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ABSTRACT

It is of particular interest to reconstruct or estimate
bandlimited graph signals, which are smoothly varying sig-
nals defined over graphs, from partial noisy measurements.
However, choosing an optimal subset of nodes to sample is
NP-hard. We formularize the problem as the experimental
design of a linear regression model if we allow multiple
measurements on a single node. By relaxing it to a convex
optimization problem, we get the proportion of sample for
each node given the budget of total sample size. Then,
we use a probabilistic quantization to get the number of
each node to be sampled. Moreover, we analyze how the
sample size influences whether our object function is well-
defined by perturbation analysis. Finally, we demonstrate
the performance of the proposed approach through various
numerical experiments.

Index Terms— Graph Signal, Sampling Theory, Convex
Optimization, Experimental Design, Perturbation Analysis

1. INTRODUCTION

Graph signals (GS) are rather useful for describing sig-
nals and information in irregular domains, such as social,
sensor and economic networks [1]. Graph signal processing
(GSP) theory extends and generalizes the classic discrete
signal processing theory to graphs by introducing graph
Fourier transform [2]–[15], wavelet [16]–[20], etc. Two
main approaches have been considered to construct a graph
Fourier analysis framework: algebraic graph theory linked to
the adjenacy matrix [2], [4]–[8] and spectral graph theory
based on the graph Laplacian matrix [3], [8]–[15]. GSP
theory have been developed to graph filter [13], [17], [20],
community detection and clustering on graphs [11], [19],
sampling and interpolation [3], [6], [7], [9], [10] and corre-
sponding distributed algorithm [8], [12]. Recently, stationary
processes to the graph domain has been investigated in [14],
[15].

Sampling theory for GS deals with the problem of re-
covering a bandlimited signal from its samples on a subset
of nodes of the graph. Bandlimited GS widely exist in
most real-world networks due to the fact that the signals on
adjacent nodes won’t differ dramatically in reality. To for-
mulate a sampling theory for bandlimited GS, the following
questions arises: How to choose the best sampling set which
can achieve the smallest reconstruction error? Generally, the
signals can be bandlimited or approximate bandlimited and

the samples can be noise-free or noisy as shown in Table.
1. In this paper, we focus on choosing the sampling set for
bandlimited GS from noisy measurements.

Table 1. Literature based on different assumptions

Noise-free Noisy

Bandlimited [6], [7] [3], [7]–[10], [12]

Approximate bandlimited [6] [2], [3]

In this work, we connect the design of sampling set for
noisy bandlimited GS with experimental design problem,
which is closely related to the optimal experimental design
problem in [21], [22]. This connection with experimental
design has also been noticed in [3], [8] for GS sampling
but not fully investigated. The original form of experimental
design problem with given measurement size is a combi-
natorial problem and NP-hard. There are two main kinds
of solutions. One is heuristic algorithms, which is time-
consuming and can hardly produce an optimal solution, such
as Fedorovs exchange algorithm [23] and Wynns algorithm
[24]. The other is the convex relaxation proposed in [25, Sec.
7.5] which tries to obtain an optimal solution. It has been
also claimed to give excellent results in many applications
[26]. In this paper, we follow the latter.

In this work, we consider the case when any node is
allowed to be sampled multiple times. From the view of
experimental design, the optimal solution usually achieves
when we allow multiple-time sampling. This is very feasible
for many real-world networks such as sensor network and
social network. We not only decide the nodes to be sampled
but also get the proportion of sample for each node of a given
sample size by relaxing the combinational problem to convex
optimization. In order to get the number of each node to be
sampled, we use probabilistic quantization [27] to unbiased
quantify the solution of the relaxed problem to integers to
get a suboptimal solution of the combinational problem.
Different from the heuristic algorithm [3], [8] whose perfor-
mance can not be evaluated, we take the quantization error
as the perturbation and analyze how sample size influence
the performance of our algorithm by perturbation analysis.
Moreover, we find a lower bound of the sample size to
ensure the object function of our algorithm well-defined,
which can provide a reference to practical problems. Finally,
the performance of our method is analyzed and shown to
have smaller reconstruction error and is more robust against
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additive noise.

