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ABSTRACT

This paper introduces the notion of beam-free satellite systems and
it investigates different scheduling algorithms for this architecture.
Attending to the current satellite gateway cloudification, this paper
assumes that users from different beams can be scheduled over the
same frame. Indeed, considering full frequency reuse among beams
and on ground precoding, we show that whenever the scheduler is
able to freely group users independently of their beam location, large
attainable rates are obtained. In addition, we also consider that the
gateway is able to select a number of simultaneous transmissions
which leads to a substantial sum-rate increase. A scheduling scheme
based on spectral clustering is proposed and it shows a higher per-
formance compared to other state-of-the-art alternatives. In addition,
our method is able to deal with different user terminal traffic classes.
Based on the numerical results obtained considering a close-to-real
multibeam satellite pattern, we point out that the current per-beam
scheduling process is an inefficient network management for multi-
beam satellite systems using precoding.

Index Terms— Multibeam satellite systems, precoding, spectral
clustering, user scheduling.

1. INTRODUCTION

Current satellite network managers split the system resources in
beams. These beams correspond to geographical areas of hundreds
of kilometers created by one or multiple on board antennas. In
this context, user terminals (UTs) are generally equipped with a
global positioning system so that each UTs requests connectivity to
a unique beam. Consequently, the gateway scheduling process is
done on a per-beam basis (i.e. there are as many scheduler entities
as beams).

The mentioned architecture is motivated by the disjoint fre-
quency reuse among beams. That is, adjacent beams are served in
different frequency bins in order to reduce the inter-beam interfer-
ence. Therefore, there is no need of inter-beam scheduling process
as the inter-beam signals have a very low power. However, in case
full frequency reuse and precoding is employed, the mentioned
per-beam network management shall be revisited.

In particular, it is known that given a set of on-board antennas
N , the optimal number of simultaneous transmissions, B, might be
lower than the a priori conceived number of beams by the satellite
operator. Indeed, if a large population of UTs is located at the beam
overlapping area, it might be more convenient to transform the two
beams transmission to a single beam with a unique scheduling pro-
cess.

This paper proposes the idea of beam-free satellite systems
where we consider that there is no a priori relation between each
UT and the payload architecture. Concretely, we envisage that over

a certain refreshing time period, the number of simultaneous trans-
missions is updated. In this context, the GW scheduler shall be able
to group UTs into a certain number of groups and embed its trans-
mit data over the same frame, independently of their geographical
location.

Scheduling in multibeam satellite system employing precoding
has been investigated in the recent years [1–8]. Most of all satellite
standards embed more than one UT information in the same code-
word in order to obtain high channel coding gains. Due to that, the
scheduling process consists of grouping users from the same beam to
be served over the same frame. Attending the UT channel vector, the
work in [1] proposes to opportunistically group users based on their
fed back signal-to-interference-plus-noise ratio (SINR). The work
in [2] clusters UTs which are geographically close. In [3] and [7]
it is proposed to schedule UT having similar channel vectors over
the same frame and schedule UTs in adjacent beams considering or-
thogonal channel vectors. A similar approach is done in [8] but only
considering the geographical location of the UTs.

In [4, 5, 9] the authors consider user scheduling of UTs present-
ing the minimum Euclidean distance of their channel. This notion
is extended in [6] by considering the k-means algorithm [10] and
alternative similarity UT channel vector metrics.

In all the mentioned works, the GW is assumed to have a fixed
number of simultaneous transmissions B. This is, UTs are geo-
graphically divided in beams so that groups can only be formed by
UTs from the same beam. On the contrary, in this paper we con-
sider the case where the GW is able to schedule users over the same
frame from different beams and optimize the number of simultane-
ous transmissions.

In satellite communications one satellite covers thousands of
UTs spread in a wide coverage area. Each UT is described by a
set of different features; namely, channel vector, location, receiver
sensitivity, traffic class, quality-of-service, user experience,... All
of them can be encompassed in a user feature vector, which as any
nonuniform data vector, contains a underlying structure due to the
heterogeneity of the data. Graphs are used in this paper to represent
these UT data, and its spectral domain results very useful to encode
its structure and effectively cluster the UTs.

We propose a method based on spectral clustering [11,12] which
is able to provide an adequate structure to perform the UTs schedul-
ing over the multibeam coverage area. The numerical evaluations
show that it is more convenient to simultaneously transmit a re-
duced number of beams rather than use all available payload ra-
diofrequency beams. An additional case where the UTs have differ-
ent traffic demands is also analysed and it is shown that the proposed
method behaves well even for this scenario.

Spectral clustering is not only very simple to implement, but it
is also very powerful in graph clustering in that it is guaranteed to
reach global extreme points in principle. Indeed, this paper is not
only the first that states the problem of user scheduling in a beam-



free system, but also shows the potential of spectral clustering for ef-
fectively solving the non-convex user scheduling problem. We note
that the right construction of the graph is key for a successful user
selection in the multicast problem at hand.

