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ABSTRACT

Solutions to network optimization problems have greatly benefited
from developments in nonlinear analysis, and, in particular, from
developments in convex optimization. A key concept that has made
convex and nonconvex analysis an important tool in science and en-
gineering is the notion of asymptotic function, which is often hidden
in many influential studies on nonlinear analysis and related fields.
Therefore, we can also expect that asymptotic functions are deeply
connected to many results in the wireless domain, even though they
are rarely mentioned in the wireless literature. In this study, we show
connections of this type. By doing so, we explain many properties of
centralized and distributed solutions to wireless resource allocation
problems within a unified framework, and we also generalize and
unify existing approaches to feasibility analysis of network designs.
In particular, we show sufficient and necessary conditions for map-
pings widely used in wireless communication problems (more pre-
cisely, the class of standard interference mappings) to have a fixed
point. Furthermore, we derive fundamental bounds on the utility and
the energy efficiency that can be achieved by solving a large family
of max-min utility optimization problems in wireless networks.

Index Terms— Resource allocation, asymptotic functions

1. INTRODUCTION

Asymptotic functions have played a prominent role in the field of
convex and nonconvex optimization [1, 2], but many studies in op-
timization theory that have been influential to wireless communica-
tion engineers do not explicitly mention them, or these functions are
used only in convex optimization problems. A fact that may partially
explain the absence of asymptotic functions in developments in the
wireless domain is that these functions are not necessarily easy to
obtain, especially if we depart from the field of convex analysis.

The first main contribution of this study is to show that the same
analytic simplification used to compute asymptotic functions asso-
ciated with convex functions can also be used to compute asymp-
totic functions associated with the so-called interference functions
proposed in [3], which have found many applications in centralized
and distributed solutions in wireless networks, including solutions
to nonconvex problems [4–11]. With this result, we construct sim-
ple self-mappings (hereafter called asymptotic self-mappings) asso-
ciated with the mappings appearing in many of those studies.

Asymptotic self-mappings set the stage for the second main con-
tribution of the study. In more detail, we show that spectral proper-
ties of asymptotic self-mappings, which belong to a class widely
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investigated in the mathematical literature [12–16], are useful to
obtain rigorous insights into properties of solutions to resource al-
location and network feasibility problems within a unified frame-
work. For example, we show that knowledge of the spectral radii of
asymptotic mappings is useful to unify and generalize existing re-
sults in [5, 6, 17, 18] related to the feasibility of network topology
designs (e.g., rank base stations according to the unserved traffic de-
mand). In mathematical terms, we show a sufficient and necessary
condition for the existence of fixed points of standard interference
mappings that are not necessarily affine.

As a second example of an application of asymptotic mappings,
we build upon the results in [10] to derive upper bounds for the util-
ity and for the transmit energy efficiency (i.e., utility over power)
achieved by solutions to utility maximization problems as a function
of the power budget p̄ available to transmitters. The bounds derived
here are asymptotically tight and do not depend on any unknown
constants, so they are particularly useful to determine whether a
wireless network is likely to be noise limited or interference lim-
ited for a given power budget. They also provide us with guidance
for the construction of good network topologies for large systems.
In addition, they reveal that the network utility and the energy effi-
ciency scale as Θ(1) and Θ(1/p̄), respectively, as p̄→∞. We also
obtain related technology-agnostic results for the case p̄ → 0+. All
the theory developed here is verified in concrete network problems
involving the well-known load coupled interference model investi-
gated in, for example, [7–9, 11, 18–21].

