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ABSTRACT

This paper puts forth new recovery guarantees for the source
separation problem in the presence of side information, where
one observes the linear superposition of two source signals
plus two additional signals that are correlated with the mixed
ones. By positing that the individual components of the mixed
signals as well as the corresponding side information signals
follow a joint Gaussian mixture model, we characterise nec-
essary and sufficient conditions for reliable separation in the
asymptotic regime of low-noise as a function of the geometry
of the underlying signals and their interaction. In particular,
we show that if the subspaces spanned by the innovation com-
ponents of the source signals with respect to the side informa-
tion signals have zero intersection, provided that we observe
a certain number of measurements from the mixture, then we
can reliably separate the sources, otherwise we cannot. We
also provide a number of numerical results on synthetic data
that validate our theoretical findings.

1. INTRODUCTION

Source separation is the task that involves unmixing a mixture
of signals into its constituents. It arises in many applications
such as audio source separation [1], multiuser digital com-
munication systems [2], cancer genetics [3], and more. The
current literature is mostly focused on blind source separa-
tion (BSS), where one aims to recover the unobserved source
signals given their linear mixtures. The BSS problem is
intrinsically an ill-defined inverse problem, which requires
some prior knowledge or additional assumptions in order to
be solved.

Several methods have attempted to address the BSS prob-
lem by imposing different constraints on the source signals.
A widely used technique for BSS is independent compo-
nent analysis (ICA), where the source signals are separated
by minimizing the mutual information between the sources
under the assumption that the mixture components are non-
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Gaussian and statistically independent [4]. Another com-
monly used constraint in BSS is sparsity [5], where the BSS
is solved by exploiting the fact that signals can often be
described as linear combinations of a few atoms from a dic-
tionary. Morphological component analysis [6], which has
been developed to address the BSS problem, exploits both
sparsity and morphological diversity.

There are various scenarios however where one can lever-
age additional information to aid source separation [7–10].
This framework is known as informed source separation and
is mostly applied in audio source separation applications,
where the audio objects are known in the encoding stage
and a small amount of side information is transmitted to the
decoder along with the mixture [11]. More recently, [10]
proposed a novel coupled dictionary approach to exploit side
information in separating X-ray images. The proposed ap-
proach couples the two image modalities, X-ray and RGB, by
using a coupled dictionary learning algorithm. The beneficial
use of side information in inverse problems has been well
studied in previous works [12,13], where it has also been the-
oretically and empirically proven that, in the presence of side
information, fewer measurements are necessary and sufficient
for perfect recovery.

This paper also studies source separation in the presence
of side information. However, we stress that the primary aim
of this paper is not to compare the performance of the pro-
posed separation algorithm with the current state-of-the-art,
but rather to analytically characterize the identifiability con-
ditions of the source separation problem without and in the
presence of side information in a general framework, a case
which has never been treated in the literature, to the best of
our knowledge.

In contrast with other works [7–10], we assume a joint
Gaussian mixture model (GMM) to relate the individual com-
ponents of the mixture to the side information. The GMM can
be seen as the Bayesian counterpart of the union-of-subspaces
model where each subspace corresponds to the image of the
(possibly low rank) covariance matrix of each Gaussian com-
ponent within the GMM [13, 14].The choice of this model
is motivated by its ability to provide state-of-the-art results in
different applications such as image processing [15,16], video
compression [17] and dictionary learning [14, 18]. Moreover,
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using GMMs enables us to provide both necessary and suffi-
cient conditions for the separation error to approach zero in
the asymptotic regime of low noise.

We adopt the following notation throughout the paper:
The identity matrix of dimension n × n is denoted by In .
The operators rank and Moore-Penrose pseudoinverse are de-
noted by rank(·) and (·)† respectively. Im(·) denotes the im-
age of a matrix and dim(·) denotes the dimension of a linear
subspace. The Gaussian distribution with mean µ and covari-
ance matrix Σ is denoted by N (µ,Σ) and E(·) denotes the
expectation operator.

2. PROBLEM STATEMENT

We study a source separation problem where one aims to de-
compose a mixture of two signals into its constituents from
a set of linear compressive measurements. In particular, we
consider a standard linear mixing model:

v = Φ(x1 + x2) + n, (1)

where Φ ∈ Rm×nx represents the measurement matrix,
drawn from a rotationally invariant distribution, n is a
zero-mean white Gaussian noise with the variance σ2, i.e.,
n ∼ N (0, σ2Im) The source signals x1, x2 are random
vectors taking values in Rnx . In this model m represent the
number of random measurements extracted from the linear
mixture, where we assume m < nx.

