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ABSTRACT

Gaussian belief propagation (BP) has been widely used for

distributed inference in large-scale networks such as the smart

grid, sensor networks, and social networks, where local mea-

surements/observations are scattered over a wide geographi-

cal area. One particular case is when two neighboring agents

share a common observation. For example, to estimate volt-

age in the direct current (DC) power flow model, the current

measurement over a power line is proportional to the volt-

age difference between two neighboring buses. When apply-

ing the Gaussian BP algorithm to this type of problem, the

convergence condition remains an open issue. In this paper,

we analyze the convergence properties of Gaussian BP for

this pairwise linear Gaussian model. We show analytically

that the updating information matrix converges at a geometric

rate to a unique positive definite matrix with arbitrary posi-

tive semidefinite initial value and further provide the neces-

sary and sufficient convergence condition for the belief mean

vector to the optimal estimate.

Index Terms— graphical model, belief propagation,

large-scale networks, distributed inference, Markov random

field.

1. INTRODUCTION

Gaussian belief propagation (BP) provides an efficiently dis-

tributed way to compute the marginal distribution from the

joint distribution of unknown random variables, and it has

been adopted in a variety of areas such as distributed power

state estimation [1] in power networks, synchronization [2–4]

in wireless communication networks [5,6], cooperative local-

ization in distributed networks [7], factor analyzer network

[8], sparse Bayesian learning [9], and peer-to-peer rating in

social networks [10]. In one particular model of interested

studied in [2–4, 7, 10, 11]), two neighboring agents share a

common observation. In this paper, we name this type of

model pairwise linear Gaussian models.

Although with great empirical success, the major chal-

lenge that hinders Gaussian BP to realize its full potential is

the lack of theoretical guarantees of convergence in loopy net-

works. Sufficient convergence conditions for Gaussian BP

have been developed in [12–14] when the underlying Gaus-

sian distribution is expressed in terms of pairwise connections

between scalar variables (also known as Markov random field

(MRF)). However, as demonstrated in [15] the iterative equa-

tions for Gaussian BP on MRFs are different from that for

distributed estimation problems such as in [1–3, 11, 16, 17],

where linear measurements are involved. Therefore, the exist-

ing conditions and analysis methods in [12–14] are not appli-

cable to distributed estimation problems. Though [15] gives

the necessary and sufficient condition of BP for the Gaussian

linear model, the type of observation allowed in [15] is not

the most general in the sense that it does not allow two neigh-

boring agents to share a common observation. In this paper,

we focus particularly on the convergence analysis of BP for

this pairwise linear Gaussian model. We show analytically

that the updating of the information matrix converges at a ge-

ometric rate to a unique positive definite matrix with arbitrary

positive semidefinite initial value and further provide the nec-

essary and sufficient convergence condition for the updating

belief mean vector to the optimal estimate.

Note that, in the setup of deterministic unknown pa-

rameter estimation, the distributed algorithm based on the

consensus+innovations philosophy proposed in [18, 19] (see

also the related family of diffusion algorithms [20]) converges

to the optimal centralized estimator under the assumption of

global observability of the (aggregate) sensing model and

connectivity of the inter-agent communication network. In

particular, these algorithms allow 1) the communication or

message exchange network to be different from the physi-

cal coupling network, and 2) the communication network to

have arbitrary network structure with cycles (as long as it is

connected). The results in [18, 19] imply that the unknown

variables x can be reconstructed completely at each agent

in the network. For large-scale networks with high dimen-

sional x, it may be impractical to reconstruct x at every agent.

In [21, section 3.4], the author developed approaches to ad-

dress this problem, where each agent can reconstruct a set of

unknown variables that should be larger than the set of vari-

http://arxiv.org/abs/1706.04074v4


ables that influence its local measurement. This paper studies

a different distributed estimation problem when each agent

estimates only its own unknown variables under pairwise in-

dependence condition of the unknown variables; this leads to

lower dimensional data exchanges between neighbors.

