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Abstract—In future wireless networks, one fundamental chal-
lenge for massive machine-type communications (mMTC) lies in
the reliable support of massive connectivity with low latency.
Against this background, this paper proposes a compressive
sensing (CS)-based massive random access scheme for mMTC
by leveraging the inherent sporadic traffic, where both the active
devices and their channels can be jointly estimated with low
overhead. Specifically, we consider devices in the uplink massive
random access adopt pseudo random pilots, which are designed
under the framework of CS theory. Meanwhile, the massive
random access at the base stations (BS) can be formulated as the
sparse signal recovery problem by leveraging the sparse nature
of active devices. Moreover, by exploiting the structured sparsity
among different receiver antennas and subcarriers, we develop
a distributed multiple measurement vector approximate message
passing (DMMV-AMP) algorithm for further improved perfor-
mance. Additionally, the state evolution (SE) of the proposed
DMMV-AMP algorithm is derived to predict the performance.
Simulation results demonstrate the superiority of the proposed
scheme, which exhibits a good tightness with the theoretical SE.

Index Terms—Massive random access, massive machine-type
communications (mMTC), compressive sensing (CS).

I. INTRODUCTION

Driven by the Internet-of-Things (IoT), how to support mas-

sive machine-type communications (mMTC) enabling massive

connectivity with tens of billions of machine-type devices

has been challenging the current wireless networks [1]. For

mMTC, how to reliably support the access and estimate the

associated channels of active devices triggered by external

events dynamically performs an important role in uplink

systems.

Conventional grant-based access control requires the addi-

tional control signaling and the prediction of uplink access

requests for the granting of resources [2]. One representative

is the strongest-user collision resolution (SUCRe) scheme [3],

which designs a sophisticated protocol efficiently supporting

devices in overloaded networks. However, the grant-based

solutions may suffer from the inefficient schedule and difficult

design for the access in mMTC [2]. As an alternative, grant-

free access protocol without prior scheduling permission has

recently attracted significant attention [4]. By exploiting the

inherent sporadic traffic, a compressive sensing (CS)-based

uplink grant-free non-orthogonal multiple access (NOMA)

scheme has been proposed to further reduce the overhead

[5], [6], while only single-antenna is considered at the base

station (BS). In multi-antenna systems, a modified Bayesian

compressive sensing (BCS) algorithm is proposed for NOMA

[7], which exploits the structured sparsity among different

receiver antennas to enhance the performance. However, the

BCS algorithm may not work efficiently in mMTC. Recently,

a low-complexity iterative algorithm termed approximate mes-

sage passing (AMP) has been proposed for massive random

access [8]–[10], which can support the massive connectivity

efficiently. However, most prior work [2]–[5], [7], [8] are

limited to the single-carrier systems. Besides, the work in [8]

assumes the full knowledge of the prior distribution and noise

variance, which is an impractical assumption.

In this paper, we make further research in the direction of

massive random access for mMTC, where we consider the

more practical frequency-selective fading channels and the

work is extended to the multi-carrier multi-antenna systems.

Specifically, by exploiting the structured sparsity among differ-

ent receiver antennas and subcarriers, we develop a distributed

multiple measurement vector approximate message passing

(DMMV-AMP) algorithm for further improved performance.

Moreover, resorting to the expectation maximization (EM)

algorithm, the proposed DMMV-AMP algorithm can learn

unknown hyperparameters of the prior distribution and noise

variance. We further derive the state evolution (SE) of DMMV-

AMP algorithm to characterize the performance of the pro-

posed scheme.

II. SYSTEM MODEL

We consider a typical uplink mMTC system with one BS

equipped with M antennas and K single-antenna devices,

where OFDM with N subcarriers is adopted to combat the

time dispersive channels, and P pilots are uniformly allocated

across N subcarriers. For the subchannel at the p-th subcarrier

(1 ≤ p ≤ P ), the received signal yt
p,k∈ CM×1 at the BS from

the k-th device during the t-th OFDM symbol can be expressed

as

yt
p,k = hp,ks

t
p,k +wt

p, (1)

in which hp,k∈ CM×1 is the subchannel associated with the

k-th device at the p-th subcarrier, stp,k, generated from i.i.d.
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standard complex Gaussian distribution, is the random access

pilot from the k-th device, and wt
p denotes the additive white

Gaussian noise (AWGN) at the BS. The channel vectors can be

modeled as hp,k = τkh̃p,k, where τk is the large-scale fading

caused by the path loss and shadowing fading, and h̃p,k is

the small-scale fading channels [11]. For the typical mMTC

system, only a small subset of devices are activated to access

the BS within a given coherent time interval, and the device

activity indicator can be denoted as

αk =

{
1, if the kth device is active,

0, otherwise,
∀k. (2)

