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ABSTRACT

A semi-parametric, non-linear regression model in the pres-
ence of latent variables is applied towards learning network
graph structure. These latent variables can correspond to un-
modeled phenomena or unmeasured agents in a complex sys-
tem of interacting entities. This formulation jointly estimates
non-linearities in the underlying data generation, the direct in-
teractions between measured entities, and the indirect effects
of unmeasured processes on the observed data. The learning
is posed as regularized empirical risk minimization. Details
of the algorithm for learning the model are outlined. Experi-
ments demonstrate the performance of the learned model on
real data.

Index Terms— Sparse, Low-rank, Graph Signal Process-
ing, Optimization, Topology

1. INTRODUCTION

Graphs are a central tool for representing interpretable net-
works of relationships between interacting entities that gener-
ate large amounts of data. Learning network structure while
combatting the effects of noise can be achieved via sparse
optimization methods, such as regression (Lasso) [[1] and in-
verse covariance estimation [2]. In addition, the extension to
time series via vector autoregression [3, 4f] yields interpreta-
tions related to causality [5,16]. In each of these settings, es-
timated nonzero values correspond to actual relations, while
zeros correspond to absence of relations.

However, we are often unable to collect data to observe
all relevant variables, and this leads to observing relationships
that may be caused by common links with those unobserved
variables. Hidden variables can be fairly general: they can be
underlying trends in the data, or the effects of a larger net-
work on an observed subnetwork. For example, one year of
daily temperature measurements across a country could be re-
lated through a graph based on geographical and meteorolog-
ical features, but all exhibit the same significant trend due to
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the changing seasons. We have no single sensor that directly
measures this trend. In the literature, a standard pipeline is to
de-trend the data as a preprocessing step, and then estimate or
use a graph to describe the variations of the data on top of the
underlying trends [7, 8 6].

Alternatively, attempts have been made to capture the ef-
fects of hidden variables via sparse plus low-rank optimiza-
tion [9]. This has been extended to time series [10], and
even to a non-linear setting via Generalized Linear Models
(GLMs) [11]. What if the form of the non-linearity (link
function) is not known? Regression using a GLM with an
unknown link function is also known as a Single Index Model
(SIM). Recent results have shown good performance when
using SIMs for sparse regression [[12].

Current methods impose a fixed (non-)linearity, assume
the absence of any underlying latent variables, perform sep-
arate pre-processing or partitioning in an attempt to remove
or otherwise explicitly handle such latent variables, or take
some combination of these steps. To address all of these is-
sues, we present a model with a non-linear function applied to
a linear argument that captures the effects of latent variables.
Thus, we apply the Single Index Latent Variable (SILVar)
model [13]], which uses the SIM in a sparse plus low-rank op-
timization setting to enable general, interpretable multi-task
regression in the presence of unknown non-linearities and un-
observed variables. That is, we examine SILVar as a tool for
uncovering hidden relationships buried in data.

First, we introduce the SILVar model in Section[2| Then,
we outline the numerical procedure for learning the SIL.Var
model in Section 3] Finally, we demonstrate the performance
via experiments on synthetic and real data in Section 4]

2. SINGLE INDEX LATENT VARIABLE MODELS

In this section, we build the Single Index Latent Vari-
able (SILVar) model from fundamental concepts. We ex-
tend the single index model (SIM) [14] to the multivariate
case and account for effects from unmeasured latent vari-
ables in the linear parameter. Let y; = (y1; --- ym)T

g(x) = (g1(x1) ... gm(zm))", a; € RPforj =1,...m,

>



and A = (a; ... am)T. The multivariate SIM model is pa-
rameterized by 1) a non-linear link function ¢ = VG where
G is a closed, convex, differentiable, invertible function; and

2) a matrix A € R™>*P, Consider the vectorization,

E [y;i|x:] = g; (ajTXi) = Elyilxi] =g (Ax;). (1)

For the remainder of this paper, we make an assumption that
all g; = g for notational simplicity, though the formulations
readily extend to the case where g; are distinct.