2. COMPUTATION MODEL

Consider a general connected network of M agents, with V =
{1, . . . ,M} denoting the set of agents, and ENet ⊂ V × V as

the set of all undirect communication links in the network,

i.e., if i and j are within the communication range, (i, j) ∈
ENet. The local observations, yi,j , between agents i and j are

modeled by a pairwise Gaussian linear model:

yi,j = Aj,ixi + Ai,jxj + zi,j , (1)

where Aj,i and Ai,j are the known coefficient matrices with

full column rank, xi and xj are the local unknown vector

parameters at agent i and j with dimension Ni × 1 and

Nj × 1, and with the prior distribution p(xi) ∼ N (xi|0,Wi)
and p(xj) ∼ N (xj |0,Wj) and zi,j is the additive noise

with distribution zi,j ∼ N (zi,j |0,Ri,j). It is assumed that

p(xi, xj) = p(xi)p(xj) and p(zi,j , zs,t) = p(zi,j)p(zs,t) for

{i, j} 6= {s, t}. The goal is to estimate xi, based on yi,j ,

p(xi) and p(zi,j) for all xi ∈ V . Note that in (1), yi,j = yj,i.

In centralized estimation, all the observations yi,j at dif-

ferent agents are forwarded to a central processing unit. De-

fine vectors y, x and z as the stacking of yi,j , xi and zi,j in

ascending order first with respect to i and then on j, respec-

tively; then we obtain y = Ax + z, where A is constructed

from An,i, with specific arrangement depending on the net-

work topology. Assuming A is a full column rank matrix,

and since z is a Gaussian random vector, the optimal estimate

x̂ , [x̂T1 , . . . , x̂
T
M ]T of x is given by

x̂ = (W−1 + AT R−1A)−1AT R−1y, (2)

where W and R are block diagonal matrices containing Wi,j

and Ri,j as their diagonal blocks, respectively. Although

well-established, the drawbacks of the centralized estimation

in large-scale networks include 1) the transmission of yi,j ,

Ai,j and Ri,j from peripheral agents to the computation cen-

ter imposes huge communication overhead; 2) knowledge of

the global network topology is needed in order to construct

A; and 3) the computation burden at the computation cen-

ter scales up with the cubic of the dimension of the matrix

inverse in (2) with complexity order O((
∑|V|

i=1 Ni)
3).

The joint distribution p (x) p (y|x) is first written as the

product of the prior distribution and the likelihood function

as

p (x) p (y|x) =
∏

i∈V

p (xi)
︸ ︷︷ ︸

,fi

∏

i∈V

p(yi,j |xi, xj , {i, j} ∈ ENet)
︸ ︷︷ ︸

,fi,j

.

To facilitate the derivation of the distributed inference algo-

rithm, the factorization above is expressed in terms of a factor

graph, where every variable vector xi is represented by a vari-

able node and the probability distribution of a vector variable

or a group of vector variables is represented by a factor node.

A variable node is connected to a factor node if the variable is

involved in that particular factor. It involves two types of mes-

sages: One is the message from a factor node with function f

to its neighboring variable node xi, defined as

m
(ℓ)
f→i(xi) =

∫

· · ·

∫

f ×
∏

j∈B(f)\i

m
(ℓ)
j→f (xj) d{xn}n∈B(f)\i, (3)

where B(f) denotes the set of neighboring variable nodes of

factor node f on the factor graph. The other type of message

is from factor node f̃ , which denotes a likelihood function or

prior distribution, to its neighboring variable node xi and it is

defined as

m
(ℓ)
j→f (xi) =

∏

f̃∈B(j)\f

m
(ℓ−1)

f̃→j
(xj), (4)

where B(j) denotes the set of neighbouring factor nodes of

xj , and m
(ℓ−1)

f̃→j
(xj) is the message from f̃ to xj at time l− 1.

The process iterates between equations (4) and (3). At each

iteration ℓ, the approximate marginal distribution, also named

belief, on xi is computed locally at xi as

b
(ℓ)
BP (xi) =

∏

f∈B(i)

m
(ℓ)
f→i(xi). (5)

It can be shown that the message from factor node fi,j to vari-

able node i is given by [15]

m
(ℓ)
fi,j→i(xi) ∝ exp

{
−

1

2
||xi − v

(ℓ)
fi,j→i||

2

C
(ℓ)
fi,j→i

}
, (6)

where C
(ℓ−1)
fi,j→j and v

(ℓ−1)
fi,j→j are the message covariance ma-

trix and mean vector received at variable node j at the l − 1
iteration with

[

C
(ℓ)
fi,j→i

]−1

= AT
j,i

[

Ri,j + Ai,jC
(ℓ)
j→fi,j

AT
i,j

]−1

Aj,i. (7)

and

v
(ℓ)
fi,j→i=AT

j,i

[

Ri,j+ Ai,jC
(ℓ)
j→fi,j

AT
i,j

]−1(

yi,j− Ai,jv
(ℓ)
j→fi,j

)

.

