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Abstract—In many applications in compressed sensing, the
measurement matrix is a Fourier matrix, i.e., it measures the
Fourier transform of the underlying signal at some specified
‘base’ frequencies {ui}Mi=1, where M is the number of mea-
surements. However due to system calibration errors, the system
may measure the Fourier transform at frequencies {ui + δi}Mi=1

that are different from the base frequencies and where {δi}Mi=1

are unknown. Ignoring perturbations of this nature can lead to
major errors in signal recovery. In this paper, we present a simple
but effective alternating minimization algorithm to recover the
perturbations in the frequencies in situ with the signal, which we
assume is sparse or compressible in some known basis. In many
cases, the perturbations {δi}Mi=1 can be expressed in terms of a
small number of unique parameters P � M . We demonstrate
that in such cases, the method leads to excellent quality results
that are several times better than baseline algorithms (which
are based on existing off-grid methods in the recent literature
on direction of arrival (DOA) estimation, modified to suit the
computational problem in this paper). Our results are also robust
to noise in the measurement values. We also provide theoretical
results for (1) the convergence of our algorithm, and (2) the
uniqueness of its solution under some restrictions.

Index Terms—Compressed sensing, Fourier measurements,
Frequency Perturbation

I. INTRODUCTION

COMPRESSED sensing (CS) is today a very widely
researched branch of signal and image processing. Con-

sider a vector of compressive measurements y ∈ CM ,y = Φx
for signal x ∈ CN , acquired through a sensing matrix
Φ ∈ CM×N ,M < N . CS theory offers guarantees on the error
of reconstruction of x that is sparse or compressible in a given
orthonormal basis Ψ ∈ CN×N , assuming that the sensing
matrix (also called measurement matrix) Φ ∈ CM×N (and
hence the product matrix ΦΨ) obeys some properties such
as the restricted isometry (RIP) [1]. Moreover, the guarantees
apply to efficient algorithms such as basis pursuit. However the
underlying assumption is that the sensing matrix Φ is known
accurately. If Φ is known inaccurately, then signal-dependent
noise will be introduced in the system causing substantial loss
in reconstruction accuracy.
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Of particular interest in many imaging applications such as
magnetic resonance imaging (MRI), tomography or Fourier
optics [2], [3], [4], [5], is the case where the measurement
matrix is a row-subsampled version of the Fourier matrix,
where the frequencies may or may not lie on a Cartesian
grid of frequencies used in defining the Discrete Fourier
Transform (DFT). However, it is well-known that such Fourier
measurements are prone to inaccuracies in the acquisition
frequencies. This may be due to an imperfectly calibrated
sensor. In case of specific applications such as MRI, this
is due to perturbations introduced by gradient delays in the
MRI machine [6], [7], [8]. In case of computed tomography
(CT), it may be due to errors in specification of the angles of
tomographic acquisition due to geometric calibration errors in
a CT machine [5], or in the problem of tomographic under
unknown angles [9].

A. Relation to Previous Work

The problem we deal with in this paper is a special
case of the problem of ‘blind calibration’ (also termed ‘self-
calibration’) where perturbations in the sensing matrix are
estimated in situ along with the signal. Here, we expressly
deal with the case of Fourier sensing matrices with imperfectly
known frequencies. There exists a decent-sized body of earlier
literature on the general blind calibration problem (not applied
to Fourier matrices) beginning with theoretical bounds derived
in [10]. Further on, [11] analyze a structured perturbation
model of the form y = (A + B∆)x where x,∆ are the
unknown signal and diagonal matrix of perturbation values
respectively, and A,B are the fully known original sensing
matrix and perturbation matrix respectively. The theory is then
applied to direction of arrival (DOA) estimation in signal
processing. Further work in [12] uses the notion of group-
sparsity to infer the signal x and the perturbations ∆ using a
convex program based on a first order Taylor expansion of the
parametric DOA matrix. A total least squares framework that
also accounts for sparsity of the signal is explored in [13] for
a perturbation model of the form y + e = (A +E)x where
e,E are the additive errors in the measurement vector y and
measurement matrix A respectively. In [14], [15], [16],[17],
the following framework is considered: y = ∆Ax, where
∆ is a diagonal matrix containing the unknown sensor gains
which may be complex, x is the unknown sparse signal,
and A is the known sensing matrix. Both x and ∆ are
recovered together via linear least squares in [14], via the
lifting technique on a biconvex problem in [15], using a variety
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of convex optimization tools in [16], and in [17] using a non-
convex method. The problem we deal with in this paper cannot
be framed as a single (per measurement) unknown phase or
amplitude shift/gain unlike these techniques, and hence is
considerably different.

Related to (but still very different from) the aforementioned
problem of a perturbed sensing matrix, is the problem of a
perturbed or mismatched signal representation matrix Ψ which
can also cause significant errors in compressive recovery
[18]. This has been explored via alternating minimization in
[19], via a perturbed form of orthogonal matching pursuit
(OMP) in [20], and via group-sparsity in [12]. The problem
of estimating a small number of complex sinusoids with off-
the-grid frequencies from a subset of regularly spaced samples
has been explored in [21]. Note that in [18], [21], [12], [19],
the emphasis is on mismatch in the representation matrix
Ψ and not in the sensing matrix Φ - see Section III-A
for more details. The problem of additive perturbations in
both the sensing matrix as well as the representation matrix
has been analyzed in [22], using several assumptions on
both perturbations. Note that the perturbations in the Fourier
sensing matrix do not possess such an additive nature.

To the best of our knowledge, there is no previous work
on the analysis of perturbations in a Fourier measurement
matrix in a compressive sensing framework. Some attempts
have been made to account for frequency specification er-
rors in MRI, however, most of these require a separate off-
line calibration step where the perturbations are measured.
However in practice, the perturbations in frequencies may
be common to only subsets of measurements (or even vary
with each measurement), and need not be static. In cases
where the correction is made alongside the recovery step,
a large number of measurements may be required [23], as
the signal reconstruction does not deal with a compressed
sensing framework involving `q (q < 1) minimization. The
problem of perturbations in the Fourier matrix also occurs in
computed tomography (CT). This happens in an indirect way
via the Fourier slice theorem, since the 1D Fourier transform
of a parallel beam tomographic projection in some acquisition
angle α is known to be equal to a slice of the Fourier transform
of the underlying 2D image at angle α. In CT, the angles
for tomographic projection may be incorrectly known due to
geometric errors [5] or subject motion, and uncertainty in the
angle will manifest as inaccuracy of the Fourier measurements.
Especially in case of subject motion, the measurement matrix
will contain inaccuracies that cannot be pre-determined, and
must be estimated in situ along with the signal. While there
exist approaches to determine even the completely unknown
angles of projection, they require a large number of angles, and
also the knowledge of the distribution of the angles [24], [25].
Our group has presented a method [9] which does not require
this knowledge, but in [9], the angles are estimated only along
with the image moments. The image itself is estimated after
determining the angles. In contrast, in this paper, the errors in
frequency are determined along with the underlying signal.

A large body of existing work is also lacking in theoret-
ical backing. For instance [22] makes assumptions on the
properties of the perturbed measurement matrix, such as the

magnitudes of the perturbations. Some existing approaches
to handle perturbations in Ψ simplify the problem using a
Taylor approximation [12], [11], [26]. However, when such
an approach is tailored to the problem of perturbation in Φ,
it proves to be adequate only at extremely small perturbation
levels in our case, rendering the adjustment for the perturbation
to be much less effective (See Section IV).

Contributions: A method for simultaneous recovery of the
perturbations and the signal in a perturbed Fourier compressed
sensing structure is proposed in this paper. The algorithm
is verified empirically over a large range of simulated data
under noise-free and noisy cases. Further, we analyze the
convergence of the algorithm, as well as the uniqueness of the
solution to our specific computational problem under specific
but realistic assumptions about the measurement perturbations.
We also provide guarantees on the recovered signal given a lin-
earized approximation of the original objective function, and
also analyze the reconstruction error for an average sensing
matrix if the perturbations in the Fourier measurements were
ignored.