We propose the SILVar model,

y=g(A+Dx), @

where we have explicitly split the linear parameter A from
before into A and L such that A is a sparse matrix, includ-
ing but not limited to a graph adjacency, and L is a low-rank
matrix (rank(L) < r + 1), capturing the indirect effects of a
small number » < p of unmeasured latent variables on the
observed data, as introduced in [9]. However, in the presence
of the non-linearity, it is not obvious that this low-rank repre-
sentation should faithfully correspond to the latent variables
as intended. Luckily, it does [13]]. Letting

(Y X, A)=1 Y {i (G ws) G (a)) |37 (Axa} ,
- ®

j=1
we learn the model using the optimization problem,

(9, A, L) =argmin F5(Y, X, g, A + L) + hi(A) + hao(L)
g,A,L

st.g=VG el )

where hy and ho are regularizers on A and L respectively, and
with the setC! = {g : Yy >z, 0 < g(y)—g(z) < (y—z)} of
monotonic increasing 1-Lipschitz functions. We impose this
functional constraint for uniqueness and conditioning of the
solution. A natural choice for ho would be ho(L) = Ao||L|.
the nuclear norm since L is approximately low rank due to the
influence of a relatively small number of latent variables. We
may choose different forms for h; depending on our assump-
tions about the structure of A. For example, if A is sparse, we
may use h1(A) = A1]|[v(A)]|1, the ¢1 norm applied element-
wise to the vectorized A matrix. This is a “sparse and low-
rank” model, which has been shown under certain geometric
incoherence conditions to be identifiable [9].

3. EFFICIENTLY LEARNING SILVAR MODELS

In this section, we describe the algorithm for learning the SIL-
Var model. Surprisingly, the pseudo-likelihood functional F3
used for learning the SILVar model in (3)) is jointly convex in
g, A, and L [13]). This convexity is enough to ensure that the
learning can converge and be computationally efficient.

3.1. Lipschitz Monotonic Regression

The estimation of g with the objective function including
terms G and G, appears to be an intractable calculus of

variations problem. However, there is a marginalization tech-
nique that avoids estimating functional gradients with respect
to G and G [15]. The technique utilizes Lipschitz monotonic
regression (LMR) as a subproblem, for which fast algorithms
exist [[13]].

Given ordered pairs {x;, y; } and additive noise w;, let z(]

denote the j*" element of the {z;} sorted in ascending order.
Then LMR is described by the problem,

~ A . “
&2 LMR(y, %) = argmin 3 (9(z:) — 32)?
g s
=1 (5)
st.0 < g (zg541)) —9 (2151) < 241 —2p)

forj=1,...,n—1,
which treats {y;} as noisy observations of a function g in-
dexed by x, sampled at points {z; }.
3.2. Learning SILVar Models

Algorithm |1| describes the basic learning procedure for the
SILVar model and details the gradient computations while as-
suming a proximal operator is given.

Algorithm 1 Single Index Latent Variable (SILVar) Learning

I: nitialize A = 0,L = 0
2: while not converged do Proximal Methods
3: Computing gradients:
® « (A+L)X
g < LMR(v(Y),v(0))
VaFs=VLFs =) (8(6:) —yi)x/

i=1

from (3)

4: end while
5: return (g, A, L)

Under certain assumptions [13]], the solution to the opti-
mization problem can be shown to achieve good perfor-
mance relative to problem parameters including sparsity/rank
of linear parameters A and L and the magnitude of the effect
of latent variables.

4. EXPERIMENTS

We study the performance of the algorithm via simulations on
real data. In these experiments, we show two different regres-
sion settings under which the SILVar model can be applied.

4.1. Temperature Data

In this setting, we wish to learn the graph capturing relations
between the weather patterns at different cities. The data is a
real world multivariate time series consisting of daily temper-
ature measurements (in °F) for 365 consecutive days during



the year 2011 taken at each of 150 different cities across the
continental USA.