(8)

Furthermore, the general expression for the message from

variable node j to factor node fi,j is

m
(ℓ)
j→fi,j

(xj) ∝ exp
{
−

1

2
||xj − v

(ℓ)
j→fi,j

||2
C

(ℓ)
j→fi,j

}
, (9)

where C
(ℓ)
j→fi,j

and v
(ℓ)
j→fi,j

are the message covariance ma-

trix and mean vector received at variable node j at the ℓ-th



iteration, with the information matrix computed as

[
C

(ℓ)
j→fi,j

]−1
= W−1

j +
∑

fk,j∈B(j)\fi,j

[
C

(ℓ−1)
fk,j→j

]−1
. (10)

and the mean vector is

v
(ℓ)
j→fi,j

= C
(ℓ)
j→fi,j

[
∑

fk,j∈B(j)\fi,j

[
C

(ℓ−1)
fk,j→j

]−1
v
(ℓ−1)
fk,j→j

]

, (11)

Following Lemma 2 in [15], we know that setting the ini-

tial information matrix [C
(0)
fk,j→i]

−1 � 0 for all k ∈ V and

j ∈ B(k) guarantees [C
(ℓ)
j→fi,j

]−1 ≻ 0 for l ≥ 1. There-

fore, let the initial messages at factor node fk,j be in Gaus-

sian function forms with covariance [C
(0)
fk,j→j ]

−1 � 0 for all

k ∈ V and j ∈ B(fk,j). Then all the messages m
(ℓ)
j→fi,j

(xj)

andm
(ℓ)
fi,j→i(xi) exist and are in Gaussian form. Furthermore,

during each round of message passing, each agent can com-

pute the belief for xi using (5), which can be easily shown to

be

b
(l)
i (xi) ∼ N (xi|µ

(l)
i ,P

(l)
i ), (12)

with the inverse of the covariance matrix

[
P
(l)
i

]−1
=

∑

fi,j∈B(fi,j)

[
C

(l)
fi,j→i

]−1
, (13)

and mean vector

µ
(l)
i =[

∑

fi,j∈B(fi,j)

[
C

(l)
fi,j→i

]−1
]−1

∑

j∈B(fi,j )

[
C

(l)
fi,j→i

]−1
v
(l)
fi,j→i.

(14)

The iterative algorithm based on BP is summarized

as follows. The algorithm is started by setting the mes-

sage from factor node to variable node as m
(0)
fi,j→i(xi) =

N
(

xi;v
(0)
fi,j→i,C

(0)
fi,j→i

)

with a random initial vector v
(0)
fi,j→i

and
[

C
(0)
fi,j→i)

]−1

� 0. At each round of message exchange,

every variable node computes the outgoing messages to fac-

tor nodes according to (10) and (11). After receiving the

messages from its neighboring variable nodes, each factor

node computes its outgoing messages according to (7) and

(8). Such iteration is terminated when (14) converges (e.g.,

when ‖µ
(ℓ)
i − µ

(ℓ−1)
i ‖ < η, where η is a threshold) or the

maximum number of iterations is reached. Then the estimate

of xi of each node is obtained as in (14).

3. CONVERGENCE ANALYSIS

The challenge of deploying the BP algorithm for large-scale

networks is determining whether it will converge. In particu-

lar, it is generally known that, if the factor graph contains cy-

cles, the BP algorithm may diverge. Thus, determining con-

vergence conditions for the BP algorithm is very important.

Sufficient conditions for the convergence of Gaussian BP with

scalar variable in loopy graphs are available in [12, 13] for

Markov random fields. Unfortunately, as first pointed out

in [15], the convergence analysis for the Gaussian Markov

random field and for the Gaussian linear model are quite dif-

ferent due to different iteration equations. Though [15] gives

the necessary and sufficient condition of BP for the Gaussian

linear model, the type of observations allowed in [15] (e.g.,

equation (1) in [15]), is not the most general in the sense that

it does not allow two neighboring agents to share a common

observation as in equation (1) in this paper. In the following,

we provide the convergence analysis of Gaussian BP for the

pairwise linear Gaussian model.