B. Organization of the Paper

This paper is organized as follows. Section II defines the
problem statement. The recovery algorithm is presented in
Section III, followed by extensive numerical results in Section
IV. The theoretical treatment is covered in Section V, followed
by a conclusion in Section VI

II. PROBLEM DEFINITION

Formally, let F ∈ CM×N be a Fourier matrix using a
known (possibly, but not necessarily on-grid) frequency set
u , {ui}Mi=1 ∈ RM , x ∈ RN be a signal that is sparse (with at
the most s non-zero values) or compressible, measured using
a perturbed Fourier matrix Ft ∈ CM×N . That is,

y = Ftx+ η, (1)

where, η is a signal-independent noise vector, Ft is a Fourier
measurement matrix at the set of unknown frequencies u+δ ,
{ui + δi}Mi=1, with ∀i, δi ∈ R, |δi| ≤ r, r ≥ 0, δ , {δi}Mi=1.
Note that we assume full knowledge of {ui}Mi=1, i.e., the base
frequencies. The problem is to recover both, the sparse signal
x, and the unknown perturbations in the frequencies, δ. This
is formalized as the following:

min
x̂,δ̂∈[−r,r]M

J(x̂, δ̂) , ‖x̂‖1 + λ‖y − F̂ (δ̂)x̂‖2 (2)

where F̂ (δ̂) is the Fourier measurement matrix at frequencies
u+ δ̂, and δ̂ denotes the estimate of δ. Note that the above
problem is a perturbed version of the so-called square-root
LASSO (SQ-LASSO), since the second term involves an `2
norm and not its square. We used the SQ-LASSO due to its
advantages over the LASSO in terms of parameter tuning, as
mentioned in [27].

Eqn. 2 presents the most general formulation of the problem.
The signal may be sparse in a non-canonical basis, say
the Discrete Wavelet transform (DWT), in which case the
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objective function in Eqn. 2 can be changed, leading to the
following problem:

min
θ̂,δ̂∈[−r,r]M

J(θ̂, δ̂) , ‖θ̂‖1 + λ‖y − F̂ (δ̂)Ψθ̂‖2, (3)

where θ = ΨTx are the wavelet coefficients of x. We also
discuss an important modification. In Eqn. 2, we have assumed
that all perturbations, i.e. entries in δ are independent. How-
ever, this may not necessarily be the case in many applications.
For example, consider the following three cases (though the
applicability of our technique and analysis is not restricted to
just these):

1) Consider parallel beam tomographic reconstruction of a
2D signal f(x, y) with incorrectly specified angles. The
1D Fourier transform of the tomographic projection of
f acquired at some angle α is equal to a slice through
the 2D Fourier transform of f at angle α and passing
through the origin of the Fourier plane. The frequencies
along this slice can be expressed in the form u(1) =
ρ cosα, u(2) = ρ sinα where ρ =

√
(u(1))2 + (u(2))2 is

the distance between (u(1), u(2)) and (0, 0) in frequency-
space. If the specified angle has an error ᾱ, the effec-
tive Fourier measurements are at frequencies ū(1) =
ρ cos(α + ᾱ), ū(2) = ρ sin(α + ᾱ). In such a case, the
perturbations in all the frequencies along a single slice
are governed by a single parameter ᾱ which is unknown.
(The parameter ρ is known since the base frequencies
(u(1), u(2)) are known.) This basic principle also extends
to other projection methods such as cone-beam and to
higher dimensions. (See Fig. 9 for sample reconstructions
for this application).

2) The problem of tomography under unknown angles is
of interest in cryo-electron microscopy to determine the
structure of virus particles [28]. Here the angles of
tomographic projection as well as the underlying im-
age are both unknown. In some techniques, the angles
of projection are estimated first using techniques from
dimensionality reduction [25] or geometric relationships
[9], [24]. Any error in the angle estimates affects the
estimate of the underlying image in a manner similar to
that described in the previous point.

3) In MRI, gradient delays can cause errors in the specified
set of frequencies at which the Fourier transform is
measured [8]. The gradient delays are essentially the
difference between the programmed or specified start
time and the start time which the machine uses for the
measurement. For a single axis, the gradient G(t) would
produce a trajectory of measurements of the form k(t) =
K
∫ t
τ=0

G(τ)dτ at time t where K is a hardware-related
proportionality constant and u(t) , (u(1)(t), u(2)(t) for
2D measurements. Given a gradient delay of t̄, the actual
trajectory would be k′(t) = K

∫ t
τ=0

G(τ − t̄)dτ . For
small-valued t̄, this leads to a trajectory error proportional
to G(t)t̄ [28]. Thus frequency perturbations in MRI
measurements for a single axis are governed by a single
parameter t̄. In some specific MRI sampling schemes
such as radial, a single global trajectory error is assumed
for all frequencies in one or all radial spokes (see Eqn.

3 of [29], and ‘Methods section’ in [30]). This global
error arises due to gradient delays, which again presents
a case of perturbations in multiple measurements being
expressed in terms of a single parameter.

Handling cases such as these in fact makes the recovery
problem more tractable, since the number of unknowns is
essentially reduced. We now present our recovery algorithm
and its modified version for handling cases where many mea-
surements share a common set of ‘perturbation parameters’,
in the following section. The convergence of the algorithm is
analyzed in Section V-A.

III. RECOVERY ALGORITHM

We present an algorithm to determine x and δ by using an
alternation between two sub-problems. Starting with a guess
δ̂ for the perturbations δ, we recover x̂, an estimate for x,
using the SQ-LASSO mentioned before, which is essentially
an unconstrained l1 norm minimization approach common in
compressive sensing. Next, using this first estimate x̂, we
update δ̂ to be the best estimate, assuming x̂ to be the truth,
using a linear brute force search in the range −r to r. A
linear search is possible because each measurement yi is
the dot product of a single row of Ft with x, and hence a
single (ui, δi) value is involved. Consequently, the different δi
values can be recovered through independent parallel searches
(see Section III-A for a comparison to related computational
problems). From here on, we alternate between the two steps -
recovery of x̂ and recovery of δ̂, till convergence is achieved.

Since the search space is highly non-convex, we also employ
a multi-start strategy, where, we perform multiple runs of the
alternating algorithm to recover δ̂ and x̂, each time, initializing
the first guess for δ̂ randomly. We ultimately select the solution
that minimizes the objective function J(x̂, δ̂). In practice, we
have observed that the number of starts required for a good
quality solution is rather small (around 10).

The full algorithm, including the optimization for multi-start
is presented in Algorithm 1. Note that F̂k(δ̂k) denotes the kth

row of F̂ (δ̂). We now consider the important and realistic
cases where values in δ̂ can be expressed in terms of a small
number of unique parameters β , {βi}Pi=1 where P � M .
We henceforth term these ‘perturbation parameters’. In other
words, there are subsets of measurements whose frequency
perturbation values are expressed fully in terms of a single
perturbation parameter from β (besides the base frequency
itself). We assume that ∀k, 1 ≤ k ≤ P, |βk| ≤ r, where r > 0
is known. Let the kth unique value in β correspond to the
perturbation parameter for measurements in a set Lk, indexing
into the measurement vector y. Thus ∀i ∈ Lk, δi = h(βk, ui)
where h is a known function of the perturbation parameter βk
and base frequency ui. The exact formula for h is dictated by
the specific application.