Previously, the analysis on this dataset has been per-
formed by first fitting with a 4th order polynomial and then
estimating a sparse graph from an autoregressive model using
aknown link function g(z) = x assuming Gaussian noise [€].

Here, we fit the time series using a 2nd order AR SIL-
Var model with regularizers for group sparsity hi(A) =

ALY H (al(.;) e ag;w)) H2 where al(.;n) is the 77 entry of ma-
i

M .
trix A" and nuclear norm hao(L) = A2 Y HL(” ||*
i=1
Figure (1| compares two networks A’ estimated using
SILVar and using just sparse SIM without accounting for
the low-rank trends, both with the same sparsity level of
12% non-zeros for display purposes, and where a,, =

ij
H (ag) . .67(5-\4)> H . Figure [1al shows the network A’ that
/ ' 2

is estimated using SILVar. The connections imply predictive
dependencies between the temperatures in cities connected
by the graph. It is intuitively pleasing that the patterns dis-
covered match well previously established results based on
first de-trending the data and then separately estimating a
network [6]. That is, we see the effect of the Rocky Moun-
tain chain around —110° to —105° longitude and the overall
west-to-east direction of the weather patterns, matching the
prevailing winds. In contrast to that of SILVar, the graph
estimated by the sparse SIM shown in Figure[Tb|on the other
hand has many additional connections with no basis in actual
weather patterns. Two particularly unsatisfying cities are:
sunny Los Angeles, California at (—118,34), with its mul-
tiple connections to snowy northern cities including Fargo,
North Dakota at (—97,47); and Caribou, Maine at (—68,47),
with its multiple connections going far westward against pre-
vailing winds including to Helena, Montana at (—112,47).
These do not show in the graph estimated by SILVar and
shown in Figure[Ta]

4.2. Bike Traffic Data

The bike traffic data was obtained from HealthyRide Pitts-
burgh [[16]. The dataset contains the timestamps and station
locations of departure and arrival (among other information)
for each of 127,559 trips taken between 50 stations within the
city from May 31, 2015 to September 30, 2016, a total of 489
days.

We consider the task of using the total number of rides
departing from and arriving in each location at 6:00AM-
11:00AM to predict the number of rides departing from
each location during the peak period of 11:00AM-2:00PM
for each day. This corresponds to Y € NSOX489 and
X e N(I)OO”SQ, where Nj is the set of non-negative integers,
and A,L € R°0x100 We estimate the SILVar model (2))
and compare its performance against a sparse plus low-
rank GLM model with an underlying Poisson distribution
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(b) Weather graph learned using Sp. SIM (without low-rank)
Fig. 1: Learned weather stations graphs
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Fig. 2: (a) Root mean squared errors (RMSEs) from SILVar
and Oracle models; (b) Link function learned using SILVar
model

and fixed link function ggim(z) = log(l + e*). We use
n € {60,120, 240, 360} training samples and compute errors
on validation and test sets of size 48 each, and learn the model
on a grid of (Ag, \) € {107/4]i € {~8,~7,...,11,12}}".
We repeat this 10 times for each setting, using an independent
set of training samples each time. We compute testing errors
in these cases for the optimal (Ag, Ay,) with lowest validation
errors for both SILVar and GLM models.

Figure[2a]shows the test Root Mean Squared Errors (RM-
SEs) for both SILVar and GLM models for varying training
sample sizes, averaged across the 10 trials. We see that the
SILVar model outperforms the GLM model by learning the
link function in addition to the sparse and low-rank regression
matrices. Figure [2b] shows an example of the link function
learned by the SILVar model with n = 360 training samples,
which performs non-negative clipping of the output. This is
consistent with the count-valued nature of the data.