The rest of the paper is organized as follows. Section II presents
the system model of multibeam satellite systesm with precoding.
Section III introduces the scheduling problem so as the proposed
technique. Section IV presents the numerical results. Section V
concludes.

Notation: Throughout this paper, the following notations are
adopted. Boldface upper-case letters denote matrices and boldface
lower-case letters refer to column vectors. (.)H , (.)T , (.)∗ denote a
Hermitian transpose, transpose and conjugate matrices, respectively.
IN builds N × N identity matrix and 0K×N refers to an all-zero
matrix of size K × N . If X is a N × N matrix. [X]ij represents
the (i-th, j-th) element of matrix X. ⊗, ◦ and ||.|| refer to the Kro-
necker product, the Hadamard product and the Frobenius norm, re-
spectively. Vector 1N is a column vector with dimension N whose
entries are equal to 1. vec (·) denotes the vectorization operator.

2. SYSTEM MODEL

We consider a forward link transmission of a single geostationary
satellite system, consisting of one satellite payload equipped with an
array fed reflector withN feed elements andK satellite UT. The UT
set is denoted by K = {1, 2, . . . ,K}. Adhering to the commercial
satellite system scenario, we focus on the case where K >> N .

The forward link channels between the GW and the UTs are
described by the channel matrix

H = (h1,h2, . . . ,hK)T ∈ CK×N , (1)

where hk ∈ CN×1 denotes the channel between the GW and the
k-th UT. We adopt the line-of-sight channel model which is given
by

[H]k,n =
GRakne

jψk,n

4π dk
λ

√
KBTRBW

k = 1, . . . ,K;n = 1, . . . , N. (2)

dk is the distance between the k-th UT and the satellite. λ is the
carrier wavelength,KB is the Boltzmann constant,BW is the carrier
bandwidth,G2

R is the UT receive antenna gain, and TR is the receiver
noise temperature. The term akn refers to the gain from the n-th
feed to the k-th user. The time varying phase due to beam radiation
pattern and the radio wave propagation is represented by ψk,n.

The phase value, ψk,n, presents different contributions. In par-
ticular,

ψk,n = θRF,k + θLNB,k + θPL,n, (3)

where θRF,k = 2π
λ
dk is the phase rotation due to the radiofrequency

signal propagation which depends on the UT distance to the satel-
lite, θLNB,k is the phase contribution of the receiver low noise block
downconverters assumed to be Gaussian with zero mean and stan-
dard deviation of 0.24 degrees and θPL,n which are the payload os-
cillator phase offsets which are assumed to be Gaussian with zero
mean and standard deviation that is usually around 2 degrees.

We assume the availability of perfect channel state information
at the GW. The GW performs user scheduling and serves theK users
in B groups. The B simultaneous data frames can contain informa-
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tion from more than UT, leading to a multigroup multicast trans-
mission. We denote as Bi for i = 1, . . . , B the set of groups. We
assume that Bi ∩ Bj = ∅ for i 6= j and

⋃
i=1,...,B Bi = K.

The B data streams are precoded using the minimum mean
square error multicast (MMSE-M) technique [9]. While hav-
ing significantly lower computational complexity than other ap-
proaches [3], the sum-rate performance of the MMSE-M is gener-
ally good for diverse multibeam satellite systems. We adopt per-feed
power allocation to ensure that none of the satellite high power am-
plifiers reach the saturation. Then, the precoded signal is given
by

x = Ws = γ

(
GHG+

N

P
IN

)−1

GHs, (4)

where matrix W = (w1,w2, . . . ,wB) ∈ CN×B is the precod-
ing matrix and s ∈ CB×1 are the data symbols transmitted to the
B UTs groups. The data symbols are assumed to have unit power,
i.e., E

(
ssH

)
= IB . Matrix G = (g1,g2, . . . ,gB)

T ∈ CB×N is
constructed by

gi =
1

|Bi|
∑
k∈Bi

hk. (5)

Note that gi is the vector that minimizes the average Euclidean dis-
tance of all UT channel vectors belonging to the same group:∑

k∈Bi

‖gi − hk‖2. (6)

In other words, gi is the vector that represents the group Bi from the
minimum Euclidean distance perspective.