2. ASYMPTOTIC MAPPINGS

Before deriving the first main contribution of this study, we briefly
clarify notation and mathematical concepts. By R+ and R++ we
denote the set of non-negative reals and positive reals, respectively.
Given (x,y) ∈ RN ×RN , vector inequalities such as x ≤ y should
be understood coordinate-wise. If C ⊂ RN is a convex set, we say
that a mapping T : C → RN : x 7→ [t1(x), · · · , tN (x)] is concave
if the function ti : C → R is concave for every i ∈ {1, . . . , N}.
In this work, we use a slight modification of the original definition
of standard interference functions in [3], which have found many
applications in the wireless domain [3–11]. In more detail, a function
f : RN → R++∪{∞} is said to be a standard interference function
if the following properties hold: (scalability) (∀x ∈ RN

+ ) (∀α > 1)
αf(x) > f(αx), (b) (monotonicity) (∀x1 ∈ RN

+ ) (∀x2 ∈ RN
+ )

x1 ≥ x2 ⇒ f(x1) ≥ f(x2), and (c) f(x) = ∞ ⇔ x /∈ RN
+ .

Given N standard interference functions ti : RN → R++ ∪ {∞},
i = 1, . . . , N , we call the mapping T : RN

+ → RN
++ : x 7→

[t1(x), . . . , tN (x)] a standard interference mapping. A norm ‖ · ‖
in RN is said to be monotone if (∀x ∈ RN )(∀y ∈ RN ) 0 ≤ x ≤
y ⇒ ‖x‖ ≤ ‖y‖.
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The fundamental mathematical tool used in this study is the an-
alytic representation of asymptotic functions, which we state as a
definition:

Definition 1 ( [1, Theorem 2.5.1] Asymptotic function) The asymp-
totic function associated with a proper function f : RN → R∪{∞}
is the function given by

f∞ : RN → R ∪ {∞}

x 7→ inf

{
lim inf
n→∞

f(hnxn)

hn
| hn →∞, xn → x

}
,

(1)

where (xn)n∈N and (hn)n∈N are sequences in RN and R, respec-
tively.

Computing asymptotic functions directly from the definition is
in general difficult, so many studies deal with only asymptotic func-
tions associated with convex functions [2, 22]. The first main con-
tribution of this study (Proposition 1(i)) is to show that the same
analytic simplification used for the computation of asymptotic func-
tions f∞ associated with convex functions f [1, Corollary 2.5.3] is
also available if f is a standard interference function that is not nec-
essarily convex or concave. The proof of the next proposition is
omitted owing to the space limitation, and we refer readers to the
accompanying unpublished work in [23].

Proposition 1 The asymptotic function f∞ : RN → R∪{∞} asso-
ciated with a standard interference function f : RN → R++∪{∞}
has the following properties:

(i) (∀x ∈ RN
+ ) f∞(x) = limh→∞ f(hx)/h ∈ R+.

(ii) f∞ is lower semicontinuous and positively homogeneous.
If f is in addition continuous when restricted to the non-
negative orthant RN

+ , then f∞ is continuous when restricted
to the non-negative orthant RN

+ .
(iii) (Monotonicity) (∀x1 ∈ RN

+ ) (∀x2 ∈ RN
+ ) x1 ≥ x2 ⇒

f∞(x1) ≥ f∞(x2).

We now define the following mapping, which we later use to
unify, generalize, and gain new insights into existing solutions in the
wireless literature.

Definition 2 (Asymptotic mappings) Let the function t(i) : RN →
R++ ∪ {∞} be a standard interference function for each i ∈
{0, . . . , N}. Given a standard interference mapping T : RN

+ →
RN

++ : x 7→ [t(1)(x), · · · , t(N)(x)], the asymptotic mapping asso-
ciated with T is given by T∞ : RN

+ → RN
+ :

x 7→ [t
(1)
∞ (x), · · · , t(N)

∞ (x)], where, for each i ∈ {1, · · · , N},
t
(i)
∞ is the asymptotic function associated with t(i).

The properties proved in Proposition 1(ii)-(iii) enable us to as-
sociate a common notion of spectral radius to continuous asymp-
totic mappings T∞. More precisely, following standard terminol-
ogy in the mathematical literature [16], we say that λ ∈ R+ and
x ∈ RN

+\{0} are, respectively, an eigenvalue and an eigenvector of
a continuous standard interference mapping or an asymptotic map-
ping T if T (x) = λx. Furthermore, the spectral radius ρ(T∞) of a
continuous asymptotic mapping T∞ is the value given by ρ(T∞) :=
sup{λ ∈ R+ | (∃x ∈ RN

+\{0}) T∞(x) = λx} ∈ R+. Next, we
show how these concepts naturally appear in the analysis of solu-
tions to network optimization and network feasibility problems (not
necessarily convex). We also show how to approximate the spectral
radius with simple algorithms akin to the power method.

