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Abstract—Data ecosystems are becoming larger and more
complex due to online tracking, wearable computing, and the
Internet of Things. But privacy concerns are threatening to
erode the potential benefits of these systems. Recently, users
have developed obfuscation techniques that issue fake search
engine queries, undermine location tracking algorithms, or
evade government surveillance. Interestingly, these techniques
raise two conflicts: one between each user and the machine
learning algorithms which track the users, and one between the
users themselves. In this paper, we use game theory to capture
the first conflict with a Stackelberg game and the second conflict
with a mean field game. We combine both into a dynamic
and strategic bi-level framework which quantifies accuracy
using empirical risk minimization and privacy using differential
privacy. In equilibrium, we identify necessary and sufficient
conditions under which 1) each user is incentivized to obfuscate
if other users are obfuscating, 2) the tracking algorithm can
avoid this by promising a level of privacy protection, and 3)
this promise is incentive-compatible for the tracking algorithm.

Index Terms—Mean-Field Game, Stackelberg Game, Differ-
ential Privacy, Empirical Risk Minimization, Obfuscation

I. INTRODUCTION

We often hear that data is the new oil. On the Internet,
websites sell user information to third-party trackers such
as advertising agencies, social networking sites, and data
analytic companies [12]. In the Internet of things (IoT),
devices such as smartwatches include accelerometers, heart
rate sensors, and sleep trackers that measure and upload data
about users’ physical and medical conditions [16]. At a larger
scale, smart grid and renewable energy also stand to benefit
from developments in networks of sensors and actuators [2].

While these technologies promise positive impacts, they
also threaten privacy. Specifically, wearable computing and
IoT devices collect sensitive information such as health and
location data [1]. In addition, the pervasiveness of tracking
allows learners to infer habits and physical conditions over
time. For instance, tracking algorithms may predict “a user’s
mood; stress levels; personality type; bipolar disorder; demo-
graphics” [15]. These are unprecedented degrees of access to
user information.
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Figure 1. Data flow in the obfuscation-tracking model. Users 1, . . . , N
have data xi with labels yi . They add noise vi ∼ Vi to xi, and the learner
promises noise wi

i.i.d.∼ W. Noise degrades accuracy but improves privacy.
The users and the learner have misaligned incentives.

Interestingly, users have recently begun to take privacy into
their own hands using basic tools for obfuscation. Obfus-
cation is “the deliberate addition of ambiguous, confusing,
or misleading information to interfere with surveillance and
data collection” [3]. In a signal processing sense, obfuscation
provides noise.

Finn and Nissenbaum describes two recent obfuscation
technologies: CacheCloak and TrackMeNot [3]. TrackMeNot
is a browser extension that generates randomized search
queries in order to prevent trackers from assembling accu-
rate profiles of their users [11]. In the realm of the IoT,
CacheCloak provides a way for a user to access location-
based services without revealing his or her exact geographical
position [13]. The app predicts multiple possibilities for the
path of a user, and then retrieves location-based information
for each path. An adversary tracking the requests is left
with many possible paths rather than a unique one. of these
obfuscation technologies see them as a way for users to resist
tracking and put pressure on machine learning algorithms to
guarantee some privacy protection.

In this paper, we use game theory to identify conditions
under which the threat of user obfuscation motivates machine
learners to promise privacy protection. We construct a bi-
level framework to model this interaction. In the user level,

ar
X

iv
:1

70
6.

02
69

3v
2 

 [
cs

.C
R

] 
 1

6 
O

ct
 2

01
7



a large number of users play a mean-field game (MFG) (c.f.
[4]) to decide whether to use obfuscation. In the learner level,
a machine learner plays a Stackelberg game (SG) [17] to
decide whether to promise some level of privacy protection
in order to avoid obfuscation by the users.