For example, in the CT application cited at the end of
the previous section, let us define set Lk to contain indices
of all frequencies along the kth radial spoke at some angle
αk. The perturbation values δi for all base frequencies ui
in Lk can be expressed in terms of a single parameter -
the error βk in specifying the angle. Here, for frequency
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Algorithm 1 Alternating Minimization Algorithm
1: procedure ALTERNATIVERECOVERY
2: converged← False, χ← 0.0001
3: δ̂ ← sample from Uniform[−r,+r]
4: while converged == False do
5: F̂ ← Fourier matrix at (u+ δ̂)
6: Estimate x̂ as:
7: min

x̂
‖x̂‖1 + λ‖y − F̂ (δ̂)x̂‖2

8:
9: for k in 1→M do

10: Test each discretized value of δ̂k in range
−r to r and select the value to achieve

11: min
δ̂k

‖yk − F̂k(δ̂k)x̂‖2

12: if ‖δ̂ − δ̂prev‖2 < χ and
‖x̂− x̂prev‖2 < χ then

13: converged← True

14: return x̂, δ̂

15: procedure MULTISTART
16: minobjective←∞
17: x̂best ← null
18: δ̂best ← null
19: for start in 1→ numstarts do
20: x̂, δ̂ ← AlternatingRecovery()
21: F̂ ← Fourier matrix at (u+ δ̂)
22: objective← ‖x̂‖1 + λ‖y − F̂ x̂(δ̂)‖2
23: if objective < minobjective then
24: x̂best ← x̂
25: δ̂best ← δ̂
26: minobjective← objective
27: return x̂best, δ̂best

ui = (u
(1)
i , u

(2)
i ), we would have δi = h(βk, ui) ,

(ρi(cos(αk +βk)− cosβk), ρi(sin(αk +βk)− sinαk)) where

ρi =

√
(u

(1)
i )2 + (u

(2)
i )2, u

(1)
i = ρi cosαk, u

(2)
i = ρi sinαk.

In the MRI example, the perturbation values for all base
frequencies ui along the kth axis can be expressed in terms
of a single perturbation parameter βk, which stands for the
gradient delay for the kth axis. In this case, δi = h(βk, ui) ,
(K ′βkGx(t),K ′βkGy(t)) for hardware-related proportionality
constant K ′ and where Gx(t), Gy(t) are the x, y components
of the gradient at time t (at which the Fourier transform at
frequency ui + δi was measured). In the case of radial MRI,
the parallel and perpendicular components of the error at every
frequency in the trajectory along the radial spoke at angle
α are expressed as δpar = K(tx cos2 α + ty sin2 α), δperp =
K(−tx cosα sinα+ty sinα cosα) where tx, ty represent gra-
dient delays [30] and K is a hardware-related constant. Here,
the perturbation parameters are β1 = tx, β2 = ty , and they are
common to all radial spokes.

To suit these cases of perturbation parameters common to
many measurements, we modify Algorithm 1, for which Step

9 can then be replaced by:

for k in 1→ P do
Test each discretized value of d̂k in range − r to r

βk = argmin
d̂k

‖yLk − F̂Lk(d̂k)x̂‖2

for each i in Lk do
Compute δi from βk using δi = h(βk, ui)

In the above steps, yLk is a subvector of y, containing
measurements for frequencies at indices only in Lk, and
F̂Lk(d̂k) denotes a sub-matrix of F̂ containing only those
rows with indices in Lk and assuming perturbation parameter
d̂k. Note that the modification to the main algorithm essentially
computes only each unique value in β separately. Convergence
results for Algorithm 1 (or its modification) are analyzed in
Section V-A.

A. Comparison with Algorithms for Basis Mismatch or DOA
estimation

We emphasize that our computational problem is very
different from the basis mismatch problem [19], [18], [20].
There, the signal is to be represented as a linear combination
of (possibly sinsuoidal) bases whose frequencies are assumed
to lie on a discrete grid, i.e. x = ΦΨθ = Φ

∑K−1
k=0 Ψkθk,

where Ψk ∈ CN is the basis vector at discrete frequency k,
and θ ∈ CN . However in many applications, the signals may
be sparse linear combinations of bases whose frequencies lie
off the grid. Hence the representation problem involves solving
for the frequency perturbations δk along with θ given x, where
x = Ψδθ =

∑K−1
k=0 Ψδkθk. Here Ψδ is a perturbed form

of Ψ, and δk denotes the difference between the kth off-grid
frequency and its nearest grid-point. The problem can be ex-
tended to a compressive setting, where we have measurements
of the form y = Φ

∑K−1
k=0 Ψδkθk. In this (compressive) basis

mismatch problem, the perturbations are in Ψ and not in Φ,
unlike in our paper where the perturbations are in Φ. This
leads to the following major points of difference:

1) In the basis mismatch problem, the number of δ values
is equal to the signal dimension N (or in some variants,
equal to ‖θ‖0), unlike the problem in this paper where it
is equal to M (or P if we count perturbation parameters
in β).

2) Moreover, unless ΦΨ is orthonormal (which is not possi-
ble in a compressive setting), the different δ values cannot
be solved through independent searches in the basis
mismatch problem and require block coordinate descent
for optimization. This is in contrast to the problem in this
paper (See Algorithm 1 and its modification).

3) In the basis mismatch problem, the performance is af-
fected by the minimal separation between the components
of θ [21] (and increased frequency resolution can make
the problem more under-determined and increase the
coherence of the matrix ΦΨ), unlike in our problem.

4) A Taylor approximation approach in the basis mismatch
problem would yield a system of equations of the form

y = (F + F ′∆)x+ ηTaylor, (4)
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where x and ∆x are vectors with the same support,
F represents the Fourier measurement matrix at known
frequency set {ui}Mi=1, F ′ is the first derivative of the
Fourier matrix w.r.t. δ, ∆ , diag(δ) and ηTaylor rep-
resents error due to truncation of the Taylor series. This
allows for simultaneous estimation of x and ∆x using
joint sparsity. For our problem, the Taylor expansion leads
to equations of the form:

y = Ftx ≈ (F + ∆F ′)x+ ηTaylor. (5)

Here, we notice that even if x is sparse, the vector F ′x
(and hence ∆F ′x) is not sparse. Hence a joint-sparsity
model cannot be directly used for our problem.

The DOA estimation techniques in [11], [12] and the
synthetic aperture radar (SAR) target location estimation tech-
nique in [26] (see Eqns. (3) and (13) of [26]) are also related to
the basis mismatch problem, and use the aforementioned joint
sparsity. The DOA estimation technique follows the model
y = A(d+δ)θ where d is a vector that contains parameters
that represent the N different grid-aligned directions. The jth

column of A(d+δ) is given as al(dj , δj) = 1√
n

exp(ιπ(dj +

δj)(l−(M+1)/2)) where l = 0, ...,M−1 and j = 0, ..., N−1
and ι ,

√
−1 (see for example, Section III-F of [11]). Here

again, the number of δ values is equal to N similar to the
basis mismatch problem.

IV. EMPIRICAL RESULTS

A. Recovery of 1-D signals

We present recovery results on signals in a multitude of
cases below, using the modified version of Algorithm 1 (i.e.
with a replacement of step 9 as described in the previous
section). In each chart (see Figures 1,2,3,4), 1D signals of N =
101 elements were used, the sparsity s , ‖x‖0 of the signal
was varied along the x-axis, and the number of measurements
M was varied along the y-axis. The cell at the intersection de-
picts the relative recovery error (RRMSE), ‖x−x̂‖2‖x‖2 , averaged
across 5 different signals. For any sparsity level, the signals
were generated using randomly chosen supports with random
values at each index in the support. Thus, different signals
had different supports. The base frequencies u for the M
Fourier compressive measurements for each signal were cho-
sen uniformly randomly from {−N/2,−N/2 + 1, ..., N/2}.
Each base frequency was subjected to perturbations chosen
from Uniform[−r,+r], for two separate cases with r = 1
and r = 0.5 respectively. (See Section II for the meaning
of r.) Note that the same M base frequencies u for the
Fourier sensing matrix were chosen for each signal, but the
perturbations δ were chosen differently for each signal. In
Figures 1,2,3,4, black (RGB (0,0,0)) indicates perfect recovery,
and white (RGB (1,1,1)) indicates recovery error of 100% or
higher. Note that all the figures show error values plotted
on the same scale, and hence the shades are comparable
within and across figures. In all experiments, a multi-start
strategy with 10 starts was adopted. In principle, we can avoid
ambiguity in the estimation of the δ values only if r is less
than half the smallest difference between the selected base
frequencies. However even relaxation of this condition did not

have any major adverse effect on the signal reconstruction.
Note that the regularization parameter λ in Eqn. 2 was chosen
by cross-validation on a small ‘training set’ of signals. The
same λ was used in all experiments. For our implementation,
we used the CVX package1.