3. ASYMPTOTIC MAPPINGS IN WIRELESS NETWORKS

3.1. Feasibility of network designs

Let X ∈ RN×N
+ be a nonnegative matrix and u ∈ RN

++ a pos-
itive vector. It is well known that the system p = u + Xp has
a positive solution p = (I − X)−1u ∈ RN

++ if and only if the
spectral radius of the matrix X is strictly less than one, which is
a result that has played an important role in centralized and dis-
tributed resource allocation problems in wireless networks [5, Ch. 2].
Equivalently, we have 0 < p = u + Xp ⇔ p ∈ Fix(T ) :=
{x ∈ RN

+ | T (x) = x} 6= ∅, where T is the standard interfer-
ence mapping given by T : RN

+ → RN
++ : x 7→ Xx + u. For

this affine mapping T , note that its associated asymptotic mapping
is T∞ : RN

+ → RN
+ : x 7→ Xx, and thus the spectral radius of T∞

and the spectral radius of the matrix X (in the conventional sense in
linear algebra) are the same. This observation suggests that, in fea-
sibility analysis involving nonlinear mappings, the spectral radius
of matrices should be replaced by the spectral radius of asymptotic
mappings. We formally prove this fact in next proposition, which es-
tablishes the second main contribution of the study. The next propo-
sition also shows a result that provides us with information about the
location of the fixed point. The proof is also omitted owing to the
space limitation.

Proposition 2 Let T : RN
+ → RN

++ be a continuous standard inter-
ference mapping. Then Fix(T ) 6= ∅ if and only if ρ(T∞) < 1.
Furthermore, given an arbitrary monotone norm ‖ · ‖, there ex-
ists x? ∈ Fix(T ) 6= ∅ with ‖x?‖ ≤ 1 if and only if the tuple
(x′, λ′) ∈ RN

++ × R++ satisfying T (x′) = λ′x′ and ‖x′‖ = 1 is
such that λ′ ≤ 1. 1

It is also worth mentioning that some distributed resource allocation
algorithms (e.g., [3, 8]) have been designed under the assumption of
the existence of the fixed point of a standard interference mapping.
Proposition 2 provides us with a complete characterization of its ex-
istence. Later, in Sect. 4, we show that existing results related to the
feasibility of OFDMA-based networks [6, 17, 18] (among other ap-
plications) emerge as corollaries of Proposition 2. In the next section
we also show simple algorithms that are able to estimate the spectral
radius of an arbitrary asymptotic mapping.

3.2. Bounds on the solutions to utility optimization problems

We now show that many properties of solutions to a large class of
utility optimization problems can be explained by studying spec-
tral properties of asymptotic mappings. In more detail, as shown
in [7, 10, 24, 25] and the references therein, many (weighted max-
min) utility maximization problems in wireless networks are par-
ticular instances of the following canonical optimization problem,
originally shown in [10] in the context of wireless networks:

Problem 1 (Canonical utility maximization problem)

maximizep,c c
subject to p ∈ Fix(cT ) :=

{
p ∈ RN

+ | p = cT (p)
}

‖p‖a ≤ p̄
p ∈ RN

+ , c ∈ R++,

(2)

where p̄ ∈ R++ is a design parameter hereafter called power bud-
get, ‖ · ‖a is an arbitrary monotone norm, and T : RN

+ → RN
++ is

an arbitrary standard interference mapping.

1The tuple (x′, λ′) exists and is unique, and it is easy to obtain with a
simple fixed point algorithm [10].