Due to the recursively updating property of m
(ℓ)
j→fi,j

(xj)

and m
(ℓ)
fi,j→i(xi) in (9) and (6), the message evolution can

be simplified by combining these two types of messages into

a single one. By substituting
[
C

(ℓ)
j→fn

]−1
in (10) into (7),

the updating of the message covariance matrix inverse, named

message information matrix in the following, can be denoted

as

[C
(ℓ)
fi,j→i]

−1 = AT
j,i

[
Ri,j + Ai,j

[
W−1

j

+
∑

fk,j∈B(j)\fi,j

[
C

(ℓ−1)
fk,j→j

]−1]−1
AT

i,j

]−1
Aj,i

, Fn→i

(
{
[
C

(ℓ−1)
fk,j→j

]−1
}fk,j∈B(j)\fi,j

)
. (15)

Observing that C
(ℓ)
fi,j→i in (15) is independent of v

(ℓ)
fi,j→i, the

other type of updating information, we first focus on the con-

vergence property of [C
(ℓ)
fn→i]

−1.

To consider the updates of all message information ma-

trices, we introduce the following definitions. Let C(ℓ−1)
,

Bdiag({[C
(ℓ−1)
fi,j→i]

−1}i∈V,{i,j}∈ENet
be a block diagonal ma-

trix with diagonal blocks being the message information ma-

trices in the network at time l − 1 with index arranged in as-

cending order first on i and then on j. Using the definition

of C(ℓ−1), the term
∑

fk,j∈B(j)\fi,j

[
C

(ℓ−1)
fk,j→j

]−1
in (15) can

be written as Ξi,jC(ℓ−1)
ΞT

i,j , where Ξi,j selects appropriate

components from C(ℓ−1) to form the summation.

[

C
(ℓ)
fi,j→i

]−1

=AT
j,i

{
Ri,j + Ai,j [W

−1
j

+Ξi,jC(ℓ−1)ΞT
i,j ]

−1AT
i,j

}−1
Aj,i.

(16)

We define the function G , {G1→k, . . . ,Gn→i, . . . ,

Gn→M} that updates C(ℓ) = G(C(ℓ−1)). Then, by stacking
[
C

(ℓ)
fi,j→i

]−1
on the left side of (16) for all n and i as the

block diagonal matrix C(ℓ), we obtain

C(ℓ) = AT

[

R + H
(

W +ΞC(ℓ−1)
ΞT

)−1

HT

]−1

A,

, G(C(ℓ−1)), (17)



where A, R, H, W, and Ξ are block diagonal matrices with

block elements Aj,i, Ri,j , Ai,j , Wj , and Ξi,j , respectively,

arranged in ascending order, first on n and then on i (i.e., the

same order as [C
(ℓ)
fn→i]

−1 in C(ℓ)). We first present properties

of the updating operator G(·), where the proof follows that

in [15].

Property 1. The updating operator G(·) satisfies the follow-

ing properties:

P 1.1: G(C(ℓ)) � G(C(ℓ−1)), if C(ℓ) � C(ℓ−1) � 0.

P 1.2: αG(C(ℓ)) ≻ G(αC(ℓ)) and G(α−1C(ℓ)) ≻ α−1G(C(ℓ)),

if C(ℓ) ≻ 0 and α > 1.

P 1.3: Define U , AT R−1A and L , AT
[

R+HW−1HT
]−1

A.

With arbitrary C(0) � 0, G(C(ℓ)) is bounded by U �

G(C(ℓ)) � L ≻ 0 for l ≥ 1.

In this paper, X � Y (X ≻ Y) means that X−Y is positive

semidefinite (definite). Note G is different from the function

F in [22]. However, as demonstrated in [22], if a function G
satisfies Property 1, we can establish the convergence prop-

erty for C(ℓ) given by the following Theorem with detailed

provided in [15].

Theorem 1. With the initial covariance matrix set to be an

arbitrary p.s.d. matrix, i.e., [C
(0)
fn→i]

−1 � 0, the sequence

{C
(ℓ)}l=0,1,... converges at a double exponential rate to a

unique p.d. matrix.