Figure 1 shows results for two different cases (top and
bottom figures, for both r = 1 and r = 0.5): where the
number of unique values in δ are 2 and 10 respectively
(this is henceforth denoted as δ(u)), although there are M
measurements. (In this experiment, the perturbation parameters
in β are the same as the perturbation values in δ.) In both
cases, no external noise was added to the measurements. One
can see that the average recovery error decreases with the
number of measurements and increases with s, although the
relationship is not strictly monotonic. Figure 2 shows the same
two cases as in Figure 1, but with an addition of zero mean
i.i.d. Gaussian noise with σ = 5% of the average magnitude
of the individual (noiseless) measurements. The same trend of
decrease in error with increased number of measurements and
increase in error with increased s is observed here as well.
For reference, we also include a typical sample reconstruction
in 1D canonical basis for a signal of length 101, which is 10-
sparse, in Figure 7. Figure 3 shows similar results as in Figure
2 but using signals that are sparse in the Haar wavelet basis
instead of the canonical basis.

B. Baselines for Recovery of 1-D signals

For comparison, we also establish two baselines:
1) A naive reconstruction algorithm (termed ‘Baseline 1’),

which ignores the perturbations and recovers the signal
using a straightforward basis pursuit approach, with the
unperturbed, on-grid Fourier matrix as the measurement
matrix, i.e. assuming δ = 0. Results in similar settings
as in Figure 1 are shown in Figure 4. The parameter
λ for this approach was set using cross-validation on a
training set of signals.

2) A Taylor approximation approach (termed ‘Baseline 2’):
Here, the signal as well as the perturbations are recovered
using an alternating minimization algorithm based on a
first order Taylor approximated formulation, from Eqn.
5. Results in similar settings as in Figure 1 are shown
in Figure 5 for two cases: one where the number of
unique values in δ, , i.e. δ(u), is two; and another where
δ(u) = 10. This baseline is similar in spirit to the
truncated Taylor series approach presented in [12], [11],
[26] but modified for our (very different) computational
problem. The parameter λ for this approach was again
set using cross-validation on a training set of signals.

As is clear from the figures, Baseline 1 performs consid-
erably worse, since inaccurate frequencies are trusted to be
accurate. Baseline 2 also performs badly because the first order
Taylor error, ηTaylor, can be overwhelmingly large since it is
directly proportional to the unknown ‖x‖2, and consequently,
the signal recovered is also inferior. In fact, a comparison

1http://cvxr.com/cvx/

http://cvxr.com/cvx/
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between Figures 4 and 5 reveals that in case of Taylor approx-
imations to a perturbed Fourier matrix, the results obtained
are often as bad as those obtained when assuming δ = 0.
Baseline 2 is akin to a strategy used in [12], [11], [26] and
applied to DOA estimation or in target detection in radar.
However the specific inverse problem to be solved in these
papers is similar to a problem of mismatched representation
bases, which fortuitously allows for joint sparsity of x and
δ · x (see Eqn.4 in Section III-A), which cannot be achieved
in the problem we attempt to solve in this paper.

C. The case of M independent perturbations

All the experiments so far were conducted in the setting
where the number of unique values in δ was much less than
M . The motivation for this setting has already been described
in previous sections. In the case when each measurement has
an independent perturbation, we expect the recovery error to be
high, especially in the presence of measurement noise, as the
number of unknowns increases significantly. For completeness,
we perform similar experiments in the case when δ(u) = M
and plot the reconstruction errors. We observe that even with
large number of unique δ values, the errors are still low
when the signal is very sparse (see Fig 6). However, the error
increases significantly when the signal is less sparse, and the
error is much higher than the case of a small δ(u) as seen in
Fig. 6.

D. Recovery of 2-D signals

Application of our algorithms to 2D images is natural and
more immediately applicable in imaging scenarios. We first
present results with a similar set of experiments using 2D
images (as the signal x). For this experiment, 30× 30 images
were used. The images were generated using a sparse linear
combination of Haar wavelet bases. We used a radial sampling
approach in the Fourier domain (equivalent to taking a Fourier
transform of the Radon projections), taking a fixed number of
measurements along each spoke, but varying the number of
angles used and the sparsity of the image in the HWT basis.
The angles for the spokes were incorrectly specified (which
is typical in mis-calibrated tomography) with each angle
error chosen from Uniform[−2◦,+2◦] - leading to significant
perturbations in the frequencies. The base frequencies u were
spaced uniformly along each spoke. In addition, 5% zero mean
i.i.d. Gaussian noise was added to the measurements (both
real and complex parts, independently). We used the YALL12

solver for optimization of x and the NUFFT package3 for
computing Fourier transforms at non-integer frequencies. The
results are summarized in a chart shown in Figure 8. As Figure
8 shows, the recovery error was small, even for a reasonably
small number of measurements, and the method was robust to
noise in the measurements. Errors with the baseline algorithms
were significantly larger and are not reported here.

In the second set of experiments, we show reconstruction
results on three images each of size 200 × 200. Fourier

2http://yall1.blogs.rice.edu/
3https://www-user.tu-chemnitz.de/∼potts/nfft/

(a) (b)

(c) (d)

Figure 1. Recovery with Proposed Alternating Minimization algorithm for a
1D signal with 101 elements, sparse in canonical basis, no measurement noise
added (a) r = 1, δ(u) = 2, (b) r = 0.5, δ(u) = 2, (c) r = 1, δ(u) = 10, (d)
r = 0.5, δ(u) = 10, where δ(u) represents number of unique values in δ.

(a) (b)

(c) (d)

Figure 2. Recovery with Proposed Alternating Minimization algorithm for
a 1D signal with 101 elements, sparse in canonical basis, 5% zero mean
Gaussian noise added to measurements. (a) r = 1, δ(u) = 2, (b) r = 0.5,
δ(u) = 2, (c) r = 1, δ(u) = 10, (d) r = 0.5, δ(u) = 10, where δ(u)
represents number of unique values in δ.

measurements were simulated along 140 radial spokes with
erroneously specified angles (which is typical in tomography
with angle errors or unknown angles). The angle error for each
spoke was chosen independently from Uniform[−1◦,+1◦] -
leading to significant perturbations in the frequencies. Noise
from N (0, σ2) where σ , 0.05× average (noiseless) measure-
ment magnitude, was added to the real and complex parts of
the measurements. During reconstruction, we exploited image

https://www-user.tu-chemnitz.de/~potts/nfft/
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(a) (b)

(c) (d)

Figure 3. Recovery with Proposed Alternating Minimization algorithm for
a 1D signal with 128 elements, sparse in Haar DWT basis, 5% zero mean
Gaussian noise added to the measurements. (a) r = 1, δ(u) = 2 (b) r = 0.5,
δ(u) = 2 (c) r = 1, δ(u) = 10, (d) r = 0.5, δ(u) = 10, where δ(u)
represents number of unique values in δ.

(a) (b)

(c) (d)

Figure 4. Recovery with Baseline 1 algorithm (see text) for a 1D signal with
101 elements, sparse in canonical basis, no measurement noise added. (a)
r = 1, δ(u) = 2, (b) r = 0.5, δ(u) = 2, (c) r = 1, δ(u) = 10, (d) r = 0.5,
δ(u) = 10, where δ(u) represents number of unique values in δ. Compare to
Figure 1.

sparsity in a Haar wavelet basis. Reconstruction results with
the modified version of Algorithm 1 are presented in Fig. 9.
In comparison with Baseline 1, we see that our algorithm per-
forms significantly better in terms of RRMSE values as well
as visually - see Fig. 9. Results with a similar experiment for
angle errors chosen independently from Uniform[−2◦,+2◦]
and Uniform[−3◦,+3◦] are shown in Fig. 10 and Fig. 11

(a) (b)

(c) (d)

Figure 5. Recovery with Baseline 2 algorithm (see text) for a 1D signal with
101 elements, sparse in canonical basis, 5% zero mean Gaussian noise added
to measurements. (a) r = 1, δ(u) = 2, (b) r = 0.5, δ(u) = 2, (c) r = 1,
δ(u) = 10, (d) r = 0.5, δ(u) = 10, where δ(u) represents number of unique
values in δ. Compare with Figure 2.