Examples of problems that can be written in this canonical form
include the max-min rate optimization in load coupled networks [7],
the joint optimization of the uplink power and the cell assign-
ment [24], the optimization of the uplink receive beamforming [4,
Sect. 1.4.2], and many of the applications described in [25–27].
As shown in [10], Problem 1 has a unique solution (p?, c?) ∈
RN

++ × R++ that can be obtained with simple fixed point algo-
rithms. In particular, p? is the limit of the sequence (pn)n∈N ⊂ RN

+

constructed according to pn+1 = (p̄/‖T (pn)‖)T (pn), where
p1 ∈ RN

+ is arbitrary [10]. Once p? is known, we can recover the
optimal utility c? by computing c? = p̄/‖T (p?)‖. Note that the
fixed point iteration mentioned above is at the heart of some existing
(semi)-distributed resource allocation algorithms (e.g., [28]), and we
now prove results showing fundamental performance limits of the
solutions obtained with these algorithms.

Since the solution to Problem 1 exists for every p̄ ∈ R++, and
it is unique, the following functions are well defined:

Definition 3 (Utility, power, and ‖ · ‖b-energy efficiency functions)
Denote by (pp̄, cp̄) ∈ RN

++ × R++ the solution to Problem 1 for
a given power budget p̄ ∈ R++. The utility and power functions
are defined by, respectively, U : R++ → R++ : p̄ 7→ cp̄ and
P : R++ → RN

++ : p̄ 7→ pp̄. In turn, given a monotone norm ‖ · ‖b,
the ‖ ·‖b-energy efficiency function is defined byE : R++ → R++ :
p̄ 7→ U(p̄)/‖P (p̄)‖b.

By using the results in [10], we can show that the utility func-
tion U and each coordinate of the power function P are strictly in-
creasing. We can also prove that the energy efficiency function is
nonincreasing, and that all functions U , P , and E are continuous in
R++, but we omit the details owing to the space limitation. Our next
main result shows that asymptotic functions naturally appear in the
study of the behavior of these functions for sufficiently small and
large values of the power budget. (See the accompanying unpub-
lished work [23] for the proof of most results in Proposition 3.)

Proposition 3 Let (pp̄, 1/λp̄) := (P (p̄), U(p̄)) ∈ RN
++ × R++ be

the solution to Problem 1 for a given power budget p̄ ∈ R++, and
denote by T∞ : RN

+ → RN
+ the asymptotic mapping associated with

the standard interference mapping T : RN
+ → RN

++. Assume that T
is continuous and ρ(T∞) > 0. Then,

(i) limp̄→∞ λp̄ = ρ(T∞) =: λ∞.

(ii) Let the scalar λ∞ be as defined in (i), and denote by (p̄n)n∈N ⊂
R++ an arbitrary monotonically increasing sequence satisfying
limn→∞ p̄n = ∞. Define xn := (1/‖pp̄n‖a)pp̄n , and let
x∞ ∈ RN

+ be an arbitrary accumulation point of the bounded
sequence (xn)n∈N ⊂ RN

++. Then the tuple (x∞, λ∞) solves the
following conditional eigenvalue problem:

Problem 2 Find (x, λ) ∈ RN
+ × R+ such that T∞(x) = λx and

‖x‖a = 1.

(iii) supp̄>0 U(p̄) = limp̄→∞ U(p̄) = 1/λ∞ and supp̄>0 E(p̄) =
limp̄→0+ E(p̄) = 1/‖T (0)‖b.

(iv) (∀p̄ ∈ R++) U(p̄) ≤ min{p̄/‖T (0)‖a, 1/λ∞}
(v) (∀p̄ ∈ R++)E(p̄) ≤ min{1/‖T (0)‖b, α/(λ∞ p̄)}, where α ∈
R++ is any scalar satisfying (∀x ∈ RN ) ‖x‖a ≤ α‖x‖b (such
a scalar always exists because of the equivalence of norms in finite
dimensional spaces).

(vi) U(p̄) ∈ Θ(1) and E(p̄) ∈ Θ(1/p̄) as p̄→∞.

(vii) U(p̄) ∈ Θ(p̄) and E(p̄) ∈ Θ(1) as p̄→ 0+.

