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Abstract—In this paper, we propose a model-driven deep
learning network for multiple-input multiple-output (MIMO)
detection. The structure of the network is specially designed
by unfolding the iterative algorithm. Some trainable parameters
are optimized through deep learning techniques to improve the
detection performance. Since the number of trainable variables
of the network is equal to that of the layers, the network can be
easily trained within a very short time. Furthermore, the network
can handle time-varying channel with only a single training.
Numerical results show that the proposed approach can improve
the performance of the iterative algorithm significantly under
Rayleigh and correlated MIMO channels.

Index Terms—Deep learning, Model-driven, MIMO detection,
Iterative algorithm, Neural network

I. INTRODUCTION

Multiple-Input Multiple-Output (MIMO) system has be-
come mainstream technology in many modern wireless com-
munication standards, as it can increase the spectral efficiency
and link reliability [1]. Efficient MIMO detection algorithms in
terms of performance and complexity play important roles in
receiver design, and have arouse a series of research [2]–[4].
Maximum likelihood (ML) detection algorithm can achieve
the optimal performance. However, it requires an exhaustive
search, and its complexity increases exponentially with the
number of decision variables, which prevents its deployment
in practical systems. In order to reduce the complexity, sphere
decoding has been proposed [2] by limiting the search space.
The performance of sphere decoding is quite close to that
of ML detector, but it still requires high complexity as
the search space cannot be set too small. Some suboptimal
linear detectors, such as zero-forcing (ZF) and minimum
mean-squared error (MMSE) detectors, are proposed. But
they require relatively low complexity are far from optimal
performance.

Recently, iterative detectors based on approximate message
passing (AMP) [5] and expectation propagation (EP) [6] have
been proposed for MIMO detection. The AMP-based detector
[3] is simple and easy to be implemented in practice. It
performs well when the elements of the MIMO channel matrix
are with zero mean, independent identically distributed (i.i.d.)
sub-Gaussian. The EP-based detector [4] can achieve Bayes-
optimal performance when the channel matrix is unitarily

invariant, but it is with higher complexity than the AMP-based
detector.

Owing to strong learning ability from data, deep learning
has been recently introduced to wireless physical layer [7],
such as millimeter wave channel estimation [8], channel state
information (CSI) feedback [9], and data detection [10]–[12]
, and achieved excellent performance. In particular, the detec-
tion network (DetNet) in [11] unfolds the iterations of a pro-
jected gradient descent algorithm. The network architecture is
designed from the iterative algorithm with trainable variables.
The learning uses the result from the existing algorithm as an
initial starting point and optimizes the variables based on back-
propagation algorithms. Similar model-driven deep learning
viewpoint has been successfully applied to image reconstruc-
tion [13] and sparse signal recovery [14], [15] recently, and
achieves better performance than iterative algorithms.

This paper develops a model-driven deep learning network
for MIMO detection. The structure of this network is ob-
tained by adding some adjustable parameters to the existed
iterative detectors and the performance can be improved by
deep learning. Our network uses different linear estimators
from [15] and more trainable parameters, which renders the
network more flexible. Different from these works in [14],
[16], which are only designed for a fixed channel, our network
can perform MIMO detection under time-varying channels.
Since few adjustable parameters are required to be optimized,
the network can be easily trained within a very short time.
Furthermore, this network is very easy to achieve soft decision,
which is more suitable for modern wireless communications
system. The network is named OAMP-Net as it incorporates
deep learning into the orthogonal AMP (OAMP) algorithm.
The simulation results show that the OAMP-Net outperforms
the OAMP algorithm significantly by learning the optimal
parameters from a large number of data.

Notations—For any matrix A, AT and tr(A) denote the
transpose and the trace of A, respectively. In addition, I is
the identity matrix, 0 is the zero matrix, and 1n is the n-
dimensional all-ones vector. A proper complex Gaussian with
mean µ and covariance Ω can be described by the probability
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density function:

NC(z;µ,Ω) =
1

det(πΩ)
e−(z−µ)HΩ−1(z−µ),

and for a real Gaussian distribution

N (x;µ, σ2) ,
1√

2πσ2
e−

(x−µ)2

2σ2 .