2. SYSTEM MODEL

Consider an N -vertex undirected connected graph G =
(V , E ,W ), where V is the vertex set, E is the edge set, and
W is the weighted adjacency matrix. If there is an edge
e = (i, j) between vertices i and j, then the entry Wi,j

represents the weight of the edge; otherwise Wi,j = 0. A
signal f defined on the vertices of a graph can be represented
as a vector f ∈ RN , and its element fi represents the signal
value at the ith vertex in V .

The graph Laplacian is defined as L = D −W , where
the degree matrix D = diag(1W ). Since the Laplacian
matrix is real symmetric, it has a complete eigenbasis and
the spectral decomposition

L = V ΛV T , (1)

where the eigenvectors {vk}0≤k≤N−1 of L form the
columns of V , and Λ ∈ CN×N is a diagonal matrix of
eigenvalues 0 = λ0 ≤ λ1 ≤ · · · ≤ λN−1 of L. The graph
Fourier transform corresponds to the basis expansion of a
signal. The eigenvectors of the graph Laplacian are regarded
as the Fourier basis and the eigenvalues are regarded as
frequencies [5]. The expansion coefficients of a graph signal

f in terms of eigenvectors are defined as f̂ , so that a graph
signal can be expressed as

f = V f̂ . (2)

A graph signal is called bandlimited when there exists a
K ∈ {0, 1, · · · , N − 1} such that its graph Fourier transform

f̂ satisfies f̂k = 0 for all k ≥ K [7]. Let f be a signal with
bandwidth K , then it satisfies

f = VK f̂K , (3)

where VK denotes the first K columns of V and f̂K denotes

the first K coefficients of f̂ .
Suppose that we sample M measurements from the

graph signal f ∈ CN to produce a sampled signal fS ∈ CM ,
usually M ≤ N , where S = (S1, · · · ,SM ) denotes the
sequence of sampled indices, and Si ∈ {1, 2, · · · , N}. The
sampling operator Ψ : CN 7→ CM is defined as

Ψi,j =

{

1, j = Si;
0, otherwise.

(4)

Let w ∈ CM be the i.i.d. noise with zero mean and
unit variance introduced during sampling. Then the samples
are given by fS = Ψf , and the observation model is
yS = Ψf + w. Considering (3), for bandlimited GS, the

observation model can be expressed as yS = ΨVK f̂K +w.
Let VMK = ΨVK , then

yS = VMK f̂K +w. (5)

The best linear unbiased estimation [28] of f̂K from ob-
served samples yS is,

f̂ ′
K = V

†
MKyS , (6)

where V
†
MK = (V T

MKVMK)−1V T
MK is the pseudo-inverse

of VMK .

By (2), the estimation error of f is

e = f ′ − f = VKV
†
MKw. (7)

The covariance matrix of estimation error is

E = E[eeT ] = VK

(

V T
MKVMK

)−1
V T
K . (8)

Our main problem is to choice an optimal Ψ that minimize
the error covariance E in certain scalarization forms.

Several scalarizations of (8) have been proposed for the
convenience of minimization as follow:
D-optimal

f(E) = log det (E) , (9)

E-optimal

f(E) = ‖E‖
2
, (10)

A-optimal

f(E) = Tr (E) . (11)

It is obvious that f(E) = f
(

(

V T
MKVMK

)−1
)

for all the

three scalarizations above, since VK is orthogonal.

3. ALGORITHM

In this section, we consider the sampling set design prob-
lem by estimating f from measurements. Let uT

1 , · · · ,uT
N

be the rows of VK . Recall from VMK = ΨVK that the the
rows of VMK , which characterize the measurements, can
be chosen among N possible test vectors uT

1 , · · · ,uT
N . Our

goal of optimal experimental design is to make f(E) as
small as possible.