Before we explain in words the practical implications of the pre-
vious proposition, let us first define the following operating point,
which has been motivated by the results in Proposition 3(iv):

Definition 4 Assuming ρ(T∞) = λ∞ > 0, we say that the network
operates in the low power regime if p̄ ≤ p̄T or in the high power
regime if p̄ > p̄T, where the power budget p̄T := ‖T (0)‖a/λ∞ is
called the transition point.

In practice, as we will soon show in a numerical example, the
transition point is the power budget in which networks are transi-
tioning from a regime where the performance is limited by noise to
a regime where the performance is limited by interference. For its
determination, we only need to obtain the spectral radius of T∞.
Under mild assumptions [10, 14, 15], Problem 2 has a unique solu-
tion that can be solved with the same fixed point algorithm used to
solve Problem 1 (see its informal description above Definition 3).
However, even if Problem 2 does not necessarily have a unique solu-
tion, in which case the convergence of the fixed point algorithm de-
scribed above may not be formally established with existing results,
Proposition 3(i) provides us with a simple means to approximate the
spectral radius of T∞ with any arbitrary precision. More precisely,
we only need to solve Problem 1 for p̄ sufficiently large. By doing
so, the reciprocal 1/c? of the optimal utility c? is an approxima-
tion (more precisely, an upper bound) of the spectral radius of T∞.
Additional details on the implications of Proposition 3(iii)-(vii) to
resource allocation problems in wireless networks are presented in
the next section, where we show a concrete application.

4. EXAMPLES AND FINAL REMARKS

We now apply the above results to feasibility and utility maximiza-
tion problems based on the widely used load coupled interference
model [8, 9, 11, 18–21]. This model approximates the long-term
behavior of modern communication systems (e.g., OFDMA-based
systems), and it gives rise to mathematically tractable problems that
have successfully addressed many system-level optimization tasks
such as data offloading [18], load balancing and optimization [21,
29], antenna tilt optimization [9], energy savings [8, 11, 20, 30], and
rate optimization [7], to cite a few.

In the load coupling interference model, we divide the time and
frequency grid into K ∈ N units called resource blocks. Users as-
signed to the same base station are not allowed to share resource
blocks, but intercell interference is present because different base
stations can allocate the same portion of the spectrum and time to
serve their users. The set of N users and M base stations in the
network is denoted by N := {1, . . . , N} andM := {1, . . . ,M},
respectively. The setNi ⊂ N , assumed to be nonempty, is the set of
users connected to base station i ∈ M. The pathloss between base
station i ∈ M and user j ∈ N is given by gi,j ∈ R++. The vec-
tor of transmit power and the load vector are given by, respectively,
p = [p1, . . . , pM ] ∈ RM

++ and x = [x1, . . . , xM ] ∈ RM
++, where

the ith coordinate of these vectors correspond to the power per re-
source block or the load at base station i ∈M. Here, load is defined
to be the fraction of resource blocks that a base station uses for data
transmission. Note that this model assumes uniform transmit power
per resource block, and it also assumes that all resource blocks expe-
rience the same (long-term) pathloss. If p ∈ RM

++ is a fixed design
parameter, the achievable rate of a resource block assigned by base



station i ∈ M to user j ∈ N for a given load x ∈ RM
+ is given by

(see [8, 9, 11, 18–21] for the limitations and strengths of the model):

ωi,j(x) = B log2

(
1 +

pigi,j∑
k∈M\{i} xkpkgk,j + σ2

)
,

where σ2 ∈ R++ is the noise per resource block and B ∈ R++ is
the bandwidth of each resource block. By denoting by dj ∈ R++

the data rate requested by user j ∈ N , the load at the base stations
is obtained by computing the fixed point (if it exists) of the standard
interference mapping given by [9, 17, 19, 20]:

