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ADAPTIVE CSP FOR USER INDEPENDENCE
IN MI-BCI PARADIGM FOR UPPER LIMB

STROKE REHABILITATION
Ana P. Costa, Jakob S. Møller, Helle K. Iversen and Sadasivan Puthusserypady

Abstract—A 3-class motor imagery (MI) Brain-Computer
Interface (BCI) system, that implements subject adaptation
with short to non-existing calibration sessions is proposed. The
proposed adaptive common spatial patterns (ACSP) algorithm
was tested on two datasets (an open source data set (4-class MI),
and an in-house data set (3-class MI)). Results show that when
long calibration data is available, the ACSP performs only slightly
better (4%) than the CSP, but for short calibration sessions, the
ACSP significantly improved the performance (up to 4-fold). An
investigation into class separability of the in-house data set was
performed and was concluded that the “Pinch”movement was
more easily discriminated than “Grasp” and “Elbow Flexion”.
The proposed paradigm proved feasible and provided insights to
help choose the motor tasks leading to best results in potential
real-life applications. The ACSP enabled a successful semi user
independent scenario and showed potential to be a tool towards
an improved, personalized stroke rehabilitation protocol.

Index Terms—Brain-computer interface (BCI), Stroke rehabil-
itation, Sensorimotor rhythms (SMR), Adaptive Common Spatial
Patterns (ACSP)

I. INTRODUCTION

Brain-Computer Interface (BCI) technology allows for brain
signals to be recorded and translated into output commands,
which can be used in various applications. In electroencephalo-
gram (EEG) setups, sensorimotor rhythms (SMRs) are some
of the signals of interest which can be measured. SMRs are
tuned by motor intentions, such as motor imagery (MI), and
are characterized by a modulation of the amplitudes of the
measured electrical potentials.

One area where MI-BCI systems have real-world applica-
tions is in neuro-rehabilitation, namely in stroke cases. Current
stroke rehabilitation therapies present some limitations [1]–[3]
and different enhancing strategies are emerging, of which BCIs
are a promising one [4]. Rehabilitative BCIs aim at exploiting
brain plasticity to improve motor recovery in patients. MI is
used in most studies for this purpose, as it is hypothesized
that it promotes neuroplasticity-related repair of the damaged
brain areas [5]. The basis of MI-BCI systems for stroke
rehabilitation has been laid by studies reporting an increase
in motor cortex excitability as well as topographical changes
after training [6]. Preliminary results such as [7], [8] indicate
the feasibility of incorporating BCI in post-stroke hand reha-
bilitation. Nevertheless, more large, randomized clinical trials
are necessary to confirm the advantages and reliability of the
method.

Another issue to consider, is that individual stroke char-
acteristics lead to different consequent neuroplastic changes

during recovery, which indicates that an ideal system should
be tailored for each patient [9]. This is related to one of
the disadvantages of many BCI systems, which is subject-
dependence: systems require data from a long training session
for each subject, where no feedback is given to the user. This
is impractical and particularly undesirable in the context of
stroke rehabilitation, where it is important that the patients
start receiving feedback as soon as possible.

A. Adaptive Spatial Filters

A commonly used strategy for source localization in MI-
BCI systems is the common spatial pattern (CSP) filters.
However, it presents some setbacks, namely that (i) it requires
large data to avoid overfitting and generate robust projecting
vectors, while being quite sensitive to outliers and (ii) it is
typically subject-dependent and has no ability to adapt to
the non-stationarities that are characteristic of EEG signals
[10]. These characteristics imply that long subject-dependent
calibration sessions are needed for computing the filter coef-
ficients. Therefore, variations of the algorithm are needed to
solve these problems and improve its performance. There are
two ways to incorporate new data in order to handle changes
that occur between distinct EEGs: block-wise [10], [11] and
sample-wise. Here, a Recursive Least Squares (RLS) approach
was implemented for sample-wise adaptation of the CSP filter,
similar to the method used by [12] for the axDAWN filter.