The scalar γ is set such that the transmit power at each feed
power amplifier is bellow P :

γ2 = P/max
n

[
WWH

]
n,n

. (7)

The K served UTs receive signal is

y = Hx+ n, (8)

where n ∈ CK×1 is the additive white Gaussian noise with zero
mean and unit variance. Hence, the signal-to-interference-plus noise
ratio (SINR) experience at each UT is

SINRk =
|hHk wk|2∑K

j 6=k |hHk wj |2 + 1
. (9)

3. USER SCHEDULING

In general, typical satellite transmissions require that data from more
than one UT is embedded into one frame. This means that the GW
has to partition the set of users to be servedK intoB disjoint groups,
which guarantees that all UTs will be served. Mixing the usual ob-
jective of sum rate maximization (see e.g. [3]) with the notion of user
scheduling, we attempt to optimize the following problem

maximize
{Bi}Bi=1

B∑
i=1

min
k∈Bi

BW log2(1 + SINRk), (10)

where it can be observed that the attainable rate of each of the groups
is given by the achievable rate of the user with the lowest SINR of
that group. This is due to the multicast transmission: all UTs be-
longing to the same group have to be able to decode the transmitted
frame.



Finding the optimal solution of the problem in (10) requires an
exhaustive search as the SINR of each group can only be obtained
after all users have been selected and the precoding matrix has been
computed. We therefore apply an heuristic approach as it is de-
scribed in the next subsection.

Once the UTs are grouped, each user group is served with the
same frame using the precoding strategy described in the previous
Section. This strategy guarantees that all K users are served simul-
taneously. Note that each group might contain a different number of
users.

3.1. Spectral Clustering

Given a set of UT K and some notion of similarity sij ≥ 0 between
all pairs i, j of UTs, our intuitive goal is to divide the set of UTs, K,
into groups such that UTs in the same group are similar and UTs in
different groups are dissimilar to each other in other to support the
precoding operation.

The best way of representing the similarities of the different UTs
is in form of the similarity graph were the vertices represent the UTs
and the edge of each vertex is weighted by sij . In this context, the
clustering problem is transformed in finding a partition of the graph
such that edges between different groups have very low weight and
edges within a group have high weight [11].

The graph is generally represented by its adjacency matrix S
which can be constructed via a Gaussian kernel as follows

[S]ij = e
−dij
2ν2 . (11)

Here the parameter ν controls the width of the clusters. The election
of this parameter influences the clustering operation severely. Due
to that, different values of this parameters shall be tested for a given
scenario.

The value of dij shall be the distance between the UTs. For the
considered case, a relevant measurement of distance between UTs
whenver precoding is going to be implemented is

dij = ‖hi − hj‖2. (12)

This is, the Euclidean distance.
Alternatively, the GW might opt to consider additional cluster-

ing constraints apart from the similarity of the UTs channel vectors.
For instance, if UTs require different services (e.g. real-time connec-
tivity or broadcasting information), it might be convenient to group
them in different sets. Assuming that different UTs might belong to
different classes, we adopt the following distance measurement

dclass
ij = cij‖hi − hj‖2, (13)

where cij = 1 if UT i and j belong to the same class and cij =∞ in
case they do not belong to the same class. With this, we can construct
a graph able to accommodate UTs bearing in mind the underlying
upper layer traffic requirements.

The main tool for spectral clustering is the Laplacian matrix,
which can be described as

L = M− S, (14)

where M is the degree matrix defined as a diagonal matrix whose
entries are the UTs degrees m1, . . . ,mK such that

mi =

K∑
j=1

sij . (15)

The Laplacian matrix has many properties which are beneficial
for graph analysis. For instance, assuming and ideal similarity ma-
trix (i.e. nodes which are not connected present a distance equal to
zero and nodes which are connected present a distance equal to 1),
the multiplicity of the eigenvalue 0 equals to the number of clusters.

In non-ideal similarity matrices spectral clustering has been
widely employed in many clustering problems (e.g. image segmen-
tation [13]). As a general statement, the B eigenvectors correspond-
ing to the lowest B eigenvalues of the Laplacian matrix presents a
well structured data for properly obtaining B clusters.

Data: H, B, ν.
1 Construct the similarity graph, S, as in (11) with ν. ;
2 Compute the Laplacian, L, as in (14).;
3 Compute the first B eigenvectors (i.e. lowest eigenvalues),

v1, . . . ,vB of L.;
4 Let V ∈ RK×B the matrix containing the vectors

v1, . . . ,vB as columns. ;
5 Let zi ∈ R1×B the vector corresponding to the i-th row of

V for i = 1, . . . ,K.;
6 Cluster the points {zi}Ki=1 in B clusters using the k-means

algorithm.;
Result: {Bi}Bi=1

Algorithm 1: Spectal Clustering

The proposed clustering method is described in Algorithm 1.
The main idea of this technique is to consider the clustering over the
data {zi}Ki=1 extracted from the Laplacian matrix instead of consid-
ering {hi}Ki=1. The vectors {zi}Ki=1 are the rows of matrix V which
is formed by theB eigenvectors associated to the lowest eigenvalues
of matrix L.