Meanwhile, we define the set of active devices as K =
{k : αk = 1, k = 1, · · · ,K} and the number of active devices

is Ka= |K|. Hence, the received signals from all devices can

be written as

yt
p =

K∑
k=1

αkhp,ks
t
p,k +wt

p = Hps
t
p +wt

p, (3)

in which Hp = [α1hp,1, · · · , αKhp,K ]∈ CM×K , stp =[
stp,1, · · · , s

t
p,K

]T
∈ C

K×1. Furthermore, the received signals

over G (G ≪ K) successive time slots are jointly exploited

to detect the uncoordinated random access devices as

Yp = SpXp +Wp, (4)

where Yp =
[
y1
p, · · · ,y

G
p

]T
∈ CG×M , Sp =[

s1p, · · · , s
G
p

]T
∈ CG×K , Xp = [xp,1, · · · ,xp,K ]T∈ CK×M ,

and xp,k = αkhp,k denotes the channel vector of the k-th

device at the p-th subcarrier.

In this paper, we consider the grant-free random access,

where the indexes set K and channel vector hp,k associated

with the active devices can be jointly estimated from the

noisy measurements Yp and the random access pilot matrix

Sp known at the BS. On the other hand, due to the sporadic

traffic of devices in typical mMTC, only a smaller number of

devices are active, i.e., Ka ≪ K . This observation motivates

us to formulate the joint active devices detection and channel

estimation for massive random access as a CS problem.

Furthermore, we observe that different columns of Xp share

the common support, and {Xp}
P
p=1 have the common sparsity

pattern, namely,

supp {X1} = supp {X2} = · · · = supp {XP } , (5)

which inspires us to solve (4) with the distributed multiple

measurement vector (DMMV) CS theory for further improved

performance [12].

III. CS-BASED MASSIVE RANDOM ACCESS SCHEME

In this section, we propose the DMMV-AMP algorithm

for massive random access, where the sparse traffic observed

from multiple antennas and multiple subcarriers is considered.

Especially, we integrate the hyperparameters learning manner

of AMP with nearest neighbor sparsity pattern learning (AMP-

NNSPL) algorithm [13], [14] into our scheme for further

improved support estimation performance.

A. DMMV-AMP Algorithm

We first consider the massive random access problem for

the p-th subcarrier, where the solution is listed in Algorithm

1 named MMV-AMP algorithm. According to the theory of

statistical signal processing, the minimum mean square error

(MMSE) estimation of (4) is the posterior means, which can

be expressed as

x̂km =
∫
xkmp(xkm|Y)dxkm, ∀k,m, (6)

where the subcarrier index p in xp,km and Yp is dropped to

simplify the notations, and xp,km is the (k,m)-th element of

the matrix Xp. The marginal posterior probability is calculated

by p(xkm|Y) =
∫
p(X|Y)dX\km

, which involves the multi-

dimensional integrals, and the X\km denotes the collection

of {xij}
1≤i≤K,i6=k
1≤j≤M,j 6=m. The joint posterior probability can be

computed according to Bayesian rule in a factored form as

p(X|Y) =
1

Z

G∏

g=1

M∏

m=1

p(ygm|X)