Related work includes research in privacy markets, in
which a learner pays users to report data truthfully [10], [18].
Our paper differs by allowing the learner to promise privacy
protection. In [7], [6], users play a multiple person, prior-
commitment game, which determines how much they obfus-
cate. In these papers, the learner calculates the average of a
dataset, while in our framework a learner can use empirical
risk minimization to compute more general statistics. Finally,
[14] considers a Stackelberg game, but unlike the present
paper, it does not include a mean-field interaction among the
users. This interaction captures a cascading effect by which
many users may rapidly adopt obfuscation technology.

II. MODEL

Figure 1 depicts an interaction between a set of users
i ∈ S = {1, . . . , N} and a learner L. Users submit possibly-
perturbed data to L, and L releases a statistic or predictor
fd of the data. Assume that the data generating process is a
random variable Z with a fixed but unknown distribution.
Denote the realized data by zi

i.i.d.∼ Z, i ∈ S. Each data
point is composed of a feature vector xi ∈ Rd and a label
yi ∈ {−1, 1} . The goal of the learner L is to predict yi given
xi, based on the trained classifier or predictor fd .

We investigate whether it is advantageous for L to promise
some level of privacy protection in order to avoid user
obfuscation 1. L adds noise with the same variance to each
data point xi . For i ∈ S, k ∈ 1, . . . , d, L draws w

(k)
i

i.i.d∼ W,
where W is a mean-zero Gaussian random variable with
standard deviation σL . While DP often considers Laplace
noise, we use Gaussian noise for reasons of mathematical
convenience. Knowing σL, each user adds noise v

(k)
i

i.i.d.∼ Vi,
k ∈ 1, . . . , d, where Vi is Gaussian with variance σi

S
.

It is also convenient to define σ̄2
S =

1
N

∑N
i=1(σi

S
)2, the

average variance of the perturbations of every user, and
(σ̄−i

S
)2 = 1

N

∑N
j=1(σ

j
S
)2 − 1

N (σi
S
)2, the average variance of

the perturbations of every user other than i. The perturbed
data points are given by x̃i = xi + vi + wi, i ∈ S.

A. Empirical Risk Minimization

Empirical risk minimization (ERM) refers to one popular
family of machine learning. In ERM, L calculates a value of
an output fd ∈ F that minimizes the empirical risk, i.e., the
total penalty due to imperfect classification of the realized
data. Define a loss function l (z̃i, f) , which expresses the
penalty due to a single perturbed data point z̃i for the output

1L can accomplish this by collecting data at low resolution. This is
consistent with the spirit of DP, in which a learner publishes εp .

f. L obtains fd given by Eq. 1, where ρ ≥ 0 is a constant
and R (f) is a regularization term to prevent overfitting:

fd = arg min
f∈F

ρR (f) + 1
N

N∑
i=1

l (z̃i, f) , (1)

Expected loss provides a measure of the accuracy of the
output of ERM. Let f∗ denote the f which minimizes the
expected loss for unperturbed data:

f∗ = argmin
f∈F

E {ρR (f) + l (Z, f)} . (2)

In Definition 1, f∗ forms a reference to which the expected
loss of the perturbed classifier fd can be compared.

Definition 1. (εg-Accuracy) Let fd and f∗ denote the per-
turbed classifier and the classifier which minimizes expected
loss, respectively. Let εg be a positive scalar. We say that fd
is εg-accurate if it satisfies

E {ρR (fd) + l (Z, fd)} ≤ E {ρR (f∗) + l (Z, f∗)} + εg . (3)

Lemma 1 obtains εg as a function of the obfuscation levels.

Lemma 1. (Accuracy Level) If L perturbs with variance σ2
L,

user i ∈ S perturbs with (σi
S
)2, and the other users perturb

with (σ̄−i
S
)2, then the difference εg in expected loss between

the perturbed classifier and the population-optimal classifier
is on the order of

εg

(
σL, σ̄

−i
S , σ

i
S

)
∝ 1
ρ2N

(
σ2
L +

N − 1
N

(
σ̄−iS

)2
+

1
N

(
σi
S

)2
)
.