II. MATERIALS AND METHODS

A. Signal Processing

1) The CSP Filter: Let Xj ∈ RCn×N be the jth EEG
trial, where N is the number of samples/trial and Cn is
the number of channels. Then, the filtered trial Zj,CSP ∈
RCn×N = W Xj , where W ∈ RCn×Cn is the matrix
parameterizing the signal decomposition. Here, we denote
each column (wi,i=1,2,...,Cn ) of W as a spatial filter, and
each column of W−1 as a spatial pattern. The normalized
covariance matrix for class k is defined as:

Ck =
1

Tn

Tn∑
j=1

Xj(k)X
T
j(k)

trace{Xj(k)X
T
j(k)}

, (1)

where Tn is the number of trials, Xj(k) is the jth trial
belonging to class k ∈ [1,K] and K = 2 for the binary
classification case, which we will use, for simplicity, to explain
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the algorithm. In [13], the CSP is described with a discrimina-
tive view, which was useful to derive the ACSP. Considering
Cd = C1 − C2 and Cc = C1 + C2 as the discriminative
activity (Cd), i.e. the band-power modulation between the two
classes, and the common activity (Cc), the solution to the
following maximization problem can be achieved by solving
the GED problem:

argmax
W

WTCdW

WTCcW
. (2)

A One-Versus-All (OVA) multiclass version of the CSP was
used so that the algorithm can be used to distinguish between
more than two classes [14]. Finally, to get a system that is
trainable on a small amount of data, the CSP was regularized
with Diagonal Loading (DLCSP algorithm) [15].

2) Adaptive Spatial Filter (ACSP): A sample-wise adaptive
approach to the CSP algorithm based on the RLS method for
GED is introduced here [16]. A training set is used to initialize
the CSP matrix. Expanding Eq.(2), it can be deducted that:

argmax
W

WTCdW

WTCcW
= argmax

W

WTC1W

WTCcW
. (3)

Both C1 and Cc represent full normalized covariance
matrices of stationary signals with zero mean. Rearranging
the solution to the GED problem as in [16], we obtain the
basis for the iterative algorithm:

W =
WTCcW

WTC1W
C−1c C1W. (4)

A temporal discrete variable n is now introduced and an
estimate of the primal eigenvector w1(n) is computed as:

ŵ1(n) =
wT

1 (n
′)Cc(n)w1(n

′)

wT
1 (n

′)C1(n)w1(n′)
C1

c(n)
−1C1

1(n)w1(n
′) (5)

where n′ = n− 1. Some comments about Eq.(5):

1) Iterative computation of class covariance matrices: Here,
we have not prioritized an asynchronous, self-paced system
which results in an advantage for the development of the
ACSP, specifically in this step, because we always know the
true label of each sample x(n). Therefore, we can iteratively
update the normalized C1(n) only when x(n) ∈ class1, while
Cc(n) is always updated:

C1(n) = C1(n
′) +

x1(n)x
T
1 (n)

trace{x1(n)xT
1 (n)}

and

Cc(n) = Cc(n
′) +

x(n)xT (n)

trace{x(n)xT (n)}
,

(6)

where x(n) is any data sample taken at time n and x1(n)
represents the data belonging only to class 1.

2) Iterative computation of the inverse of Cc(n): This step
in Eq.(5) would imply a very high computational effort which
is not feasible for an online application. Therefore, as in [12],
[16], the Sherman-Morrison-Woodbury formula is used for the

iterative update of C−1c (n) [17]:

C−1c (n) = C−1c (n′)− C−1c (n′)x(n)xT (n)C−1c (n′)

1 + xT (n)C−1c (n′)x(n)
. (7)

It is advantageous to use Eq.(7) since only C−1c (n′) needs
to be stored and only simple matrix operations are required
for each iteration. Finally, a deflation technique [16] is used
to iteratively estimate the remaining eigenvectors (wi’s).

Ci
1(n) =

[
I−

Ci−1
1 (n)wi−1(n)w

T
i−1(n)

wT
i−1(n)C

i−1
1 (n)wi−1(n)

]
Ci−1

1 (n),

Ci
c(n) = Ci−1

1 (n).

(8)

To compute w′is, Eq.(5) is used with the respective Ci
1(n)

and Ci
c(n) computed as in Eq.(8). As in [12], the w′is are

normalized for numerical reasons.

wi(n) =
ŵi(n)

[ŵT
i (n)C

i
c(n)ŵi(n)]

1
2

. (9)

After all the spatial filters of trial n have been computed,
the first and last m vectors are stored to classify trial n+ 1.

3) Classification Algorithm: Discriminant Analysis (DA)
was the chosen method to perform the classification, due to its
low computational complexity and comparable performances
to more complex approaches [12], [18], [19]. To overcome
some of the limitations of DA, Friedman’s regularized version
of DA [20] (RDA) was implemented [21].