K∏

k=1

M∏

m=1

p0(xkm), (7)

in which Z is the normalization factor. In this paper, we

consider a flexible spike and slab prior distribution which can

match the real distribution of channels well

p0(X) =

K∏

k=1

M∏

m=1

[(1− λkm)δ(xkm) + λkmf(xkm)], (8)

where λkm ∈ (0, 1) is the sparse ratio, i.e., the probability

of xkm being nonzero, δ(xkm) is the Dirac delta function,

f(xkm) is the distribution of the nonzero entries. Under the

assumption of AWGN, the likelihood function of ygm can be

expressed as

p(ygm|X) = 1√
2πσ2

exp

(
− 1

2σ2

∣∣∣∣ygm −
∑
k

Sgkxkm

∣∣∣∣
2
)
,

(9)

where σ2 is the variance of noise. As the marginal probability

is hard to compute, we resort to the belief propagation (BP),

which provides low-complexity heuristics for approximating

p(xkm|Y). A key remark is that AMP decouples the matrix

estimation problem (4) into KM scalar problems in the

asymptotic regime, i.e., K → ∞ while λ is fixed, and the

posterior distribution of xkm is approximated as [?], [15]

p(xkm|Rt
km

,Σt
km

) =
1

Z
p0(xkm)CN (xkm;Rt

km
,Σt

km
), (10)

where t denotes the t-th iteration, Rt
km

and Σt
km

are calculated

as step 4 in Algorithm 1. We have the assumption that

f(xkm) = CN (xkm;µ, τ), which is a flexible prior model

for the channels. By exploiting this prior model, the posterior

distributions are obtained by (10) as

p(xkm|Rt
km

,Σt
km

) = (1−πt
km,

)δ(xkm)

+ πt
km

N (xkm;At
km

,∆t
km

),
(11)

where

At
km

=
τRt

km +Σt
kmµ

Σt
km + τ

, ∆t
km

=
τΣt

km

τ +Σt
km

,



L =
1

2
ln

Σt
km

Σt
km + τ

+
|Rt

km|
2

2Σt
km

−
|Rt

km − µ|
2

2(Σt
km + τ)

,

πt
km =

λt
km

λt
km

+(1−λt
km

) exp(−L) , (12)

in which πt
km is the equivalent sparse ratio. The posterior mean

and posterior variance can now be explicitly calculated as

ga
(
Rt

km
,Σt

km

)
= πt

km
At

km
, (13)

gc
(
Rt

km
,Σt

km

)
= πt

km
(
∣∣At

km

∣∣2 +∆t
km

)− |ga|
2
. (14)

Thus, the AMP iterations can be calculated in the matrix-

vector forms instead of the integrals. However, conventional

AMP algorithm assumes full knowledge of the prior dis-

tribution and noise variance, which is an impractical as-

sumption. Resorting to the EM algorithm, the DMMV-AMP

algorithm can learn the unknown hyperparameters, i.e., θ ={
µ, τ, σ2, λkm, ∀k,m

}
, which consists of two steps

Q(θ,θt) = E (ln p(X|Y)|Y; θt) , (15)

θt+1 = argmax
θ

Q (θ,θt) , (16)

where E (·|Y; θt) denotes expectation conditioned on mea-

surements Y with parameters θt. Two problems arise in

the EM algorithm, the computation of p(X|Y; θt) is high

complexity and the joint optimization of θ is difficult. How-

ever, the approximation of p(X|Y; θt) is given by the AMP

as (10). Moreover, we resort to incremental EM algorithm

[16], i.e., θ is updated one element at a time while other

parameters are fixed. By taking the derivative of (15) where

the fixed parameters are considered as constant and zeroing

the derivative, the update rules of the hyperparameters are

obtained as

(σ2)t+1 = 1
GM

∑
g

∑
m

[
|ygm−Zt

gm|
2

|1+V t
gm/(σ2)t|2

+
(σ2)

t
V t
gm

(σ2)t+V t
gm

]
,

(17)

τ t+1 =

∑

k

∑

m

πt
km

[

|µt−At

km
|2+∆t

km

]

∑

k

∑

m

πt
km

, (18)

µt+1 =

∑

k

∑

m

πt
kmAt

km
∑

k

∑

m

πt
km

, λt+1
km = πt

km. (19)

As the EM algorithm may converge to the local extremum of

the likelihood function, the initialization of the hyperparame-

ters is very important, which are given as

λ0
km = λ0 = G

K

{
max
c>0

1−2K[(1+c)2Φ(−c)−cφ(c)]/G
1+c2−2[(1+c)2Φ(−c)−cφ(c)]

}
,

(20)

(σ2)0 = 1
M

∑
m

‖ym‖2

(SNR0+1)G
, (21)

τ0 = 1
M

∑
m

‖ym‖2

2
−M(σ2)

0

‖S‖2
F
λ0

, µ0 = 0, (22)

where Φ(−c) and φ(c) are, respectively, the cumulative dis-

tribution function and the probability density function of the

Algorithm 1 MMV-AMP Algorithm

Input: Noisy observation Yp, pilot matrix Sp, the maximum

number of iteration Tmax and termination threshold ε.