T : RM
+ → RM

++ : x 7→ [t(1)(x), . . . , t(M)(x)]T , (3)

where, for each i ∈ M and every x ∈ RM
+ , we define t(i)(x) :=∑

j∈Ni
dj/(Kωi,j(x)).We recall that T has at most one fixed point

[3]. In the above formulation, components of the load vector can
take values greater than one. In practice, the load at a base station
cannot exceed one (otherwise the base station would be transmitting
with more resources than available in the system), but knowledge of
such values is useful to identify network bottlenecks by ranking base
stations according to their unserved traffic demand [17]. Therefore,
finding conditions for the existence of the fixed point of the mapping
T has been the focus of many studies [6, 11, 17, 19, 20]. Here we
show that these results in the literature follow directly from Proposi-
tion 2, and this proposition is also useful in the analysis of improved
models for which existing results cannot be applied. More precisely,
by using Proposition 1(i), we can verify that the asymptotic mapping
associated with T is given by

T∞ : RM
+ → RM

+ : x 7→ diag(p)−1Mdiag(p)x, (4)

where diag(p) ∈ RM×M
+ is a diagonal matrix with diagonal el-

ements given by the vector p, and the component [M ]i,k of the
ith row and kth column of the matrix M ∈ RM×M

+ is given by
[M ]i,k = 0 if i = k or [M ]i,k =

∑
j∈Ni

ln(2)djgk,j/(KBgi,j)
otherwise. By Proposition 2, we know that the load mapping T has a
fixed point if and only if ρ(T∞) < 1. Since T∞ is the linear mapping
shown in (4), we also know that the spectral radius ρ(T∞) of T∞ and
the spectral radius of the matrix diag(p)−1Mdiag(p) (and hence of
the matrix M ) coincide. Therefore, we conclude that Fix(T ) 6= ∅
if and only if the spectral radius ρ(M) of the matrix M satisfies
ρ(M) < 1, which is exactly the result obtained in [6, 17, 18] by
using arguments with different levels of generality. This fact shows
that all these existing results in the literature are unified and general-
ized by Proposition 2. None of these known results can be applied to
more elaborate interference models where, for example, the rate of a
user is upper bounded because of the limited number of modulation
and coding schemes. Such models have been considered in [9, 20],
and we now apply Proposition 2 once again to study feasibility of a
network design. More specifically, [9] (see also [20]) has proposed
to replace the mapping T in (3) by the standard interference map-
ping T̄ : RM

+ → RM
++ : x 7→ [t̄(1)(x), . . . , t̄(M)(x)], where, for

each i ∈M,

t̄(i) : RM
+ → RM

++ : x 7→
∑
j∈Ni

max

{
dj

Kωi,j(x)
,
dj
u

}

and u ∈ RM
+ is the maximum rate that each resource block can

achieve (because of the limited choice of modulation and coding
schemes). The load is now the fixed point of the mapping T̄ , and
its associated asymptotic mapping is also the mapping T∞ shown
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Fig. 1: Network utility as a function of the power budget p̄ for the
problem described in [7, Sect. V-B].

above; i.e., T̄∞ : RM
+ → RM

+ : x 7→ diag(p)−1Mdiag(p)x,
where M is the matrix in (4). Therefore, by Proposition 2, we con-
clude that the improved mapping T̄ has a fixed point if and only if
ρ(T∞) = ρ(T̄∞) = ρ(M) < 1, which is the same criterion used
to evaluate whether T has a fixed point. This fact proves that exis-
tence of a feasible load vector does not depend on the choice of the
modulation and coding schemes.