B. Differential Privacy

Using differential privacy (DP), a machine learning agent
promises a bound εp on the maximum information leaked
about an individual. Let A (∗) denote an algorithm and D
denote a database. Let D′ denote a database that differs
from D by only one entry (e.g., the entry of the user under
consideration). Let c be some set among all possible sets
C in which the output of the algorithm A may fall. Then
Definition 2 quantifies privacy using the framework of DP
[5], [8].

Definition 2. (εp-Privacy) - An algorithm A (B) taking
values in a set C provides

(
εp, δ

)
-differential privacy if, for

all D, D′ that differ in at most one entry, and for all c ∈ C,

P {A (D) ∈ c} ≤ exp
{
εp

}
P {A (D′) ∈ c} + δ. (4)

For a cryptographically-small δ, the degree of randomness
determines the privacy level εp . Lower values of εp corre-
spond to more privacy. That randomness is attained through
the noise added in the forms of V and W.

Lemma 2. (Privacy Level) If L adds noise with variance σ2
L

and user i ∈ S perturbs with variance (σi
S
)2, then the user

obtains differential privacy level εp ∈ (0, 1) on the order of

εp

(
σL, σ

i
S

)
∝

(
σ2
L +

(
σi
S

)2
)−1/2

. (5)
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Figure 2. Bi-level structure of the strategic interaction. Users may adopt
obfuscation technologies in a cascading manner. This is modeled by an
MFG. To avoid this, a learner can proactively add noise to their data. His
interaction with the users in modeled by an SG.

C. Bi-Level Game

Let RM denote a subset [0, M] of the non-negative real
numbers, and let M be arbitrarily large2. Let σL ∈ RM denote
the noise variance added by the learner. If the users are not
satisfied with this level of privacy protection, they may add
noise with variances σi

S
∈ RM, i ∈ S.

Define a utility function by UL : R2
M → R such that

UL(σL, σ̄S) gives the utility that L receives for using noise
σ2
L while the users add an average noise of σ̄2

S . Also define
utility functions Ui

S
: R3

M → R such that user i ∈ S receives
utility Ui

S
(σL, σ̄

−i
S
, σi

S
) for obfuscating with variance (σi

S
)2

while the other users obfuscate with average variance (σ̄−i
S
)2

and L perturbs with σ2
L . UL and Ui

S
, i ∈ S, are given by

UL (σL, σ̄S) = AL exp
{
−εg

(
σL, σ̄

−i
S , σ

i
S

)}
− CL1{σL>0},

Ui
S

(
σL, σ̄

−i
S , σ

i
S

)
= Ai

S exp
{
−εg

(
σL, σ̄

−i
S , σ

i
S

)}
− Pi

S

(
1 − exp

{
−εp

(
σL, σ

i
S

)})
− Ci

S1{σi
S
>0},

where AL (resp. Ai
S

) gives the maximum benefit to the
learner (resp. to each user) for output accuracy, Pi

S
gives

the maximum privacy loss to each user, and CL (resp. Ci
S

)
gives the flat cost of perturbation for the learner (resp. to
each user).

D. Equilibrium Requirements

Chronologically, L first promises perturbation σL, and
then the users choose obfuscation σi

S
, i ∈ S. The solution,

however, proceeds backwards in time.
1) Mean-Field Game: Given the promised σL, the group

of users plays a MFG in which each user best responds to the
average perturbation of the other users3. Consider symmetric
utility functions for the users4. Let BRS : RM → RM denote
a best response function, such that

BRS

(
σ̄−iS | σL

)
= arg max

σi
S
∈RM

Ui
S

(
σL, σ̄

−i
S , σ

i
S

)
(6)

2This rigorously deals with large perturbation variances.
3This is a strategic interaction, because each user would prefer to protect

her own privacy while making use of accurate data from the other users.
4That is, Ai