(a) (b)

Figure 6. Recovery with Proposed Alternating Minimization algorithm for
a 1D signal with 128 elements, sparse in Haar DWT basis, 5% zero mean
Gaussian noise added to the measurements. Left: r = 0.5, δ(u) =M , where
M is the number of measurements, Right: r = 0.5, δ(u) = 10 - same as Fig.
2.

respectively, showing clear performance improvement of our
method over Baseline 1.

V. THEORETICAL RESULTS

While the empirical results show the algorithm working
well across a large number of simulated scenarios, we also
characterize the formulation by providing theoretical analysis
for (A) convergence of the algorithm, (B) uniqueness of the
solution to the main problem, (C) the uniqueness of the
minimum of a linearized approximation of the main objective
function, (D) the effect of perturbations on the sensing matrix,
and (E) the quality of the solution that would be obtained by
ignoring perturbations.

A. Convergence of Algorithm 1
Here we provide a proof of convergence of Algorithm 1

(or its modified version) under a specific condition mentioned
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Figure 7. Sample recovery for 1D signal sparse canonical basis, N = 100,M = 60, s = 20, zero mean 5% Gaussian noise added to measurements. Relative
reconstruction error by proposed algorithm: 5.5%. Relative reconstruction error by Baseline 2 (Taylor approximation): 88.7%.

Figure 8. Recovery error for 30× 30 2D image, sparse in 2D Haar Wavelet
basis, with 5% zero mean Gaussian measurement noise and angle errors from
Uniform[−2◦,+2◦]

further. Let Fδ denote the Fourier transform computed at the
frequencies values u + δ where δ = h(β,u). Assign z =
{x,β}. Recall that our objective is to determine the solution
z∗ that minimizes the objective function J(z) , ‖x‖1+λ‖y−
F (δ)x‖2, namely z∗ = argminzJ(z).

Let zt = {xt,βt} be the present solution of our alternating
search algorithm at iteration t. Our alternating search algo-
rithm ensures that the sequence of function values {J(zt)}t∈N
is monotonically decreasing. As J is bounded below by 0, the
sequence {J(zt)}t∈N converges to a limit value E ∈ R+ by
the monotone convergence theorem.

However, this does not yet prove the convergence of the
solution sequence {zt}. To this end, let x(β) denote the
minimizer for the convex objective function on x with β held
fixed, namely x(β) = argminxJβ(x), where Jβ(x) = J(z)
with β held constant. In the context of our alternating search
algorithm, we have xt+1 = x(βt). Letting zt+ 1

2
= {xt+1,βt}

Figure 9. Reconstruction for 200 × 200 images with 5% zero mean Gaus-
sian measurement noise, 70% compressive measurements, angle error from
Uniform[−1◦,+1◦]. In each row, left: original image, middle: reconstruction
using Baseline 1 (RRMSE 25%, 23.36%, 8.82%), right: reconstruction using
modified version of Algorithm 1 (RRMSE 6.76%, 5.27%, 4.5%).

we find

‖xt+1‖2 ≤ ‖xt+1‖1 ≤ J
(
zt+ 1

2

)
= Jβt

(xt+1) ≤ Jβt
(0) = λ‖y‖2

giving an upper bound on the norm of xt. The last but one
inequality follows from that fact that xt+1 minimizes Jβt

(x).
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Figure 10. Reconstruction for 200× 200 images with 5% zero mean Gaus-
sian measurement noise, 70% compressive measurements, angle error from
Uniform[−2◦,+2◦]. In each row, left: original image, middle: reconstruction
using Baseline 1 (RRMSE 38.7%, 30.98%, 12.63%), right: reconstruction
using modified version of Algorithm 1 (RRMSE 10.65%, 5.22%, 4.87%).

Figure 11. Reconstruction for 200× 200 images with 5% zero mean Gaus-
sian measurement noise, 70% compressive measurements, angle error from
Uniform[−3◦,+3◦]. In each row, left: original image, middle: reconstruction
using Baseline 1 (RRMSE 38.75%, 35.48%, 14.59%), right: reconstruction
using modified version of Algorithm 1 (RRMSE 13.15%, 5.29%, 5.85%).

Further, as −r ≤ βi ≤ r for each i, we see that the sequence
{zt}t∈N lie within a compact space. Hence as per Theorem
4.9 in [31], this sequence has atleast one accumulation point.
Another statement in the same theorem states that if a certain
condition is satisfied, then limt→∞‖zt+1 − zt‖ = 0, which
establishes convergence of the solution. The condition is that
for each such accumulation point, the minimization of J(z)

Figure 12. Uniqueness of the solution for δ keeping x fixed, where x is the
estimated signal at empirically observed convergence of Algorithm 1.

gives (i) a unique solution for x if β is fixed, and (ii) a unique
solution for β if x is fixed. Condition (i) is easy to satisfy as
the problem is convex in x if β is fixed. We do not have a
proof for Condition (ii), but we have observed uniqueness in
practice, especially since the values in β are bounded between
−r to +r. As an example, in Fig. 12, we show a plot of
the function ‖y − Fδx‖2 keeping x and all but one value
in δ fixed. Note that here x denotes the estimated signal
value upon (empirically observed) convergence of Algorithm
1. We would like to emphasize that Theorem 4.9 in [31] only
requires continuity of the function J and no other conditions
like biconvexity. Thus, we have established the following
Lemma for conditional convergence of Algorithm 1 (and
its modification) to a local minimum of J . Given the non-
convexity of J , global guarantees are very difficult to establish.

Lemma 1: Algorithm 1 is locally convergent if for every
accumulation point of the sequence zt, Condition (ii) is
satisfied.

B. Uniqueness of Solution

It is quite natural to question whether the recovery of x from
compressive measurements of the form y = Ftx is unique,
where Ft is as defined in Eqn. 1. We answer this question
in the affirmative (in the noiseless case, of course) under the
condition that the perturbation parameters β be independent
of the base frequencies u, i.e. ∀i, 1 ≤ i ≤ P, δi = h̃(βi) where
h̃ is a known function of only βi. We comment on the effect
of relaxing this condition, at the end of the section.
First consider real-valued x, which is typical in tomography
and certain protocols in MR (if the magnetization is propor-
tional to the contrast-weighted proton density [32]). Consider
the case where there is only a single unknown perturbation
parameter value β in all measurements and where x is a 1D
signal. Then, we have:

y = Ftx = F (x · vβ), (6)

where vβ is a vector in CN whose lth entry is equal to
exp(−ι2πh̃(β)l/N) where l is a spatial/time index and ι =
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√
−1. To see this, consider the ith measurement as follows:

yi =
1√
M

∑
l

exp(−ι2π(u+ δ)l/N)x(l) (7)

=
1√
M

∑
l

exp(−ι2πul/N)(x(l) exp(−ι2πh̃(β)l/N)).

Let xβ , x · vβ . Using standard compressive sensing results
from [1], we can prove unique recovery of xβ using basis
pursuit, for sufficiently large M (M ≥ s logN for s-sparse
x) and an RIP-obeying F (which is true if the base frequencies
were chosen uniformly at random [33]). Since x is real-valued,
both x and β are uniquely recovered. Moreover this recovery
is robust to measurement noise and compressibility (instead of
strict sparsity) of xβ and the bounds from [1] would follow.
This result extends to x in higher dimensions as well. If
x ∈ CN , although xβ can be recovered uniquely, there is
an inevitable phase ambiguity in estimating x. By the Fourier
shift theorem, this implies that x can be estimated only up to
a global shift, which depends upon β. However, the magnitude
of each element of x, i.e. |x|, can be recovered uniquely under
the afore-stated conditions.