We also assume that the decoder has access to further
noisy measurement vectors y1 and y2, where y1 ∈ Rny1

is correlated with x1, y2 ∈ Rny2 is correlated with x2 and
(x1,y1) and (x2,y2) are statistically independent.

We further assume that the source signals and side-
information signals follow a joint GMM. In particular, we
consider the sets of labels C1, C2 and S1, S2, where C1 and C2
are associated with the source signals x1 and x2, respectively,
and S1 and S2 correspond to the side information signals y1

and y2, respectively. Then, we assume that x1 and y1 follow
a joint Gaussian mixture distribution, given by:

p(x1,y1) =

K1∑
k1=1

J1∑
j1=1

pC1,S1(C1 = j1, S1 = k1)

p(x1,y1|C1 = j1, S1 = k1), (2)

where C1 ∈ C1 = {1, . . . , J1} and S1 ∈ S1 = {1, . . . ,K1}.
In this model, the probability distribution of (x1,y1) condi-
tioned on (C1, S1) = (j1, k1) is a zero-mean 1 multivariate
Gaussian,

x1,y1|C1 = j1, S1 = k1 ∼ N (0, Σ̄(j1k1)
x1y1 ), (3)

where Σ̄
(j1k1)
x1y1 =

[
Σ

(j1k1)
x1 Σ

(j1k1)
x1y1

Σ
(j1k1)
y1x1 Σ

(j1k1)
y1

]
.

1In this work, we concentrate on zero mean signals, but the results can be
also generalized from zero to non-zero mean signals.

In the same way we also model the distribution of (x2,y2)
using the GMM model given by:

p(x2,y2) =

K2∑
k2=1

J2∑
j2=1

pC2,S2(C2 = j2, S2 = k2)

p(x2,y2|C2 = j2, S2 = k2), (4)

where C2 ∈ C2 = {1, . . . , J2} and S2 ∈ S2 = {1, . . . ,K2},
and accordingly,

x2,y2|C2 = j2, S2 = k2 ∼ N (0, Σ̄(j2k2)
x2y2 ), (5)

where, Σ̄
(j2k2)
x2y2 =

[
Σ

(j2k2)
x2 Σ

(j2k2)
x2y2

Σ
(j2k2)
y2x2 Σ

(j2k2)
y2

]
. Note that, condi-

tioned on the class labels (C1, C2, S1, S2) = (j1j2k1k2) ∈
L = C1 × C2 × S1 × S2, the joint distribution of two source
signals

[
xT1 xT2

]T
and two side-information signals

[
yT1 yT2

]T
follows a zero mean Gaussian distributionN (0,Σ

(j1,j2,k1,k2)
xy ).

with covariance:

Σ(j1j2k1k2)
xy =


Σ

(j1k1)
x1 0 Σ

j1k1)
x1y1 0

0 Σ
(j2k2)
x2 0 Σ

(j2k2)
x2y2

Σ
(j1k1)
y1x1 0 Σ

(j1k1)
y1 0

0 Σ
(j2k2)
y2x2 0 Σ

(j2k2)
y2

 .
It will be convenient to re-write the measurement model as
follows:

w = Φ0s + n0, (6)

where n0 ∼ N (0, σ2Im+ny1+ny2
) and,

Φ0 =

Φ Φ 0 0
0 0 Iny1

0
0 0 0 Iny2

 s =


x1

x2

y1

y2

w =

 v
y1

y2

 . (7)

Here, we have assumed that the side information signals are
contaminated with additive Gaussian noiseN (0, σ2Iny1

+ny2
).

The goal of source separation in this case is to recover
x =

[
xT1 xT2

]T
given w and separation performance is quan-

tified via the reconstruction error:

MMSEx|w(σ2) = E
[
‖x− E[x|w]‖2

]
. (8)

In particular, we will be providing necessary and sufficient
conditions for the reconstruction error to approach zero as
σ2 → 0. Such conditions are expressed in terms of the num-
ber of measurements m and quantities that are related to the
geometry of the signals and the measurement matrix. In par-
ticular we will be using the following quantities:

• r(jiki)xi = rank(Σ
(jiki)
xi ) represents the dimension of the

subspace spanned by the source signal xi and r(jiki)yi =

rank(Σ
(jiki)
yi ) represents the dimension of the subspace

spanned by the side information signal yi, identified by
class labels Ci = ji and Si = ki.



• r(jiki)xiyi = rank(Σ̄
(jiki)
xiyi ) represents the dimension of the

subspace spanned collectively by the source signal xi
and the side information signal yi, identified by the la-
belsCi = ji andCi = ki. The superscripts are dropped
when the results hold for all possible choice of labels.