In the above analysis, both the users’ rates and the power of base
stations are given design parameters. We can also consider the prob-
lem of computing the transmit power and the corresponding load in
order to maximize the minimum achievable rate of the users. In the
context of the load coupled interference models described above, this
utility maximization problem has been addressed in [7], which has
shown that, for optimality, all users should have the same rate, the
load at all base stations should be set to one, and at least one base sta-
tion should transmit with maximum power [7, Proposition 2]. There-
fore, as shown in that study, the optimal rate and power allocation are
solutions to a particular instance of Problem 1. Since details of the
derivation can be found in [7], we omit them for brevity. Here we
show a numerical example illustrating the new insights gained with
Proposition 3. Briefly, the numerical example shown in this study is
similar to that used to produce [7, Fig. 2], with the only difference
that here the noise power spectral density is fixed to -154 dBm/Hz,
and we vary the power budget. Fig. 1 and Fig. 2 show the utility
(in bits/s) and the ‖ · ‖∞-energy efficiency (in bits/Joule) obtained
in the simulations, respectively. All conditional eigenvalue problems
have been solved with the fixed point iteration described just above
Definition 3. In the figures we verify that all technology-agnostic
properties formally described by Proposition 3 are present. For ex-
ample, in the low power regime, the utility grows almost as a linear
function, whereas the decay in energy efficiency is slow. These prop-
erties are a manifestation of Proposition 3(vii). In the high power
regime, increasing the power budget by orders of magnitude brings
only marginal gains in utility, an indication that the performance is
limited by interference. Furthermore, the decay in energy efficiency
is almost inversely proportional to the scaling of the power (e.g.,
doubling the power budget decreases the energy efficiency roughly
by half). These results are a manifestation of the properties shown
in Proposition 3(vi). All bounds are asymptotically sharp as p̄→∞
and as p̄ → 0+, which is a result consistent with Proposition 3(i)-
(iii). We also verify that the transition point is a good indication of
whether energy is being wasted. If we operate above the transition
point, we can likely reduce the transmit power to obtain gains in
energy efficiency at the cost of only a minor decrease in rates. In
light of the results shown in this study, we should design networks in
such a way that the transition point is larger than the power budget
in general.
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[5] S. Stańczak, M. Wiczanowski, and H. Boche, Fundamentals of
Resource Allocation in Wireless Networks, 2nd ed., ser. Foun-
dations in Signal Processing, Communications and Network-
ing, W. Utschick, H. Boche, and R. Mathar, Eds. Berlin Hei-
delberg: Springer, 2009.

[6] R. L. G. Cavalcante, Y. Shen, and S. Stańczak, “Elementary
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its of solutions to network utility maximization problems,”
arXiv:1701.06491, 2017.

[24] R. Sun and Z.-Q. Luo, “Globally optimal joint uplink base sta-
tion association and power control for max-min fairness,” in
IEEE International Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP), 2014, pp. 454–458.

[25] C. W. Tan, “Wireless network optimization by Perron-
Frobenius theory.” Now Publishers Inc, 2015.

[26] D. W. Cai, C. W. Tan, and S. H. Low, “Optimal max-min fair-
ness rate control in wireless networks: Perron-Frobenius char-
acterization and algorithms,” in INFOCOM, 2012 Proceedings
IEEE. IEEE, 2012, pp. 648–656.

[27] L. Zheng, Y.-W. P. Hong, C. W. Tan, C.-L. Hsieh, and C.-H.
Lee, “Wireless max–min utility fairness with general mono-
tonic constraints by Perron–Frobenius theory,” IEEE Transac-
tions on Information Theory, vol. 62, no. 12, pp. 7283–7298,
Dec. 2016.



[28] R. Sun, M. Hong, and Z.-Q. Luo, “Joint downlink base station
association and power control for max-min fairness: Computa-
tion and complexity,” IEEE Journal on Selected Areas in Com-
munications, vol. 33, no. 6, pp. 1040–1054, 2015.

[29] R. L. G. Cavalcante and S. Stanczak, “Peak load minimiza-
tion in load coupled interference network,” in IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing
(ICASSP), March 2017, pp. 3729–3733.

[30] E. Pollakis, R. L. G. Cavalcante, and S. Stanczak, “Base sta-
tion selection for energy efficient network operation with the
majorization-minimization algorithm,” in Signal Processing
Advances in Wireless Communications (SPAWC), 2012 IEEE
13th International Workshop on, June 2012.


	1  Introduction
	2  Asymptotic mappings
	3  Asymptotic mappings in wireless networks
	3.1  Feasibility of network designs
	3.2  Bounds on the solutions to utility optimization problems

	4  Examples and final remarks
	5  References