S
= AS, P

i
S
= PS, and C i

S
= CS, i ∈ S.
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Figure 3. Best response mappings (orange) for each user i against the other
users −i. MFG equilibria occur at the intersections (blue circles) of the
mappings with the identity mapping.

gives the set of best responses for user i ∈ S to the average
perturbation σ̄−i

S
of the other users, given that the learner

has promised σ2
L . Then the equilibrium of the MFG is σ1∗

S =

σ2∗
S = . . . = σ

N∗
S

(which is also equal to σ̄∗S) which satisfies
the fixed-point equation

σ̄∗S ∈ BRS

(
σ̄∗S | σL

)
. (7)

Now define a mapping Γ : RM → RM such that Γ(σL)
gives the σ̄∗S which satisfies Eq. (7) given5 σL . We say that,
by promising σL, L induces σ̄∗S = Γ(σL).

2) Stackelberg Game: Since L promises σ2
L before the

users obfuscate, L is a Stackelberg leader, and the users are
collectively a Stackelberg follower which plays Γ(σL). The
optimality equation for L is

σ∗L ∈ arg max
σL ∈RM

UL (σL, Γ (σL)) . (8)

Definition 3. (Perfect Bayesian Nash Equilibrium) A perfect
Bayesian Nash equilibrium (PBNE) (c.f., [9]) of the overall
game is (σ†L, σ

1†
S
, σ2†

S
, . . . , σN†

S
) such that σ̄†

S
= σ1†

S
= σ2†

S
=

· · · = σN†
S
, and

σ̄†
S
= Γ

(
σ†L

)
= BRS

(
σ̄†
S
| σ†L

)
, (9)

σ†L ∈ arg max
σL ∈RM

UL (σL, Γ (σL)) . (10)

III. MEAN FIELD GAME ANALYSIS

First, Lemma 3 solves for BRS .

Lemma 3. (Best Response) Define AC(σL, σ̄
−i
S
) ,

AS exp{−εg(σL, σ̄
−i
S
, 0)} + CS and P(σL) , PS(1 −

exp{−εp(σL, 0)}). Then BRS is given by

BRS

(
σ̄−iS | σL

)
=


0, if P (σL) < AC

(
σL, σ̄

−i
S

)
M, if P (σL) > AC

(
σL, σ̄

−i
S

)
[0, M], if P (σL) = AC

(
σL, σ̄

−i
S

) .
Figure 3 depicts Lemma 3. Users with low privacy sen-

sitivity (left) never obfuscate, while users with high privacy
sensitivity (right) always obfuscate. Importantly, users with
moderate privacy sensitivity (center) cascade: each user i

5We will apply a selection criteria to ensure there is only one σ̄∗
S
.



obfuscates if σ̄−i
S

is high. Theorem 1 states that the MFG
equilibria occur at the fixed points of the best response
mappings6.

Theorem 1. (MFG Equilibrium) Given a promised privacy
protection level σ†L, Eq. (9) is satisfied by the symmetric

strategies σ†1
S
= . . . = σ†N

S
= σ̄†

S
, where σ̄†

S
= Γ

(
σ†L

)
=


0, if P (σL) < AC (σL, M) < AC (σL, 0)
{0, M} if AC (σL, M) ≤ P (σL) ≤ AC (σL, 0)
M if AC (σL, M) < AC (σL, 0) < P (σL)

.

In the middle case, Ui
S

is higher for σ̄†
S
= 0 than for

σ̄†
S
= M . Therefore, we select σ̄†

S
= 0 and write Γ(σL) =

M1{P(σL )>AC(σL,0)} .

IV. STACKELBERG GAME

Next, L chooses σL in order to maximize UL(σL, Γ(σL)).

A. Status Quo Equilibrium

Lemma 4 gives a solution in which L does not perturb.