Consider the case of P �M unique perturbation parameter
values in β, x ∈ RN , and x is s-sparse. Let FLk be the sub-
matrix of measurements corresponding to a particular value
βk. Using the earlier arguments, unique recovery of x, δ can
be guaranteed if for at least one k ∈ {1, 2, ..., P}, the matrix
FLk obeys the RIP of order s. If x ∈ CN , then one can
guarantee unique recovery of only |x|.

These uniqueness results can be further strengthened (i.e. in
terms of weaker conditions on the number of measurements),
by observing that in the case of P > 1 unique values in β, we
need to recover different (complex) signals xβ1 ,xβ2 , ...,xβP

where ∀i, 1 ≤ i ≤ P,xβi
, x · vβi

and the lth entry of vβi

equals exp(−ι2πh̃(βi)l/N). All these signals are s-sparse if
x is s-sparse, and they have the same support. This recovery
problem is therefore an example of multiple measurement
vectors (MMV), for which stronger recovery results exist - see
Theorem 18 of [34]. However, our computational problem has
further refinements to MMV: the sensing sub-matrices corre-
sponding to the different values in β are necessarily different,
which is termed the generalized MMV (GMMV) problem
[35],[36], for which stronger results exist. For example, we
modify Theorem 1 of [35] which guarantees unique recovery
of the sparsity pattern of the signals, to state the following
Lemma:

Lemma 2: Consider measurements ∀k, 1 ≤ k ≤
P,yLk = FLkxβk

where xβk
= x · vβk

and vβk
(l) =

exp(−ι2πh̃(βk)l/N). Assume that x is s-sparse with support
set denoted S and has sub-Gaussian entries. Assume that the
following conditions hold:

∀j /∈ S,
( 1

P

P∑
k=1

‖F †Lk,SFLk,j‖2
)0.5

≤ α1 < 1 (8)

∀j /∈ S,maxk∈{1,...,P}‖F †Lk,SFLk,j‖2 ≤ α2 > 0, (9)

where † denotes the pseudo-inverse, FLk,j is the jth column
of FLk and FLk,S is a sub-matrix of FLk with columns

corresponding to entries in S. Then the solution to the fol-
lowing optimization problem (Q1) is able to recover the exact
solution for the signals xβ1 ,xβ2 , ...,xβP

with high probability
decreasing in α1, α2. The problem (Q1) is defined as follows:
min‖x‖1 s. t. ∀k ∈ {1, ..., P} yLk = FLkxβk

. ♣
Clearly, GMMV results require weaker conditions than MMV
(see eqn. 12 of [35]). However, our computational problem
in fact has further structure over and above GMMV. First,
∀i, 1 ≤ i ≤ N, |xβ1

(i)| = |xβ2
(i)| = ... = |xβP

(i)|.
Second, the phase factors of all elements of xβ1

,xβ2
, ...,xβP

are completely determined by just the P values in β. The
modified version of Algorithm 1 imposes this structure by
design. At this point, we conjecture that the lower bound on
the required number of measurements is actually much lower,
if we use Algorithm 1 for estimation of x,β, as compared to
the predictions from the aforementioned CS, MMV, GMMV
approaches. Moreover, we conjecture that Algorithm 1 is also
more robust to measurement noise by design, as compared to
these approaches.

Lastly, we consider the case when the values in δ are func-
tions of the base frequencies in addition to the values in β (i.e.
∀i ∈ {1, 2, ...,M},∃!k ∈ {1, 2, ..., P} s. t. δi = h(βk, ui)
where ∃! is the unique existential quantifier), which is more
challenging. This is because it requires estimation of M (as
opposed to P ) signals, albeit all with common support and
with the aforementioned structure. Empirically however, we
have observed success of Algorithm 1 even in such a scenario
(see Fig. 9).

C. Theoretical Analysis for a Linearized Approximation

The analysis in the previous section requires that at least
one measurement sub-matrix FLk (corresponding to a given
perturbation parameter βk) obeys the RIP. The analysis does
not hold in the case where P = M . As such, theoretical error
bounds for the global optimum of Algorithm 1 are difficult
due to the fact that the perturbations δ̂ feature non-linearly
inside the Fourier matrix F̂ . Therefore, we set out to analyze
a linearized measurement model given in the statement of
Theorem 1 below, which is applicable in the P = M case.
Even for such an approximation and with M = N , the analysis
is far from simple and the uniqueness of a solution is not
obvious. The sole purpose of Theorem 1 is to establish that
there exists a unique solution in the linearized noiseless setting.
We hope that Theorem 1 will pave the way for future research
for obtaining uniqueness results in the general non-linear case.

In the following, we consider ∆ , diag(δ). Let F denote
the Fourier matrix at frequencies u. We can treat Ft as
approximated by F +∆F ′, where F ′ = FX is the derivative
of the Fourier matrix with respect to the elements in ∆ and X
is a diagonal matrix, withXll = 2πl

N where l is the index to the
spatial location ranging from −(N + 1)/2 ≤ l ≤ (N + 1)/2.
In other words, Ft ≈ F + ∆F ′. Without loss of generality
we assume N is odd. We now state and prove the following
theorem:

Theorem 1: For measurements y ∈ CM of the form

y = (F + ∆FX)x,
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the signal x ∈ RN and the perturbations ∆ (diagonal N ×N
matrix) can both be uniquely recovered with probability 1,
independent of the sparsity of the signal x and the magnitude
of the values in ∆, if (a) M = N , (b) x is neither purely even
nor purely odd, (c) y does not contain any pair of elements that
are conjugate symmetric, and (d) the frequencies in u form
an anti-symmetric set such that u(M+1)/2−k = −u(M+1)/2+k

for 1 ≤ k ≤ M−1
2 . ♣

Proof: To prove this, we perform a series of non-trivial
algebraic manipulations to arrive at a linear system of the form
g = Hw where w is related purely to x, and g,H depend
only upon y,F . The uniqueness of the solution then follows
by showing the invertibility ofH (with high probability) in the
M = N case. We comment upon the M < N case thereafter.
During the proof for the M = N case, we also precisely point
out why the four assumptions (a)-(d) in the Theorem statement
are required, and argue that they are weak assumptions.

We utilize the following defined relations:

F , C + ιS,x , e+ o,y , yr + ιyc (10)

where,C is the cosine component and S is the sine component
of F , e is the even component of x (having N elements), and
o is the odd component of x (having N elements), yr is the
real component of y, and ιyc is the complex component of
y. Given x, we note that e and o are uniquely defined.