B. Dataset Description and Experimental Design
1) Dataset 1: 4-class MI of different body parts: This

dataset belongs to the BCI competition IV [22] (dataset 2a)
and comprises of the EEG recordings on 9 subjects of four
classes of MI from distinct body parts (left and right hand,
feet and tongue). For each subject, two sessions of 288 trials
were recorded, namely a calibration session without feedback
and an evaluation session with feedback.

2) Dataset 2: 3-class MI of single upper limb: This dataset
was recorded in our laboratory and was obtained in two differ-
ent days: a short calibration session recorded without feedback
and a longer session with feedback. The three motor tasks (Fig.
1) were performed with the right arm. A goal-oriented visual
interface was implemented, as it has been proven to improve
classification results [18]. For the calibration day, each session
of MI consisted of 6 runs of 18 trials. Each trial started with a
warning sound and a fixation cross, for the subject to mentally
prepare for the task (2 seconds). Then, it was replaced by a
visual cue indicating which of the three motor tasks the subject
should imagine (4 seconds). Finally, the screen became blank
and the subject could rest (2 seconds). In the online session,
a vertical green bar positioned on the right side of each cue
displayed real-time feedback (the bar grew from bottom to
top, one fragment at a time for correct classifications). The
user started receiving feedback after 1 second.

The recordings were done on 14 healthy subjects aged
between 20-31. The subjects were sitting comfortably in a
chair placed approximately one meter from the screen display-
ing the visual interface. During the experiment, the subjects
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(a) (b) (c)

Fig. 1. Visual interface of the BCI system. (a) Palmar grasp (Class 1) -
engaging all fingers and palm to hold an imaginary object between them. (b)
Pinch (Class 2) - collecting the fingertips of the thumb, index and middle
finger. (c) Elbow Flexion (Class 3) - flexing the elbow while maintaining
the wrist aligned with the arm, with the thumb directed upwards/towards the
subject as the forearm is lifted.

placed their right hand comfortably on the table in front
of them and kept all movements to a minimum. 16 active
Ag/AgCl electrodes were used spanning the motor cortex
area. All procedures involving human subjects were performed
in accordance to the ethical standards of the 1964 Helsinki
declaration and of the national research committee.

C. Data Analysis Setup

Before analysis, the data was band-pass (7-30 Hz) filtered
using a 4th order zero-phase Butterworth filter. Two distinct
strategies were used to asses the performance of the ACSP
filter on dataset 1: (1) User dependent strategy: one CSP filter
and RDA classifier were trained for each subject using all the
data from the calibration session and tested on the evaluation
data, and (2) Semi user independent strategy: shorter calibra-
tion sessions were used to initialize the feature extraction and
classification parameters. This allows for potential customiza-
tion of the BCI system for the individual needs of each patient.
After testing the ACSP on dataset 1, it was used on dataset
2, where the training size was short and determined based on
the previous results.

III. RESULTS AND DISCUSSION

A. Dataset 1: 4-class MI of different body parts

1) User dependent strategy: An investigation of the con-
vergence of the adaptive filter was made prior to the analysis
of the classification performances. In Table I, the classification
performances of the CSP and ACSP in the unseen evaluation
data are displayed and compared to the results of the winning
algorithm (filter bank CSP (FBCSP)) of the BCI competition
[14], with the best performance for each subject highlighted
in bold. While a one-sided paired t-test indicated that the
difference between the performance of the FBCSP and that
of the ACSP algorithm was non-significant (p-value of 0.141
at a confidence level of α = 0.05), the first still outperformed
the latter in all subjects except three. A similar paired t-
test revealed that there is no significant difference between
the CSP and the ACSP (p = 0.294). These results indicate
that there is little advantage in using the ACSP algorithm
when sufficient training data is available. Finally, the scalp
topographies were analyzed and it was concluded that the

ACSP lead to physiologically significant patterns similar to
the ones obtained by the regular CSP algorithm.

TABLE I
CLASSIFICATION PERFORMANCE (AS MAXIMUM KAPPA VALUE) OF

ACSP, CSP AND THE WINNER (FBCSP) OF THE BCI COMPETITION IV
IN THE UNSEEN EVALUATION DATA OF DATASET 1.