Let mi denotes the number of experiments for which ui

is chosen, and assume that the sample size is M , so we have

m1 + · · ·+mN = M. (12)

The scalarization of error covariance matrix can be ex-
pressed as

f(E) = f





(

N
∑

i=1

miuiu
T
i

)−1


 . (13)

It shows that the error covariance depends only on the
numbers of each ui is chosen. The basic experimental design
problem is as follow,

minimize
mi

f(E)

subject to mi ≥ 0, m1 + · · ·+mN = M

mi ∈ Z. (14)



3.1. THE RELAXED PROBLEM

The basic experimental design problem (14) is an in-
tractable combinatorial problem. We relax the constraint
that the mi are integers following Boyd’s method [25, Sec.
7.5]. Let pi = mi/M , which indicates the proportion of
experiment i, and relax the constraint that each pi is an
integer multiple of 1

M
, we obtain the relaxed experimental

design problem

minimize
pi

f(E) = f





(

N
∑

i=1

piuiu
T
i

)−1




subject to p � 0, 1
Tp = 1. (15)

This is a convex optimization which can be solved by any
optimization tool like interior-point methods [25]. In the rest
of this paper, we consider only the relaxed experimental
problem. The optimal value of the relaxed problem (15)
provides a lower bound on the optimal value of the combi-
natorial one since the combinatorial problem has an addition
constraint.

After solving (15), each entry of p need to be quantified
to an integer multiple of 1

M
. Different form Boyd’s method

[25, Sec. 7.5], we use probabilistic quantization [27] instead
of the simple rounding to ensure an unbiased quantization
in mean. The probabilistic quantization Q : pi → Q(pi)
is defined as follow: pi ∈ [0, 1] is equally divide into
M − 1 sub-intervals. The quantization points is defined
as {1/M, 2/M, . . . , 1}. Then, for pi ∈ [k/M, (k + 1)/M ],
k ∈ {0, 1, . . . ,M − 1}, Q(pi) is a random variable defined
by

Q(pi) =

{

k
M

with probability (k+1

M
− pi)M

k+1

M
with probability (pi − k

M
)M.

(16)

Clearly we have |pi −Q(pi)| ≤ 1/(2M). So when M is
large enough, we have p ≈ Q(p), which implies the error
covariance matrix associated with p and Q(p) are closed.

As a result, we can use Q(p) to generate a suboptimal
sampling set: let mi = MQ(pi) be the sample quota of the
ith node.

3.2. PERTURBATION ANALYSIS OF QUANTIZA-

TION

By relaxing the experimental design problem, we do
not need to solve the combinatorial problem directly. Mean-
while, the suboptimal solution brings a new problem of how
to ensure the objective function of (15) invertible when we
using Q(pi) to replace pi, since the object function will be

ill-condition if
∑N

i=1
Q(pi)uiu

T
i is not invertible.

Let A =
∑N

i=1
piuiu

T
i and Â =

∑N

i=1
Q(pi)uiu

T
i , our

goal is to ensure Â, perturbed from A, invertible. Let the
perturbation error ∆pi = Q(pi) − pi, and the perturbation
is given by

δA = Â−A =

N
∑

i=1

∆piuiu
T
i . (17)

According to the [29, Th 2.1], known that A is nonsin-
gular, the relative l2-norm distance from A to the nearest
singular matrix is

min

{‖(δA)‖
2

‖A‖
2

:A+ δA singular

}

=
1

‖A‖
2
‖A−1‖

2

.

(18)
Therefore, to ensure Â invertible, the following condition
needs to be satisfied,

‖δA‖
2
<

1

‖A−1‖
2

= σmin(A). (19)

Recall from (17) that ‖δA‖
2

is related to ∆pi. Thus, ∆pi
affects the probability of (19) being held.

Theorem 1. Suppose that ∆p1, . . . ,∆pN are independent,
and each Q(pi) is obtained by the quantization given in
(16). The probability of (19) is

P (‖δA‖
2
< σmin(A)) >

N
∏

i=1

(

1− Var[∆pi]

(σmin(A))2

)

.