We are especially interested in the scenario where the covari-
ance matrices Σ

(j1k1)
x1 , Σ

(j1k1)
y1 , Σ

(j1k1)
x1y1 , Σ

(j2k2)
x2 , Σ

(j2k2)
y2 and

Σ
(j2k2)
x2y2 have low rank, strictly smaller than the ambient di-

mensions, and their associated images are subspaces drawn
uniformly at the random from the corresponding Grassmann
manifold2.

3. SOURCE SEPARATION WITH SIDE
INFORMATION

We now put forth necessary and sufficient conditions for reli-
able separation for two scenarios: i) source signals and side-
information signals are drawn from a joint Gaussian distribu-
tion; ii) source signals and side-information signals follow the
GMM described in Section 2 . It is clear that the former is a
special case of latter for J1 = K1 = J2 = K2 = 1.

3.1. Gaussian Sources

We consider conditions for reliable separation of Gaussian
sources in the presence of side information. We denote the
MMSE associated to the separation of Gaussian signals with
side information by MMSEGx|w. This leads to the following
theorem.

Theorem 1. Consider the measurement model in (6), where
(x1,y1) and (x2,y2) are drawn from joint Gaussian distribu-
tions described in (3) and (5), respectively. Then with proba-
bility 1, it holds:

lim
σ2→0

MMSEGx|w(σ2) = 0 ⇐⇒

m ≥ rx1y1 + rx2y2 − ry1 − ry2 and Dx|y = 0, (9)

where,Dx|y = dim(Im(Σx1|y1)∩ Im(Σx2|y2)) and Σx1|y1 =

Σx1
−Σx1y1Σ

†
y1Σy1x1

, Σx2|y2 = Σx2
−Σx2y2Σ

†
y2Σy2x2

.

Remark 3.1. In the case where side information is not avail-
able,i.e., y1 = y2 = 0, irrespective of the number of mea-
surements, a reliable separation of source signals is only feasi-
ble provided that the range spaces associated to the source sig-
nals have no overlap, i.e., Dx = dim(Im(Σx1

)∩ Im(Σx2
)) =

0. Under this condition, rx1 + rx2 measurements are neces-
sary and sufficient to drive the MMSE to zero in the low-noise
regime.

2Note that the assumption on the subspaces associated with covariance
matrices is plausible as it reflects well the behaviour of many real data en-
sembles for various applications such as face recognition, digits classifica-
tion and so on [19]. Moreover, it simplifies the statement of some of our
theoretical results

Interestingly, Theorem 1 shows that the presence of side-
information not only reduces the number of measurements,
necessary and sufficient for reliable separation, but also re-
laxes the condition on the interaction between the subspaces
associated with the two source signals. More intuitively, if
the subspaces associated with the source signals intersect, we
can still reliably separate the source signals in the presence of
side information provided that such intersection is covered by
some correlated portion of the side information (as suggested
by the conditions in (9)).

Moreover under condition Dx|y = 0, Theorem 1 shows
that we can reliably separate the source signals in the pres-
ence of the side information provided that we observe at least
rxy−ry1−ry2 measurements extracted from the mixture, i.e.,
the dimension of the projected mixture is equal to or greater
than the sum of the dimensions of two spaces spanned by the
innovation components of the source signals with respect to
side information signals.

3.2. GMM Sources

We now consider conditions for reliable separation of GMM
sources, by focusing in scenarios where the side information
is available.

The challenge relates to the absence of closed-form ex-
pressions for the MMSE in (8) associated with GMM sources.
Therefore, to derive necessary conditions, we will be working
with the following MMSE lower bound given by:

MMSEGMx|w (σ2) = E
[
‖x− x̂(w)‖2

]
=∑

(j1,k1,j2,k2)∈L

pC1,S1,C2,S2(j1, k1, j2, k2)

E
[
‖x− x̂(w)‖2|C1 = J1, S1 = K1, C2 = J2, S2 = K2

]
≥

∑
(j1,k1,j2,k2)∈L

pC1,S1,C2,S2
(j1, k1, j2, k2)MMSEGx|w(σ2),

where MMSEG(j1,k1,j2,k2)
x|w (σ2) represents the MMSE asso-

ciated with the recovery of the Gaussian component corre-
sponding to the label (j1, k1, j2, k2) of the GMM signal given
the measurements of the linear mixture and given the side in-
formation. This leads immediately to the following theorem.

Theorem 2. Consider the measurement model in (6), where
the source signals x1, x2 and the side-information signals y1,
y2 are drawn from the joint GMM distribution described in
Section 2 and (x1,y1) and (x2,y2) are statistically indepen-
dent. Then, with probability 1, it holds:

lim
σ2→0

MMSEGMx|w (σ2) = 0⇒

m ≥ r(j1k1)x1y1 +(j2k2)
x2y2 −r

(j1k1)
y1 − r(j2k2)y2 and D(j1k1j2k2)

x|y = 0

2The inequality is the consequence of the optimality of the MMSE esti-
mator for the Gaussian sources and side information.