The remaining part of this paper is organized as follows.
Section II formulates the MIMO detection problem and intro-
duces the OAMP algorithm. Next, the OAMP-Net are provided
in Section III. Then, Numerical results are presented in Section
IV. Finally, Section V concludes the paper.

II. PROBLEM DESCRIPTION AND ALGORITHM REVIEW

In this section, we consider an MIMO system with N
transmitting and M receiving antennas. We formulate the
MIMO detection problem by adopting the Bayesian inference.
We also review the OAMP algorithm to apply it in the MIMO
detection.

A. MIMO detection
The transmitted symbol vector x̄ ∈ CM×1, each element

drawn from the P -QAM constellation, is transmitted over a
Rayleigh fading channel H̄, in which each element drawn from
i.i.d. complex Gaussian distribution. The received signal ȳ ∈
CN×1 is given by

ȳ = H̄x̄ + n̄, (1)

where n̄ ∼ NC(0, σ2IM ) is the additive white Gaussian noise
(AWGN).

As deep learning is always performed in the real-valued
domain, we consider an equivalent real-valued representation
which is obtained by considering the real R(·) and imag-
inary I(·) parts separately. Denote x = [R(x̄)T , I(x̄)T ]T ,
y = [R(ȳ)T , I(ȳ)T ]T , n = [R(n̄)T , I(n̄)T ]T and

H =

[
R(H̄) −I(H̄)
I(H̄) R(H̄)

]
. (2)

The system model can be rewritten in terms of real vectors
and matrix as follows:

y = Hx + n. (3)

We adopt the Bayesian inference to recover the signals x
from the received signal y. Based on the Bayes theorem, the
posterior probability is given by

P(x|y,H) =
P(y|x,H)P(x)

P(y)
=

P(y|x,H)P(x)∫
P(y|x,H)P(x)dx

. (4)

Given the posterior probability P(x|y,H), the Bayesian
MMSE estimate is obtained by

x̂ =

∫
xP(x|y,H)dx. (5)

However, the Bayesian MMSE estimator is not computa-
tionally tractable because the marginal posterior probability in
(5) involves a high-dimensional integral. In recent study [17],
the OAMP algorithm has been proposed as an iterative method
to recover signal x. We will show the OAMP-based detector
in the following subsection.

B. OAMP-based detector

An OAMP algorithm has been proposed to solve sparse
linear inverse problems in compressed sensing [17]. The prin-
ciple of the algorithm is to decouple the posterior probability
P(x|y,H) into a series of P(xi|y,H)(i = 1, 2, . . . , 2N) by
an iterative way. The OAMP-based detector is summarized in
Algorithm 1.

Algorithm 1: OAMP algorithm for MIMO detection
Input: Received signal y, channel matrix H, noise level
σ2.
Output: Recovered signal xt.
Initialize: τt ← 1, xt ← 0

rt = x̂t + Wt(y −Hx̂t), (6)

x̂t+1 = E {x|rt, τt} , (7)

v2t =
‖y −Hx̂t‖22 −Mσ2

tr(HTH)
, (8)

τ2t =
1

2N
tr(BtB

T
t )v2t +

1

4N
tr(WtW

T
t )σ2. (9)

In Algorithm 1, the matrix Wt could be the transpose of
H, the pseudo inverse of H, or the linear MMSE matrix. But
the optimal one [17] is given by

Wt =
2N

tr(ŴtH)
Ŵt, (10)

where Ŵt is the linear MMSE matrix,

Ŵt = v2t H
T (v2t HHT +

σ2

2
I)−1. (11)

The matrix Wt is called de-correlated if tr(I−WtH) = 0. In
this case, the entries of ht = rt−x are uncorrelated with those
of x and mutually uncorrelated with zero-mean and identical
variances. The matrix Bt in the algorithm is given by Bt =
I−WtH.

The posterior mean estimator in (7) is with respect to the
equivalent AWGN channel

rt = x + wt, (12)

where wt ∼ N (x; 0, τ2t I). It has been indicated in [17] that the
posterior mean estimator in (7), which is usually non-linear
and the linear estimator in (10) are statistically orthogonal
when the sensing matrix is unitarily invariant. The OAMP
algorithm is Bayes-optimal, as it decouples the linear mixing
model (3) into N parallel AWGN channel in (12) and uses (7)
to obtain the Bayesian MMSE estimate of x.

