 [22] dataset. MNIST
contains N = 70,000 28× 28 images of handwritten digits,
each belonging to one of K = 10 classes (one per digit).
Connect-4 contains N = 67, 557 vectors of size 42 × 1,
each representing the possible positions in a connect-4 game.
These vectors belong to one of K = 3 classes, indicating
whether the first player won, lost, or, if the game ended
as a tie. A collection of M = 12 classification algorithms,
from MATLAB’s machine learning toolbox, were trained on
different randomly selected subsets of 1, 000 data instances
for MNIST and 300 data instances for Connect-4. Afterwards,
the algorithms provided labels for all data in each dataset.
Vector π was estimated by measuring the frequency of each
label from the entire dataset. Table I lists the ER performance
of the proposed scheme compared to majority voting (MV)
and the annotator with the highest accuracy (Single best)
for these two datasets. As with synthetic data, the proposed
method outperforms majority voting, as well as the single best
classifier.

Dataset Alg. 1 MAP Alg. 1 ML MV Single best
MNIST 7.97% 7.96% 9.07% 10.68%

Connect-4 30.2% 31.68% 45.14% 38.07%

TABLE I: Classification ER for Alg.1 and majority voting for
real datasets MNIST and Connect-4.

V. CONCLUSIONS

This paper introduced a novel approach to blind ensem-
ble and crowdsourced classification that relies solely on the
annotator responses to assess their quality and combine their
answers. The novel scheme was implemented using ADMM,
and its performance was evaluated on real and synthetic
data. Future research will focus on extensive numerical tests
with real datasets, as well as algorithms that can infer prior
probabilities from annotator responses, along with distributed
and online implementations.
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