∀(j1k1j2k2) ∈ L, where D(j1k1j2k2)
x|y = dim(Im(Σ

(j1k1)
x1|y1 ) ∩

Im(Σ
(j2k2)
x2|y2 )) and Σ

(j1k1)
x1|y1 = Σ

(j1k1)
x1 −Σ

(j1k1)
x1y1 Σ

(j1k1)
y1

†
Σ

(j1k1)
y1x1 ,

Σ
(j2k2)
x2|y2 = Σ

(j2k2)
x2 −Σ

(j2k2)
x2y2 Σ

(j2k2)
y2

†
Σ

(j2k2)
y2x2 .

In turn, to derive sufficient conditions, we will be consid-
ering an MMSE upper bound, MSECS(σ2), associated with
a specific two-step classify and separate (CS) decoder which
operates in two main steps as follows:

• Classification step: First the label quadruple associ-
ated to the source signals and side information signals
(Ĉ1, Ĉ2, Ŝ1, Ŝ2) is estimated via a maximum a posteri-
ori (MAP) classifier.

• Separation step: Second, the source signals x1 and x2

are recovered via the Gaussian conditional mean esti-
mator associated to class labels (Ĉ1, Ĉ2, Ŝ1, Ŝ2).

This now leads to the following theorem.

Theorem 3. Consider the measurement model in (6), where
the source signals x1, x2 and the side-information signals y1,
y2 are drawn from the joint GMM distribution described in
Section 2. Then, with probability 1, it holds ∀(j1k1j2k2) ∈
L:

m > r(j1k1j2k2)xy − r(j1k1)y1 − r(j2k2)y2 and D(j1k1j2k2)
x|y = 0

⇒ lim
σ2→0

MMSEGMx|w (σ2) = 0

The results from Theorems 2 and 3 state that the spaces
spanned by conditional covariances, i.e., the space spanned
by signal components which are not correlated with the side
informations, ought to have no intersection for all possible la-
bel quadruples (C1, S1, C2, S2) for reliable separation. More-
over, the measurements extracted from the mixture should be
enough to capture the components of source signals which
are not correlated with the side informations for all Gaus-
sian components. Notably, the provided conditions for reli-
able separations are shown to be tight, as the necessary con-
ditions are only one measurement away from the sufficient
conditions.

4. SIMULATION RESULTS

We now provide some numerical results to illustrate our the-
ory. In particular, we will show how the interplay between
the number of linear measurements from the mixture and the
properties of the individual components of the mixture im-
pacts on the quality of separation. In our simulations, we use
the optimal conditional mean estimator to recover the indi-
vidual signal components from the observations. We also use
random measurement matrices whose entries are i.i.d., Gaus-
sian random variables with zero mean and unit variance which
have been normalized so that it holds ΦΦT = I. The low

Fig. 1: MMSE associated to the separation of two GMM
sources vs. 1/σ2 for different number of random measure-
ments m = 2 to m = 8. The actual MMSE is represented by
solid lines, the CS upper bound is represented by circled solid
lines, and the lower bound by crossed solid lines.

rank covariance matrices are generated by the product of a
random matrix with its transpose where the entries of the ma-
trix are i.i.d Gaussian random variables with zero mean and
unit variance. Fig. 1 shows the MMSE associated with the
separation of GMM signals with J1 = J2 = K1 = K2 = 2,
and with dimensions nx1

= nx2
= 10, in the presence of

side informations where rx1y1 = rx2y2 = 3, rx1
= rx2

= 2
and ry1 = ry2 = 2 for all class labels. We report the actual
values of the MMSEGMx|w (σ2), the lower bound and the upper
bound MSECS(σ2) associated to the classify and separate de-
coder. We observe that the reliable separation is achieved with
m = 3 for the lower bound, the upper bound and the actual
MMSE, although the curves offset are slightly different.

5. CONCLUSION

We proposed a novel framework to incorporate side informa-
tion in the source separation problem by using a joint GMM
for the source and side information signals. Our main contri-
bution is the characterization of necessary and sufficient con-
ditions for reliable separation of source signals from a linear
mixture in the presence of side information. We proved an-
alytically that the presence of side information not only re-
duces the number of measurements required for reliable sep-
aration of the source signals, but also alleviates the limitations
of the source separation problem in terms of the geometrical
properties of sources. We showed via a range of simulation
results on synthetic data that our theory is aligned with actual
simulation results.
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