From (7) and (12), we observe that rt and τ2t are the prior
mean and variance that influence the accuracy of x̂t+1. We
will use a deep learning approach to provide appropriate step
size to update rt and τ2t and learn optimal variables from a
large number of data.
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Fig. 1. The structure of the OAMP-Net network.

III. OAMP-NET

In this section, we present the OAMP-Net for MIMO
detection. After discussing the function of each module and
trainable variables, we analyze the computation complexity of
the network.

A. OAMP-Net architecture

The structure of the OAMP-Net is illustrated in Fig. 1,
which is a revised version of algorithm by adding learnable
scalar variables γt and θt. The network consists of T cascade
layers, and each layer has the same structure that contains the
MMSE denoiser, error variance τ2t , and tied weights. The input
of the OAMP-Net are the received signal y and the initial value
x̂1 = 0, and the output is the final estimate x̂T+1 of signal x.

For the t-th layer of the OAMP-Net, the input are the
estimated signal x̂t from the (t− 1)-th layer and the received
signal y, and data detection is performed as follows

rt = x̂t + γtWt(y −Hx̂t), (13)

x̂t+1 = E {x|rt, τt} , (14)

v2t =
‖y −Hx̂t‖22 −Mσ2

tr(HTH)
, (15)

τ2t =
1

2N
tr(CtC

T
t )v2t +

θ2t σ
2

4N
tr(WtW

T
t ), (16)

where the error variance τ2t contains the contributions of error
variance v2t and trainable variable θt, and Ct = I−θtWtH. rt
can be considered as the noisy observation from the equivalent
AWGN channel (12). The scalar variables (γt, θt) are learnable
variables that are optimized in the training process, and v2t and
τ2t are the error variances that describe the true error variances

v̄2t =
E[‖qt‖22]

2N
, τ̄2t =

E[‖ht‖22]

2N
, (17)

where qt = x̂t−x. In OAMP-Net, we consider the matrix Wt

as the optimal linear MMSE matrix in (10). The E {x|rt, τt}
is the MMSE denoiser, which is chosen according to the
prior distribution of the original signal x. If the transmitted
symbol x is from the real alphabet set S = {s1, s2, . . . , s√P },
corresponding posterior mean estimator for each element of x̂
is given by

E {xi|ri, τt} =

∑
si
siN (si; ri, τ

2
t )p(si)∑

si
N (si; ri, τ2t )p(si)

. (18)

The only difference between the OAMP algorithm and
OAMP-Net is the learnable variables (γt, θt), which play
important roles in the network. OAMP algorithm assumes that
γt = θt = 1 in order to ensure the orthogonality between the
qt and ht. Nevertheless, the orthogonality is guaranteed only
when H is unitarily-invariant matrix. Because the function of
learnable variables (γt, θt) in (13) is providing appropriate
step sizes for the update of mean and variance in the MMSE
denoiser, we are intended to obtain optimal variables (γt, θt)
by deep learning. Furthermore, when the matrix Wt is the
pseudo inverse of H and γt = θt , the OAMP-Net is simplified
to TISTA network [15].

These error variance estimators in (15) and (16) play
important roles in providing appropriate variance estimates
required for the MMSE denoiser. We only provide the final
expressions for the error variances because of space limitation.
They can be derived by following two assumptions on the
residual errors vector in [17]. The first assumption is that ht

consists of i.i.d. zero-mean Gaussian entries independent of
x. Based on this assumption, each entry of the output from
the linear estimator (13) can be regarded as an observation
obtained from a virtual AWGN channel with the equivalent
noise variance τ2t . Another assumption is that qt consists of
zero-mean i.i.d. entries independent of H and n, which means
that

E[(x̂t − x)THTn] = 0. (19)

If the calculation result in (15) is negative, we substitute v2t
by max(v2t , ε) for a small positive constant ε.

B. Computation complexity

The computation complexity required for the OAMP-Net
per iteration is O(N3), similar to that of the OAMP algorithm.
The computation complexity is dominant by the matrix inverse
in (10) in each iteration.

From the Fig.1, the total number of trainable variables is
equal to 2T , since each layer of the OAMP-Net contains only
two adjustable variables (γt, θt). Furthermore, the number of
trainable variables of the OAMP-Net is independent of the
number of antennas N and M , and only determined by the
number of layers T . This is an advantageous feature for large-
scale problems, such as high-dimensional MIMO detection.
With only few trainable variables, the stability and speed of
convergence can be improved in the training process.