Output: The estimated channel vectors x̂k, ∀k.

1: Set t = 1, x̂1
km =

∫
xkmp0(xkm)dxkm, v1km =∫ ∣∣xkm − x̂1

km

∣∣2p0(xkm)dxkm, V 0
gm = 1, Z0

gm = ygm,

∀k,m, g. Initialize the hyperparameters as (20)-(22).

2: repeat

3: Factor nodes update: g = 1, · · · , G; m = 1, · · · ,M
V t
gm =

∑
k

|Sgk|
2vtkm

Zt
gm =

∑
k

Sgkx̂
t
km −

V t
gm

(σ2)t+V t−1

gm

(ygm − Zt−1
gm )

4: Variable nodes update: k = 1, · · · ,K; m = 1, · · · ,M

Σt
km =

[
∑
g

|Sgk|2
(σ2)t+V t

gm

]−1

Rt
km = x̂t

km +Σt
km

∑
g

S∗
gk(ygm−Zt

gm)

(σ2)t+V t
gm

x̂t+1
km = ga(R

t
km,Σt

km)
vt+1
km = gc(R

t
km,Σt

km)
5: Update the hyperparameters as (17)-(19), t = t+ 1.

6: until t > Tmax or

∥∥∥X̂t+1
p − X̂t

p

∥∥∥
F
< ε
∥∥∥X̂t

p

∥∥∥
F

.

7: return x̂km, ∀k,m

standard normal distribution, c denotes the maximum sparse

ratio with fixed G/K , and SNR0 = 100.

Moreover, the MMV-AMP algorithm is further extended

to the distributed model with all subchannel matrix Xp,

∀p ∈ [P ] being jointly estimated, which is termed as the

DMMV-AMP algorithm. For all subcarriers, the messages are

parallelly updated as step 3, step 4 in Algorithm 1. Notice

that the columns of channel matrix Xp share the common

support, which can be utilized to improve the accuracy of the

support estimation. We further exploit the common sparsity

described in (5), and the estimated sparse ratio is updated by

λ̂t+1
km =λ̂t+1

k = 1
MP

∑
p

∑
m

πt
p,km. The modified update rules of

the mean and the variance of nonzero entries are written as

µt+1 = 1
P

∑
p
µt
p, τ t+1 = 1

P

∑
p
τ tp. (23)

Additionally, compared with conventional AMP-based solu-

tions, we consider the more practical frequency-selective fad-

ing channels, thus the equivalent signal-to-noise ratio (SNR)

varies with the shubcarrier index p. We assume there is an

adaptive power control at the BS to eliminate the effect of the

large scale fading, and all the subcarriers have the same signal

power, thus the frequency-selective fading effect is included

in the different noise variances
(
σ2
)t
p

which are respectively

calculated as (17). With the estimated channel matrix X̂n

and the characteristic of the sparsity pattern, we develop a

threshold-based activity detector defined as follows

α̂k =





1,
∑
p

∑
m

r(x̂p,km) ≥ pthMP,

0,
∑
p

∑
m

r(x̂p,km) < pthMP.
(24)



In (24), r(·) denotes a mapper where r(x̂km) = 1 if |x̂km| >
10−10, otherwise r(x̂km) = 0, and pth is a tunable parameter,

which will influence the probability of missed detection and

false alarm. In this paper, we consider pth = 0.99. Finally,

given that the k-th device is declared active, its channel is

estimated as ĥp,k = x̂p,k, where x̂p,k is the k-th row of the

estimated channel matrix X̂p.

B. State Evolution

Statistical properties of AMP algorithms allow us to accu-

rately analyze their performance in the asymptotic regime [17].

In this subsection, we use SE to characterize the mean square

error (MSE) performance of the proposed scheme. The MSE

of the estimation and the variance of the estimated signal are

defined as

Et =
1

KM

∑

k

∑

m

∣∣x̂t
km − xt

km

∣∣2, V t =
1

KM

∑

k

∑

m

vtkm.