Subjects CSP ACSP FBCSP [14]
1 0.677 0.683 0.676
2 0.363 0.231 0.417
3 0.602 0.677 0.745
4 0.465 0.377 0.481
5 0.246 0.330 0.398
6 0.243 0.366 0.273
7 0.612 0.568 0.773
8 0.749 0.704 0.755
9 0.565 0.771 0.606

Mean 0.502 0.523 0.569
Median 0.565 0.568 0.606

2) Semi user independent strategy: In this approach, the
number of trials per class was made to vary from 15 to 65 in
steps of 15 and the resulting kappa values corresponding to
the classification performances on the evaluation dataset were
calculated for each case. The trials chosen for each class were
taken randomly. The result is presented in Fig. 2. It is clear

20 30 40 50 60 70

Size of training session (no.trials per class)

0.25

0.3

0.35

0.4

0.45

0.5

0.55
K

a
p
p
a
 v

a
lu

e

Adaptive CSP

fixed CSP

Fig. 2. Evolution of classification performance on evaluation dataset for
different sizes on the training session (online simulation). Samples of growing
size from the calibration dataset were used to train the CSP, for each
subject, and evaluated on the corresponding evaluation dataset, using the same
procedure as in section III-A1. The average maximum kappa value of all
subjects is used as evaluation performance.

that the performance of the CSP decreases significantly with
smaller training sizes. The ACSP, however, results in kappa
values similar to the final one already from a very small set.
While the difference in performance kappa between algorithms
for a training size of 72 is only 0.021, for a training size of 35
the difference is 0.115. This represents a 1.28-fold increase.
Based on this analysis, the training sizes for dataset 2 were
chosen to be 36.

B. Dataset 2: 3-class MI of single upper limb

A similar convergence analysis was made for dataset 2
and it indicated convergence around 17 trials per class. In
Table II, the classification performances obtained during the
online feedback session in terms of average maximum kappa
values for the MI are summarized. We conclude that the

422



TABLE II
PERFORMANCES FROM THE MI ONLINE SESSION OF DATASET 2 WITH REAL TIME FEEDBACK GIVEN AS AVERAGE MAXIMUM KAPPA VALUE.

Subjects 1 2 4 5 6 7 8 9 10 11 12 13 14 Mean Median

DLCSP
Fixed 0.10 0.08 0.05 0.19 0.05 0.10 0.08 0.05 0.21 0.05 0.30 0.13 0.08 0.11 0.08

Adaptive 0.36 0.49 0.52 0.46 0.49 0.65 0.50 0.71 0.651 0.48 0.33 0.33 0.22 0.47 0.49

ACSP resulted in a 4-fold increase in performance of the
DLCSP, which is a significant result (p = 5 × 10−5). The
performance of the ACSP is comparable with the literature
for similar problems [18], [23]. Finally, an investigation into
class separability was made, by extracting and combining the
binary confusion matrices for each class (Table III). The results
suggest that class 2 (Pinch) was the easiest to discriminate, and
class 3 (Elbow Flexion) the hardest.

TABLE III
CLASSIFICATION PERFORMANCES FOR PAIRWISE CLASS DISCRIMINATION,

FOR THE ONLINE FEEDBACK SESSION.

Class combination 1 vs 2 1 vs 3 2 vs 3
Kappa value 0.632 0.516 0.579

IV. CONCLUSION

The feasibility of a 3-class MI-BCI paradigm which could
be employed for enhancement to the current stroke reha-
bilitation therapies has been studied. The RLS-based ACSP
seems to overcome one of the main disadvantages of the CSP
filter, allowing for personalized training programs based on
short calibration sessions. The ACSP provided only slightly
better results than the CSP when there was plenty training
data, but performed up to 4 times better when not. The
classification performances are lower in the second dataset,
confirming that it is a harder task to distinguish between
motor tasks performed by the same limb. An investigation on
the separability of the chosen motor tasks indicates that the
“Pinch” movement was the easiest to discriminate, which can
suggest a direction for class choice in future similar studies.
The system here implemented could be a step towards a
potential application of MI-BCI technology for enhancement
of current post-stroke neuro-rehabilitation. Overall, there is
still room for improvement towards practical applicability,
such as channel reduction and development of an unsupervised
version of the algorithm. Large and randomized clinical trials
are also necessary to confirm the advantages and reliability of
the method.
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