IV. SIMULATION RESULTS

In this section, we provide simulated results of the OAMP-
Net for MIMO detection. The signal-to-noise (SNR) of the
system, defined as

SNR =
E‖Hx‖22
E‖n‖22

, (20)

is used to measure the noise level.



A. Implementation details

In our simulation, the OAMP-Net is implemented in Ten-
sorflow. The number of layers T is set to 10. The training data
consists of a number of randomly generated pairs (x,y). The
data x is generated from QPSK modulation symbol. We train
the network with 10, 000 epochs. At each epoch, the training
and validation sets contain 5, 000, 1, 000 samples, respectively.
For test sets, we generate the test data to test the network
until the number of bit errors exceed 1, 000. The OAMP-Net
is trained using the stochastic gradient descent method and
Adam optimizer. The learning rate is set to be 0.001. The
batch size is set to 1000. Furthermore, we set ε = 10−9 to
avoid stability problem. In our experiment settings, we choose
the L2 loss as the cost function.

B. Rayleigh MIMO channel

In this section, we consider a point-to-point MIMO sys-
tem with M transmitting and N receiving antennas, where
M = N . The channel H is time-varying and each element
drawn from H ∼ NC(0, 1/M), i.e., each component of the
channel matrix H obeys a zero-mean Gaussian distribution
with variance 1/M .

Fig. 2 compares the average bit-error rate (BER) perfor-
mance of the OAMP algorithm, the LMMSE-TISTA network
and OAMP-Net [6]. The LMMSE-TISTA network is a variant
of TISTA network [15] by replaceing the pseudo inverse
matrix with the linear MMSE estimator. From the figure, the
OAMP-Net outperforms the OAMP algorithm in all setting,
which demonstrates the deep learning can improve the OAMP-
based detector. The reason for the performance improvement
is that the fixed parameters (γt, θt) in the OAMP algorithm
is trainable in the OAMP-Net in each layer, which renders
the network more flexible. Specifically, if we target the SNR
for BER=10−3, BER performance improves about 1.37 dB by
deep learning when M = N = 4. By contrast, the gains are
approximately 2.97 dB and 0.82 dB when M = N = 8 and
M = N = 64, respectively.

C. Correlated MIMO channel

We consider the correlated MIMO channel in this section,
which can be described by the Kronecker model,

H = R
1/2
R AR

1/2
T , (21)

where RR and RT are the spatial correlation matrix at the
receiver and the transmitter, which are generated according to
the exponential correlation model [18] with correlation coef-
ficient ρ = 0.5, and A is the Rayleigh fading channel matrix.
We consider the small size MIMO system with M = N = 4.

Fig. 3 illustrates the BER performance of the OAMP-
Net and the OAMP algorithm under Rayleigh and correlated
MIMO channels. In that case, all algorithms have performance
degradation compared with the independent Rayleigh chan-
nel. For example, approximately 6.34 dB and 6.05 dB loss
are caused due to the channel correlation for the OAMP-
Net and OAMP algorithm, respectively, when we target the
SNR for BER=10−2. Furthermore, the OAMP-Net can obtain
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Fig. 2. BER versus SNR for OAMP algorithm and OAMP-Net
with Rayleigh MIMO channel.
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Fig. 3. BER versus SNR for OAMP algorithm and OAMP-Net
with correlated MIMO channel.

more performance gain even if the channel has correlation.
Compared with 1.86 dB gain obtained in the independent
Rayleigh channel, the OAMP-Net can obtain more than 2.15
dB performance improvement under the correlated MIMO
channel.

V. CONCLUSION

We have developed a novel model-driven deep learning
network for MIMO detection. This network inherits the superi-
ority of the Bayes-optimal signal recovery algorithm and deep
learning techniques, and thus presents excellent performance.
The network is easy and fast to train because only few ad-
justable parameters are required to be optimized. Furthermore,
this network can handle the time-varying channel. Simulation
results demonstrate that the network outperforms the OAMP
algorithm significantly under the independent Rayleigh and
correlated MIMO channel, which shows deep learning can im-
prove the iterative algorithm by optimizing some parameters.
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