Therefore, y = (F + ∆FX)x can be rewritten as:

yr + ιyc = Cx+ ιSx+ ι∆(C + ιS)Xx, (11)

which implies that

yr = Cx−∆SXx, and (12)
yc = Sx+ ∆CXx. (13)

Note that Co = SXo = Se = CXe = 0.
We now divide C into smaller submatrices: The central
column, C0, and the left & right components, C−1 and C1

respectively. That is,

let C =
[
C−1 C0 C1

]
=

C−1,−1 C0,−1 C1,−1

C−1,0 C0,0 C1,0

C−1,1 C0,1 C1,1

.

where the second division is done in a similar fashion, along
the row axis. To summarise, C0,0 is a single centre element,
C−1,0 and C1,0 are row vectors, C0,−1 and C0,1 are column
vectors, and finally C−1,−1, C1,−1, C−1,1 and C1,1 are
matrices of size (M − 1)/2× (N − 1)/2.
Similarly, let

S =
[
S−1 S0 S1

]
=

S−1,−1 S0,−1 S1,−1

S−1,0 S0,0 S1,0

S−1,1 S0,1 S1,1,

 where

S−1,S1,S0 are similarly defined.
Consider the case that the frequencies in u form an anti-

symmetric set about 0, which is stated in assumption (d). Note
that this is true for on-grid frequencies from −(N + 1)/2 to
(N + 1)/2 used in a typical DFT matrix, or in applications
such as radial/Cartesian MRI or CT. Then, we further have

C−1 = C1, S−1 = −S1,
C−1,−1 = C−1,1, S−1,−1 = −S−1,1,
C1,−1 = C1,1, S1,−1 = −S1,1,

C0 =


1
1
...
1

 , and S0 =


0
0
...
0

 .
Separating out e and o and X also in a similar fashion, let

e =

e−1

e0

e1

, o =

o−1

o0

o1

 and X =

X−1 0 0
0 0 0
0 0 X1

 where

e−1 = e1, o−1 = −o1 and X−1 = −X1. Using these,
equations 12 and 13 can be rewritten as:

yr = 2C1e1 +C0e0 −∆(2S1X1e1) (14)
yc = 2S1o1 + ∆(2C1X1o1). (15)

When x is purely even (o1 = 0) or purely odd (e1 = 0), then
yc or yr is respectively zero and we have N+dN/2e unknown
quantities to solve using N known values of either yr or yc.
Clearly, we do not have uniqueness. Consequently, we require
assumption (b) in the theorem. (Note also that this assumption
is a weak one, as most signals encountered in practice are
neither purely even nor purely odd.) Using 14, the middle
component yr0 is given by:

yr0 = 2C1,0e1 +C0,0e0 −∆0(2S1,0X1e1).

As S1,0 = 0 we get C0,0e0 = yr0 − 2C1,0e1. Substituting
this in equation 14, we get

yr − 1yr0 = 2(C1 −∆C1,0)e1 − 2∆S1X1e1

where 1 is a column vector of 1s. Define the quantities

Cr , 2(C1 −∆C1,0), Sr , Sc = 2S1,

Cc , 2C1, a , yr − 1yr0, b , yc.

Further, write a ,

a−1

0
a1

, b ,

b−1

b0

−b1

 and

∆ ,

∆−1 0 0
0 ∆0 0
0 0 ∆1

. We then obtain the reduced set of

equations:

a−1 = Cr,−1e1 −∆−1Sr,−1X1e1 (16)
a1 = Cr,1e1 −∆1Sr,1X1e1 (17)
b−1 = Sc,−1o1 + ∆−1Cc,−1X1o1 (18)
−b1 = Sc,1o1 + ∆1Cc,1X1o1 (19)

where Cr,−1 = Cr,1, Sr,−1 = −Sr,1, Cc,−1 = Cc,1 and
Sc,−1 = −Sc,1. Ergo,

a1 − a−1 = −(∆1 + ∆−1)Sr,1X1e1

b1 − b−1 = −(∆1 + ∆−1)Cc,1X1o1.

Let Σ , −(∆1 + ∆−1)

=⇒ Sr,1X1e1 = Σ−1(a1 − a−1) (20)

Cc,1X1o1 = Σ−1(b1 − b−1). (21)

It can be verified that the assumption (c) in the theorem
is equivalent to presuming that ∆−1,k 6= −∆1,k for any
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diagonal component k and thus Σ is invertible. This assump-
tion is again a weak one, as in most applications such as
CT, radial/Cartesian MRI, the perturbations will usually obey
∆−1,k 6= −∆1,k. Since Σ is diagonal we have

Sr,1X1e1 = diag(a1 − a−1)diag(b1 − b−1)−1Σ−1(b1 − b−1)

= diag(a1 − a−1)diag(b1 − b−1)−1Cc,1X1o1

= ZCc,1X1o1 (22)

where Z = diag(a1−a−1)diag(b1−b−1)−1. As both Z and
∆−1 are diagonal matrices, they commute and we get

∆−1Sr,1X1e1 = Z∆−1Cc,1X1o1 = Z [b−1 + Sc,1o1]

where the last equality follows from equation 18 and the
relation Sc,−1 = −Sc,1. Substituting in equation 16 gives us:

a−1 = Cr,1e1 +Zb−1 +ZSc,1o1 (23)
=⇒ a−1 −Zb−1 = Cr,1e1 +ZSc,1o1. (24)

Consider equations 22 and 23. These can be written in matrix
form as:[

a−1 −Zb−1

0

]
=

[
Cr,1 ZSc,1
Sr,1X1 −ZCc,1X1

] [
e1

o1

]
. (25)

This is of the form g = Hw, with

g ,

[
a−1 −Zb−1

0

]
,H ,

[
Cr,1 ZSc,1
Sr,1X1 −ZCc,1X1

]
,w ,

[
e1

o1

]
.

Using this linear system of equations, we can recover w. With
M = N , this is a simple case of inverting the H matrix. Since

w =

[
e1

o1

]
, recovering w immediately gives us the signal x.

If M = N (assumption (a)), the applicability of the previous
results hinges on the invertibility of H . We can show that
e1 and o1 are indeed necessarily recoverable from this linear
system.

Consider the second set of equations in 25. i.e. Sr,1X1e1 =
ZCc,1X1o1, which implies that e1 = X−1

1 S−1
r,1ZCc,1X1o1.

All the matrices involved here are composed of elementary
entries and are invertible because of the properties of the
Fourier matrix. Substituting this value of e1 in the first set
of equations in 25, we get

a−1 −Zb−1 = [Cr,1X
−1
1 S−1

r,1ZCc,1X1 +ZSc,1]o1 (26)

=⇒ S−1
c,1Z

−1(a−1 −Zb−1) = (E + I)o1, (27)

where
E , S−1

c,1Z
−1Cr,1X

−1
1 S−1

r,1ZCc,1X1.

Let A , I,U , S−1
c,1Z

−1,C , Cr,1X
−1
1 S−1

r,1 ,V ,
ZCc,1X1. Then E + I = A + UCV . The measurement
Z is independent of both A and C. For the matrix E + I to
not be invertible, we would need to select a precise Z, so as
to get an eigenvalue of −1 for E. Given that the perturbations
are picked uniformly at random, the matrix is invertible with
probability 1. This shows that using the approximation as
described, the signal x is recoverable uniquely with high
probability, when M = N . ♣

While we haven’t shown a bound in a compressed sensing
framework, where M < N , we have empirically observed

that recovery is excellent in this scenario as well. Empirically,
we observe good recovery with this formulation, even with a
row-subsampled Fourier matrix (M ≤ N ). The variation of
the error is presented for a 20-sparse signal of length 100 in
figure 13. The reported error is with respect to measurements
simulated by the linearized approximation model y = (F +
∆FX)x as per Theorem 1.

Figure 13. Relative recovery error using linearized model formulation

D. Coherence of Perturbed Fourier Matrix

There exist results from the compressed sensing literature
that derive performance bounds on signal reconstruction in
terms of the mutual coherence of the sensing matrix Φ [37].
We provide a bound on the mutual coherence (hereafter
simply referred to as ‘coherence’) in the expected sense
assuming that the perturbations are random draws from
Uniform[−r,+r], and subsequently prove this bound.

Theorem 2: Let Ft be the Fourier matrix at frequencies
u + δ, where u represents (the possibly but not necessarily
on-grid) frequency set, and δ ∼ Uniform[−r,+r], r > 0
represents the perturbation to this set. Let the unperturbed
Fourier matrix at frequencies u be denoted by F . Then, the
expected coherence µt ,

∥∥E(ΨTF H
t FtΨ)

∥∥
∞ respects the

inequality

µt ≤ max
θ
µ
| sin(θr)|

θr
≤ µ

where Ψ is a fixed orthonormal signal-representation matrix,
µ is the coherence of FΨ, and θ takes values 2π(j1−j2)

N , for
j1 6= j2, j1 ∈ {0, 1, ..., N − 1}, j2 ∈ {0, 1, ..., N − 1}. ♣
Proof: To bound the expected coherence, we will use the
assumption that each δk is drawn i.i.d. from Uniform[−r,+r].
Consider the matrix V = ΨTF H

t FtΨ whose entires equal
Vj1,j2 = Ψt

j1
(Ft)

HFtΨj2 where Ψj1 represents the column
of Ψ at index j1. Then we have the following:

E[Vj1,j2 ] = Ψt
j1E[(Ft)

HFt]Ψj2 . (28)
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We define B , E[(Ft)
HFt] and let θj1,j2 , 2π(j1 − j2)/N .