Define the random variable X0 ∼ p0 (X), Z ∼ CN (z; 0, 1),
then the mean and variance of the posterior distribution are

respectively expressed as [17]

Rt = x0 +

√
σ2
0 + Et

G/K
z, Σt =

(σ2)
t
+ V t

G/K
, (25)

which show that the AMP algorithm decouples the vector or

matrix estimation problem into independent scalar problems,

σ2
0 = 1/SNR, and the Et and V t can be updated as

Et = E

[∣∣ga(Rt, Σt)− x0

∣∣2
]
, V t = E

[
gc(R

t,Σt)
]
, (26)

with E [·] denoting the expectation with respect to the random

variable X0 and Z . In contrast to the conventional AMP

algorithms assuming full knowledge of the prior distribution,

the SE of DMMV-AMP agorithm also need to track the update

rules of the hyperparameters θ, which are given as follows

πt+1 = E
(
πt
)
, τ t+1 = E

(
τ t
)
, µt+1 = E

(
µt
)
, (27)

(
σ2
)t+1

=
σ2
0 + Et

[
1+V t/(σ2)

t
] +

(
σ2
)t
V t

(σ2)
t
+ V t

, (28)

where πt, τ t, µt are calculated as (12), (18) and (19).

IV. SIMULATION RESULTS

In this section, we provide the simulated and analytical

results of the proposed scheme. Consider a uplink mMTC

system with one BS equipped with M = 32 antennas and

P pilots are uniformly allocated in N = 2048 subcarriers. We

assume K = 1000 potential devices are randomly distributed in

the cell with radius 1km and Ka = 100 devices are active at a

time. The carrier frequency is 2GHz, the bandwith is 10MHz,

and the received signal-to-noise ratio is SNR = 20dB. We set

Tmax = 200 and ε = 10−5. The performance is evaluated by

the probability of error detection Pe and the normalized MSE
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Fig. 1. The probability of error de-
tection comparison as the function
of G.
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Fig. 2. The NMSE performance
comparison and the SE of DMMV-
AMP.

(NMSE) under various time overhead G and pilot sequence

P , which are defined as

Pe =

∑
k

|α̂k − αk|

K
, NMSE = 10 log

∑
p

∥∥∥X̂p −Xp

∥∥∥
2

F
∑
p
‖Xp‖

2
F

.

Fig. 1 examines the performance of device activity detector

achieved by the DMMV-AMP algorithm and OMP algorithm

[18]. It can be observed that the Pe of DMMV-AMP based

scheme decreases over G rapidly, but Pe of the OMP based

scheme remains unchanged when G < 110. There exists a

significant performance gap between the DMMV-AMP based

scheme and the OMP based scheme when G > 80, which

shows that DMMV-AMP based scheme can significantly

reduce the access latency when the same performance is

considered. Further, with the fixed M , when the common

support among multiple carriers is leveraged, the performance

can be further improved.

Fig. 2 verifies the NMSE performance of the proposed

scheme, OMP based scheme and the oracle LS based scheme

with the known support set of the sparse channel matrix.

It shows that when time overhead is large enough, both

DMMV-AMP algorithm and OMP algorithm can approach the

performance of the oracle LS based scheme, since the support

is estimated exactly in this case. However, the proposed

scheme outperforms the OMP based scheme when G < 140,

and its performance becomes better when P increases. An

important observation is that when the pilot length is less then

the active devices (G < Ka), the proposed scheme can still

work very well by exploiting the structured sparsity shared

by different subcarriers and receiver antennas. The proposed

DMMV-AMP based scheme can even outperforms the orale

LS when G < 100. In addition, the performance of the

proposed scheme is well predicted by the sate evolution when

the time overhead is large enough.

V. CONCLUSION

A CS-based massive random access scheme has been pro-

posed for uplink mMTC systems, which can significantly

reduce the access latency. By exploiting the structured sparsity

among multiple BS antennas and multiple carriers, we propose

a DMMV-AMP algorithm, and its SE is also derived to analyze

the performance. Simulation results demonstrate that the pro-



posed scheme outperforms its counterparts with significantly

reduced access latency.
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