We also demonstrate that the low-rank component of the
estimated SILVar model indeed captures unmeasured patterns
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Fig. 3: Receiver operating characteristics (ROCs) for classi-
fying each day as a business day or non-business day, using
the low-rank embedding provided by L learned from the SIL-
Var model and using the full data

intrinsic to the data. Naturally, we expect people’s behavior
and thus traffic to be different on business days and on non-
business days. A standard pre-processing step would be to
segment the data along this line and learn two different mod-
els. However, as we use the full dataset to learn one single
model, we hypothesize that the learned L captures some as-
pects of this underlying behavior. To test this hypothesis, we
perform the singular value decomposition (SVD) on the opti-
mally learned L = UEV T for n = 360 and project the data
onto the r “top singular components (SC) X = E VTX We
then use X to train a linear support vector machine (SVM)
to classify each day as either a business day or a non-business
day, and compare the performance of this lower dimensional
feature to that of using the full vector X to train a linear SVM.
If our hypothesis is true then the performance of the classifier
trained on X, should be competitive with that of the classifier
trained on X. We use 50 training samples of X,. and of X and
test on the remainder of the data. We repeat this 50 times by
drawing a new batch of 50 samples each time. We then vary
the proportion of business to non-business days in the training
sample to trace out a receiver operating characteristic (ROC).
_ In Figure 3} we see the results of training linear SVM on
X, forr € {1,...,6} and on the full data for classifying busi-
ness and non-business days. We see that using only the first
two SC, the performance is poor. However, by simply taking
3 or 4 SC, the classification performance almost matches that
of the full data. Surprisingly, using the top 5 or 6 SC achieves
performance greater than that of the full data. This suggests
that the projection may even play the role of a de-noising filter
in some sense. This classification performance strongly sug-
gests that the low-rank L indeed captures the latent behavioral
factors in the data.

Finally, in Figure 4, we plot the diagonal (7,%) entries of
the optimal network A at n = 360, as we find this visu-
alization the most intriguing. This corresponds to locations
for which incoming bike rides at 6:00AM-11:00AM are good
predictors of outgoing bike rides at 11:00AM-2:00PM, be-
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Fig. 4: Intensities of the self-loop at each station

yond the effect of latent factors such as day of the week. We
may expect this to correlate with locations that have restau-
rants open for lunch service, so that people would be likely to
ride in for lunch or ride out after lunch. This is confirmed by
observing that these stations are in Downtown (-80,40.44), the
Strip District (-79.975, 40.45), Lawrenceville (-79.96, 40.47),
and Oakland (-79.96, 40.44), known locations of many restau-
rants in Pittsburgh. It is especially interesting to note that
Oakland, sandwiched between the University of Pittsburgh
and Carnegie Mellon University, is included. Even though the
target demographic is largely within walking distance, there
is a high density of restaurants open for lunch, which may ex-
plain its non-zero coefficient. The remainder of the locations
with non-zero coefficients a;; are also near high densities of
lunch spots, while the other locations with coefficients a;; of
zero are largely either near residential areas or near neighbor-
hoods known for dinner or nightlife rather than lunch, such as
Shadyside (x > —79.95) and Southside (y < 40.43)).

5. CONCLUSION

Data exhibit complex dependencies, and it is often a challenge
to deal with non-linearities and unmodeled effects when at-
tempting to uncover meaningful relationships among various
interacting entities that generate the data. We apply the SIL-
Var model to estimating sparse graphs from data under the
presence of non-linearities and latent factors or trends. The
SILVar model estimates a non-linear link function g as well
as structured regression matrices A and L in a sparse and
low-rank fashion. We outline computationally tractable al-
gorithms for learning the model and demonstrate its perfor-
mance against existing regression methods on real data sets,
namely 2011 US weather sensor network data and 2015-2016
Pittsburgh bike traffic data. We show on the temperature data
that the learned L can account for the effects of underlying
trends in time series while A represents a graph consistent
with US weather patterns; and we see that, in the bike data,
SILVar outperforms a GLM with a fixed link function, the
learned L encodes latent behavioral aspects of the data, and
A discovers notable locations consistent with the restaurant
landscape of Pittsburgh.
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