Lemma 4. (Status Quo SG Solution) If PS − CS < AS, then
ΓL(0) = 0. In this case, the optimal σ†L = 0, for which L
receives his maximum possible utility: UL(0, 0) = AL .

PS − CS < AS holds if users are willing to suffer a total
loss of privacy in order to obtain complete accuracy. We have
called this the status quo because it seems to represent the
current preferences of many users.

B. Equilibrium Outside of the Status Quo

Consider PS − CS > AS . Define τ ∈ RM such that
P(τ) = AC(τ, 0). By promising to perturb with at least τ,
L is able to induce Γ(τ) = 0, i.e., to make it incentive-
compatible for the users to not obfuscate. But we must
analyze whether promising τ is incentive-compatible for L.
Since the analytical expression for τ is cumbersome, define
an approximation τ̂ > τ, where τ̂2 = 1/ln{PS/(PS − CS)}.
Next, define κ , 1/(ρ2N). Then UL (σL, Γ (σL)) is

≈


0, if σ2

L = 0
−CL, if 0 < σ2

L < τ̂2

AL exp
{
−κσ2

L

}
− CL, if τ̂2 ≤ σ2

L < M
.

UL is maximized by either 0 or τ̂ according to Theorem 2.

Theorem 2. (SG Equilibrium) For PS − CS > AS, the
perturbation promise which satisfies Eq. (10) is

σ†L =


0, if 1

ρ2N
> ln

{
AL

CL

}
ln

{
PS

PS−CS

}
τ̂, if 1

ρ2N
< ln

{
AL

CL

}
ln

{
PS

PS−CS

} . (11)

Theorem 2 shows that high costs CS of user perturbation
incentivize L to promise privacy protection, because users

6Mixed strategies are omitted due to limited space.

Table I
EQUILIBRIUM RESULTS OF THE BI-LEVEL GAME

Parameter Regime σ̄†
S

σ†L
1) PS −CS < AS 0 0

2) PS −CS > AS
⋂ 1

ρ2 N
> ln

{
AL
CL

}
ln

{
PS

PS−CS

}
M 0

3) PS −CS > AS
⋂ 1

ρ2 N
< ln

{
AL
CL

}
ln

{
PS

PS−CS

}
0 τ̂

easily decide not to obfuscate. On the other hand, high
privacy sensitivity PS decreases L’s incentive to add noise.
Somewhat surprisingly, high accuracy sensitivity AL leads L
to promise privacy protection7.

C. Summary of Results

Table I summarizes the results of the overall game. The
equilibrium strategies σ̄†

S
and σ†L satisfy Definition 3. Equi-

librium 1 is the status quo equilibrium in which users submit
unperturbed data and L does not protect it. This equilibrium
achieves complete accuracy at the cost of complete loss
of privacy. In Equilibrium 2, users obfuscate as much as
possible. L lacks incentive to promise privacy protection, so
he does not perturb. He receives zero utility, making machine
learning useless. Equilibrium 3 is the best equilibrium. In
this scenario, the threat of user obfuscation convinces L to
promise privacy protection σ2

L = τ̂2. The users accept this
level, and do not adopt obfuscation.

V. DISCUSSION OF RESULTS

Privacy skeptics argue that users are not willing to pay for
privacy protection. This is captured by PS −CS < AS, which
leads to Equilibrium 1. But as obfuscation technologies
such as TrackMeNot [11] and CacheCloak [13] continue
to develop, the cost CS of obfuscation will decrease, and
the awareness PS of privacy concerns will increase. Both
will lead to PS − CS > AS . In Equilibrium 3, obfuscation
motivates the learner to promise some level of privacy pro-
tection. Nevertheless, technologists should be careful about
the effects of obfuscation. In the case of Equilibrium 2, users
perturb their data as much as possible, but this only decreases
the opportunities for meaningful analysis and discourages
machine learning. Our work lays a foundation for identifying
the scenarios in which adoption of obfuscation is beneficial.
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