Using the uniform distribution of each δk we find

Bj1,j2 =

∫ r

−r

1

M

∑
k

exp (ιθj1,j2(uk + δk))
1

2r
dδk

=
1

M

∑
k

exp (ιθj1,j2uk)

2r

∫ r

−r
exp (ιθj1,j2δk) dδk.

Furthermore, since we know that∫ r

−r
sin(θj1,j2δk)dδk = 0,

and ∫ r

−r
cos(θj1,j2δk)dδk =

2

θj1,j2
sin(θj1,j2r),

we get

Bj1,j2 =
1

N

∑
k

exp (ιθj1,j2uk)

2r

2

θj1,j2
sin(θj1,j2r) (29)

=
sin(θj1,j2r)

θj1,j2r

(
1

N

∑
k

exp(ιθj1,j2uk)

)
. (30)

Let C be a matrix such that Cj1,j2 , 1
N

∑
k exp(ιθj1,j2uk).

Then

Bj1,j2 =
sin(θj1,j2r)

θj1,j2r
(Cj1,j2) . (31)

Substituting back in equation 28,

E[Vj1,j2 ] = |Ψt
j1BΨj2 | (32)

= |Ψt
j1

sin(θj1,j2r)

θj1,j2r
CΨj2 | (33)

= |
(

sin(θj1,j2r)

θj1,j2r

)
Ψt
j1CΨj2 |. (34)

By the definition of C, we see that
maxj1,j2,j1 6=j2 |Ψt

j1
CΨj2 | ≤ µ. This yields us the following:

E[Vj1,j2 ] = |Ψt
j1BΨj2 | ≤

∣∣∣ sin(θj1,j2r)

rθj1,j2

∣∣∣∣∣∣Ψt
j1CΨj2

∣∣∣. (35)

Since the last quantity on the RHS is nothing but the coherence
µ, this further yields,

E(Vj1,j2) ≤ µ
∣∣∣ sin(θj1,j2r)

rθj1,j2

∣∣∣. (36)

Since
∣∣∣ sin(θj1,j2

r)

θj1,j2
r

∣∣∣ is the absolute value of a sinc function,
it takes a maximum value of 1. Therefore, the expected
coherence is less than or equal to the coherence of FΨ. In
practice, the coherence values of the two matrices were found
to be extremely close. ♣
If Ψ = I , then FΨ has low coherence with high probability if
the frequencies are chosen uniformly at random [38]. Hence,
in this case, we can call upon well-established compressive
sensing results [37], [38] to show that our problem is well-
founded in theory.

E. Bound on Recovery in Expectation

Assuming the frequency perturbations are obtained i.i.d.
from Uniform[−r,+r], consider the expected measurement
vector from the system Ftx + η where η represents a mea-
surement noise vector. That is,

ỹ = E∆[y] + η = E∆[Ftx] + η. (37)

We now show a bound on the error in reconstructing x from
ỹ if the unperturbed Fourier matrix F were to be used during
reconstruction, i.e. if one simply assumed the perturbations
to be all equal to zero. For this, we invoke results and proof
methodology from [10].

Since each perturbation ∆k is assumed to be independent,
we can calculate the value of E∆k

[(Ftx)k].

E∆k
[(Ftx)k]

= E∆k

 1√
M

∑
j

exp(
−2πιj(uk + ∆k)

N
)xj


= E∆k

 1√
M

∑
j

exp(
−2πιjuk

N
)xj exp(

−2πιj∆k

N
)


=

 1√
M

∑
j

exp(
−2πιjuk

N
)xj

sin 2πjr
N

2πjr
N

 .
The last equality follows the steps from Section V-D. Defining

G to be a diagonal matrix such that Gjj ,
sin 2πjr

N
2πjr
N

, we can

see that
E∆[Ftx] = FGx. (38)

Using this result, we can concretely state the recovery bound
in the following theorem:

Theorem 3: Let ỹ , FGx + η and x∗ be the solution to
the recovery problem

min ‖x‖1
s.t. ‖ỹ − Fx‖2 ≤ ε′

where F is the Fourier matrix at unperturbed frequencies.
Under mild conditions of F and x as assumed in Theorem 2
of [10], there exists a suitable value of ε′ and constants C0,
C1, for which the recovery error is bounded as:

‖x∗ − x‖2 ≤
C0√
s
‖x− x(s)‖2 + C1ε

′

where x(s) is the best s−term approximation of x containing
the largest s coefficients of x with the rest set to zero. ♣

We now prove this result drawing upon the proof of Theo-
rem 2 of [10], to which our formulation is analogous. To see
the analogy more clearly, we define the following quantities:

E , F (G− I), εF , ‖G− I‖2.

We know that ‖F ‖2 equals the largest singular value of matrix
F . Let ‖F ‖(s)2 denote the largest singular value taken over all
s-column sub-matrices of F . We have

‖E‖2
‖F ‖2

≤ ‖F ‖2‖G− I‖2
‖F ‖2

= ‖G− I‖2 = εF . (39)
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Further, since G and I are both diagonal matrices, multi-
plication by (G − I) conserves the sparsity of any s-sparse
signal xs. Therefore, ‖E‖(s)2 ≤ ‖F ‖(s)2 ‖G − I‖2 and hence
‖E‖(s)2

‖F ‖(s)2

≤ εF . From here, we follow exactly along the lines

of the proof of Theorem 2 in [10], and arrive at a value of
ε′ (see Eqn. 14 of [10]) satisfying ‖ỹ − Fx‖2 ≤ ε′ given
that ‖ỹ − FGx‖2 = ‖η‖2 ≤ ε. We also arrive at appropriate
values of the constants C0 and C1 to derive the bound stated
in our Theorem 3. ♣
Note that this minimization problem does not account for the
actual matrix Ft being known or even estimated during the
recovery process. In practice, using the algorithm we have
proposed in section III, the matrix ∆ (and hence Ft) is
estimated at each step, and the recovery is realistically, much
better than the bound arrived at using the approach above. In
future work, we hope to be able to also provide a bound for
this scenario where Ft is estimated.

VI. CONCLUSIONS AND DISCUSSION

We have presented a method to correct for perturbations
in a compressive Fourier sensing matrix in situ during signal
reconstruction. Our method is simple to implement, robust to
noise and well grounded in theory. We have discussed several
applications of our framework. Moreover, we have proved
conditional convergence of our algorithm to a local optimum,
and shown that the basic computational problem has a unique
solution under reasonable conditions. We conjecture that due
to the special structure of our problem, the requirements on
the number of measurements is much below what is predicted
by the theoretical development so far. In the case when
P = M = N , we prove the uniqueness of the solution
to a problem that minimizes a linear approximation to the
original objective function. For the main algorithm and its
analysis, however, we have consciously avoided using a Taylor
approximation (Baseline 2) for the algorithm presented unlike
[11], [12], even though it may initially appear to simplify the
problem considerably. The primary reason for this is to avoid
introduction of modeling error due to the Lagrange remainder
term which can be quite significant except at small values of
r. Our experimental results justify this choice.

Future work will involve proving analytical bounds for the
global optimum of Algorithm 1, which we believe will be
stronger than those provided by results from standard CS
[1], MMV [34] or GMMV [35]. We also aim to explore our
algorithm in the context of different sampling strategies in
practical MRI acquisition or various modes of tomographic
acquisition. Furthermore, the problem of mismatch of both, the
Fourier sensing matrix and the signal representation matrix, is
an interesting avenue for research.
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