The clustering process is done via the k-means algorithm as-
suming the Euclidean distance between {zi}Ki=1. This is, lij =
‖zi − zj‖2. The k-means algorithm randomly selects k (B) UTs
and constructs groups based on their minimum Euclidean distance.
At each iteration, the vector that represents the group is updated and
the process ends where there are no changes in groups memberships.

Note that apart from the channel matrix, H, the algorithm re-
quires the number of clusters to be obtainedB. This is a crucial elec-
tion in general clustering algorithms. Heuristic approaches based on
the eigenvalues of the Laplacian are discussed in [14]. In the numer-
ical evaluation of the method, we consider different values of B and
we observe its relation with the resulting sum-rate.

It is important to remark that the value of ν also plays a crucial
role in the clustering process. With a low value of ν, the similarity
matrix will present no connectivity between nodes and; alternatively,
if ν becomes very high, full connectivity between nodes will appear.
In this context, a carefully election of ν based on the dij values.

4. SIMULATION RESULTS

We now demonstrate the benefits of our proposed method in multi-
beam satellite systems. For our simulations, we adopt the geosta-
tionary satellite channel model described in Section II and the pa-
rameters depicted in Table 1. The values of akn have been obtained
from a simulated satellite array fed reflector with N = 245 feed
elements.

We compute the average sum-rate (i.e. the objective function of
the optimization problem in (10)) over 1000 Monte Carlo runs for
the values of K = 490, 735, 980 and 1225. In order to compute the
similarity matrix, we tune ν to be 105.4.



P 55 Watts
BW 500 MHz

Frequency band 20 GHz (Ka band)
Number of feeds 245

GR 42.2 dBi
Output back-off 5 dB

Table 1: System Parameters
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Fig. 1: Sum-rate analysis for different B values and K = 490, 735

Figures 1 and 2 show the sum-rate versus different B values for
the proposed user scheduling technique based on spectral clustering
and the k-means algorithm considering the UTs channel vectors. As
it can be observed, in all cases our technique yields to sum-rate val-
ues higher than the k-means benchmark.

Remarkably, the largest attainable rates are obtained for B <
N = 245, which differs to the current deployments where it is
assumed a single-feed-per-beam/group multibeam architecture. In
both k-means and the proposed spectral clustering, the efficient
value of B is within the range of 211 ≤ B ≤ 221.

Table 2 summarizes the sum-rate results and it compares them
with the current precoding techniques in multibeam satellite sys-
tems. In particular, we consider the benchmark case where the GW
can only group users that geographically belong to the same beam.
As it can be observed, in the context of multibeam satellite systems
employing precoding, substantially higher sum-rates are obtained if
the GW is able to group users belonging to different geographical
beams.

The largerK is assumed, the lower sum-rate values are obtained
as the precoding gain becomes lower whenever the number of served
users is increased. In addition, note that spectral clustering behaves
better than the k-means approach. The larger K is considered, the
larger gains between spectral and k-means are obtained. Intuitively,
spectral clustering is able to properly collapse the critical features of
the UTs in {zi}Ki=1 rather than in {hi}Ki=1. This effect is emphasized
when large values of K are considered.

We now demonstrate our method for dealing with different traf-
fic classes. Considering that the UTs can belong to M = 2 and 3
traffic types so that UT from different classes cannot be clustered
in the same group. Table 3 summarizes the sum-rate results. It can
be observed that again our proposed method offers a large sum-rate
value compared to the pure k-means case apart from teh case where
K = 490 and M = 3 where both schemes yield to similar sum-
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Fig. 2: Sum-rate analysis for different B values and K = 980, 1225

K Benchmark k-means Spectral clustering
490 224 748 1033
735 146 461 817
980 125 287 712
1225 102 188 666

Table 2: Sum-rate comparison in Gbit/s

Setting/Technique k-means Spectral clustering
K = 490, M = 3 886 887
K = 735, M = 2 709 861
K = 735, M = 3 645 709

Table 3: Sum-rate comparison in Gbit/s for different traffic types.

rates. Remarkably, the sum-rate values when considering the differ-
ent UTs classes do not decrease severely compared to the case where
no classes are considered.

5. CONCLUSIONS

In this work, we considered the user scheduling problem for multi-
beam satellite systems with a cloud-based network manager sys-
tem. We suggested an approach serving all K users in groups which
can be formed by UTs belonging to different geographical beams.
We examined two clustering techniques; namely, k-means and a
technique based on spectral clustering. We demonstrated that our
grouping based on spectral clustering outperforms the original k-
means scheme. Moreover, our simulations revealed that transmitting
B < N simultaneous frames attains a larger sum-rate compared to
current approaches that assumeB = N . In addition, we consider the
case where the UTs have different traffic needs and; thus, the sched-
uler can only group users with the same traffic demands. Therefore,
we conclude that our proposed scheme is an efficient and flexible
strategy for multibeam satellite systems using precoding.
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