(20)

Proof: Let ∆P = diag(∆p1,∆p2, . . . ,∆pN ), then

‖δA‖
2
=
∥

∥V T
k ∆PVk

∥

∥

2

≤
∥

∥V T
k

∥

∥

2
‖∆P ‖

2
‖Vk‖2 = max |∆pi| . (21)

Since ∆p1, . . . ,∆pN are independent, we can get the fol-
lowing inequation,

P (‖δA‖
2
< σmin(A)) ≥

N
∏

i=1

P (|∆pi| < σmin(A)).(22)

According to Chebycheff inequality, for any pi ∈ [k/M, (k+
1)/M ], the following inequation holds,

P (|∆pi| < σmin(A)) > 1− Var[∆pi]

(σmin(A))2
. (23)

Thus proving our claim.

Assume that M is large enough, then any pi ∈
[k/M, (k+1)/M ] is approximated to be a uniform distribu-
tion: pi ∼ U [k/M, (k+1)/M ]. According to (16), for every
pi ∈ [k/M, (k+1)/M), E[Q(pi)] = pi, which means Q(pi)
is an unbiased representation of pi, so

Var[∆pi] =

∫ 1

2M

− 1

2M

∆pi
2p(∆pi)d∆pi ≈

5

192M3
. (24)

We do not need the probability in (20) to be 1 most of
the time, it can be reduced to η(0 < η < 1) according to
actual needs. This leads to the following corollary.

Corollary 1. Â =
∑N

i=1
Q(pi)uiu

T
i is invertible with

probability η if the sample size M satisfies:

M ≥
⌈

(

5

192(1− N
√
η)(σmin(A))2

)
1

3

⌉

, (25)

where ⌈·⌉ denotes the ceiling operation.
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Fig. 1. Reconstruction results of G1 for different signals.

4. SIMULATION

We now numerically evaluate the performance of the
proposed work. The experiments compares the average re-
construction error ‖e‖

2
of different sample set selection

algorithms versus different bandwidth of the true signal and
different SNR of the samples. We compare our approach
with the following methods: M1 [7] and M2 [3], which
are both greedy algorithm, as well as M3 [26], which uses
relaxed convex optimization to calculate the probability to
sample each node and select M nodes with largest proba-
bility.

We give some simulation results on the following sim-
ulated undirected graphs: Small world graph (G1) [30] of
1000 nodes rewiring with probability 0.1. Random geometric
graph (G2) [31] with 500 nodes placed randomly in the unit
square and edges are placed between any nodes within 0.6.
The edge weights are assigned via a Gaussian kernel.

For each of the above graphs, we consider the problem
in the following scenarios: (F1) The bandwidth of the true
signal varying from 10 to 20 and non-zero GFT coefficients
are generated from N (1, 0.52). The samples are noisy with
additive i.i.d. Gaussian noise such that the SNR equals 10
dB. (F2) The true signal is exactly with the bandwidth
of 15 and non-zero GFT coefficients are generated from
N (1, 0.52). The samples are noisy with additive i.i.d. Gaus-
sian noise and the SNR varies from 0dB to 10dB.
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Fig. 2. Reconstruction results of G2 for different signals.

We generate 200 signals from each of the two signal
models on each of the graphs and set the sample size to 4
times of the bandwidth. The parameter k of M2 that controls
how closely the estimate the bandwidth of a signal is set to 8
in our simulation. For noisy signal model F1, our method has
a better performance in reconstruction error than the others
with the same sample size in most case as demonstrated
in Fig. (1a) and Fig. (2a). This is because M1 and M2 are
heuristic methods, which can not ensure a global optimal
solution. M3 formularizes the problem as an experimental
design problem like what we do but not allows multiple-time
sampling on any node. So their solution is a suboptimal
solution from the view of measurement, while we try to
find the optimal one. The quantization step is a major factor
that influences the performance of our method. The smaller
sample size M is, the larger the quantization step is. As a
result, the corresponding reconstruction performance will be
poorer. Our method also has a better performance for signal
model F2, especially when the SNR of samples is low as
demonstrated in Fig. (1b) and Fig. (2b). This also proves
that our method is more robust against additive noise.

5. CONCLUSION

In this paper, an algorithm is proposed to obtain the
best sampling set for bandlimited GS estimation for noisy
samples. By the method of experimental design, we find out
the sample quota for each node. Meanwhile, a loose lower



bound of sample size is given to ensure the object function
in our method is well-defined.
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