Thus, if we choose [C
(0)
fi,j→j ]

−1 � 0 for all j ∈ V and

i ∈ B (j), then
[

C
(ℓ)
fi,j→j

]−1

converges at a double expo-

nential rate to a unique p.d. matrix
[

C∗
fi,j→j

]−1

. Further-

more, according to (10),
[
C

(ℓ)
j→fi,j

]−1
also converges to a p.d.

matrix once
[
C

(ℓ−1)
fk,j→j

]−1
converges; the converged value is

denoted by
[
C∗

j→fi,j

]−1
. Then, for arbitrary initial value

v
(0)
fk,j→j , the evolution of v

(ℓ)
j→fn

in (11) can be written in terms

of the limit message information matrices as

v
(ℓ)
j→fi,j

= C∗
j→fi,j

[
∑

fk,j∈B(j)\fi,j

[
C∗

fk,j→j

]−1
v
(ℓ−1)
fk,j→j

]

.

(18)

Using (8), and replacing indices j, i with k, j respectively,

v
(ℓ−1)
fk,j→j is given by

v
(ℓ)
fk,j→j =AT

k,j

[

Rk,j + Aj,kC∗
k→fk,j

AT
j,k

]−1

×
(

yk,j − Aj,kv
(ℓ)
k→fk,j

)

.

(19)

Putting (19) into (18), we have

v
(ℓ)
j→fi,j

= bj→fi,j−C∗
j→fi,j

∑

fk,j∈B(j)\fi,j

C∗
fkj→jMk,jAj,kv

(ℓ)
k→fk,j

,

(20)

where bj→fi,j = C∗
j→fi,j

∑

fk,j∈B(j)\fi,j
Mk,jyk and Mk,j =

AT
k,j

[

Rk,j + Aj,kC∗
k→fk,j

AT
j,k

]−1

. The above equation for

all j ∈ N (i) cases can be further written in a compact form

as

v
(ℓ)
j = bj − Qjv(ℓ−1), (21)

with the column vector v
(ℓ)
j containing all {v

(ℓ)
j→fi,j

}i∈N (j) as

subvectors with ascending index on i. Similarly, bj contain-

ing all {bj→fi,j }i∈N (j) as subvectors with ascending index

on i, and v(ℓ−1) containing v
(ℓ−1)
k→fk,j

for all fk,j ∈ B (j) \ fi,j
as subvectors with ascending index first on z and then on k.

The matrix Qj is a block matrix with component blocks 0

and C∗
j→fi,j

where fk,j ∈ B (j) \ fi,j . We further define a

diagonal block matrix Q as Q , Bdiag({[Qj ]}j∈V with in-

creasing order on j, and v(ℓ) and b be the vectors containing

vj and bj , respectively, with the same stacking order as Qj .

Following (21), we have

v(ℓ) = −Qv(ℓ−1) + b. (22)

For this linear updating equation, it is well known that, for

arbitrary initial value v(0), v(ℓ) converges if and only if the

spectral radius ρ (Q) < 1. Note that an algorithmically we

to check this condition in a distributed manner is provided

in [23]. As convergence of v(ℓ) depends on the convergence

of C(ℓ), we have the following result.

Theorem 2. The vector sequence
{

v
(ℓ)
}

l=0,1,...
defined by

(22) converges to a unique value for any initial value
{

v
(0)

}

and initial covariance matrix C
(0) � 0 if and only if ρ (Q) <

1.

According to (14), the convergence of µ
(l)
i depends

on
[
C

(l)
fi,j→i

]−1
and v

(l)
fi,j→i. As Theorem 1 shows that

[
C

(l)
fi,j→i

]−1
is convergence guaranteed with arbitrary posi-

tive semidefinite initial value, the convergence condition of

µ
(l)
i is equivalent to the convergence of v

(l)
fi,j→i. Moreover,

as shown in [15], once µ
(l)
i converges, it converges to x̂i. We

therefore conclude that the necessary and sufficient conver-

gence condition of µ
(l)
i to the optimal estimate is ρ (Q) < 1.

4. CONCLUSION

In this paper, we have studied distributed inference using

Gaussian belief propagation (BP) over networks with two

neighboring agents sharing a common observation. We have

analyzed the convergence property of the Gaussian BP algo-

rithm for this particular model. We have shown analytically

that, with arbitrary positive semidefinite matrix initialization,

the message information matrix exchanged among agents

converges at a geometric rate to a unique positive definite

matrix. Moreover, we have presented the necessary and suffi-

cient condition for convergence under which the belief mean

vector converges to the optimal centralized estimate.
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