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The Greedy Dirichlet Process Filter -
An Online Clustering Multi-Target Tracker

Benjamin Naujoks, Patrick Burger and Hans-Joachim Wuensche

Abstract— Reliable collision avoidance is one of the main
requirements for autonomous driving. Hence, it is important to
correctly estimate the states of an unknown number of static
and dynamic objects in real-time. Here, data association is a
major challenge for every multi-target tracker. We propose
a novel multi-target tracker called Greedy Dirichlet Process
Filter (GDPF) based on the non-parametric Bayesian model
called Dirichlet Processes and the fast posterior computation
algorithm Sequential Updating and Greedy Search (SUGS).
By adding a temporal dependence we get a real-time capable
tracking framework without the need of a previous clustering
or data association step. Real-world tests show that GDPF
outperforms other multi-target tracker in terms of accuracy
and stability.

Index Terms— Autonomous driving, multi-target tracking,
dirichlet processes, clustering

I. INTRODUCTION

Every autonomous car needs a collision-avoidance system.
Therefore, it has to detect and track static and dynamic objects.
In this context, single-target tracking is well researched and
a lot of progress has been made in the past decades [1], [2],
[3].

However, multi-target tracking is a far more challenging
task, as there is an unknown and time-changing number of
targets [2], [4]. In every time step, new targets have to be
initialized or pruned. Additionally, there exist clutter measure-
ments which are not associated to any target. Furthermore,
targets are temporally occluded, due to the specific sensor field
of view. Consequently, the measurement to target association
is a major challenge and multi-target tracker have to tackle
all the previously mentioned aspects.

In this paper, we propose a novel filter framework, GDPF,
based on non-parametric Bayesian model called Dirichlet
Processes [5] and the fast posterior computation algorithm
Sequential Updating and Greedy Search (SUGS) [6]. The
GDPF handles the data association in a probabilistic manner
without the need of a previous clustering step. Furthermore,
GDPF can deal with over segmentation of a previous
clustering step. Figure 1 shows an exemplary use case of
the GDPF in a suburban area, which was recorded with
a roof-mounted Velodyne HDL64-S2 [7] of our institute’s
autonomous car MuCAR-3 [8].

This paper is structured as follows: Section II starts
with discussing related work. Next, Section III shows the
GDPF algorithm and explains its single steps. Moreover, in
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Fig. 1: The result of the GDPF in a suburban area. Green boxes
denote alive static targets, whereas blue boxes are moving targets.

Section IV the performance of the proposed filter is evaluated
against other filter frameworks in a real-world scenario. Lastly,
Section V summarizes the paper and proposes future work.

II. RELATED WORK

Multi-target tracker can be divided into different measure-
ment processing strategies. One strategy for LiDAR sensors is
to firstly segment the point cloud into ground plane as well as
obstacles and then cluster the remaining obstacle points into
coherent objects [9], [10]. Afterwards, these objects are used
as measurements in multi-target tracking [4], [11], [12]. The
disadvantages of this approach are the need of an additional
clustering algorithm and the lack of implicit handling of
possible segmentation errors.

Another strategy is called extended target tracking. Here,
the target’s appearance is modeled in the tracking algorithm
and multiple detections can be associated to targets. Multi-
Hypothesis tracker can be extended for this use case [4],
[13], [14]. Our main contribution is a multi-target tracker
with probabilistic association approach which utilizes the
knowledge of previous associations through the usage of
Dirichlet Processes. Furthermore, it is applicable with both
mentioned measurement processing strategies. In contrast to
other DP based methods, which utilize Monte-Carlo based
methods [15], [16], we use the fast greedy posterior inference
of the clustering method SUGS [6] and extend the algorithm
with a temporal dependence. Lastly, the GDPF works under
real-time constraints even for hundreds of targets.



III. FILTER
A. Temporally-Dependent Dirichlet Process Mixture Model

Before our GDPF algorithm is introduced some basic
definitions are explained. A Dirichlet Process (DP) is a
Bayesian non-parametric model. Basically, it is a distribution
over distributions. Furthermore, DPs have an infinite amount
of mixture components, but only finite ones are activated by
observations.

1) Chinese Restaurant Process: The Chinese Restaurant
Process (CRP) is a realization of a DP. Figuratively speaking,
the CRP can be interpreted as follows: A new customer
(measurement) either chooses a new table with a probability
proportional to concentration parameter & € R or joins a
previously known table with a probability proportional to the
number of occupying customers at the table [6]. Formalizing
this and by marginalizing out the random mixing measure G,
we obtain the DP prediction rule for the assignments of the
measurements y;(t) with ¢ = 1,...,n, n € N is the number
of measurements and time step ¢ [6]:
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where z;(t) : N — K is the cluster indicator, which denotes
the assignment of measurement y; to cluster index k, K; is
the set of cluster indices, 8 are cluster parameters specific
to the cluster with index k& € Ky, 6(0x(t)) is the delta
distribution around 6y (t), ng(t) is the number of assigned
measurements to the cluster with index k and Gy is the
DP base prior. Now, we can define with Equation (1) the
conditional prior distribution on the cluster assignments for
sequentially assigning measurements to the clusters [6]:
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2) Distance Dependent Chinese Restaurant Process: The
distance dependent Chinese Restaurant Process (ddCRP) is
a direct extension of the CRP. It can describe a distribution
over partitions indirectly via distributions over links between
different data measurements. Figuratively speaking, the dd-
CRP links customer to other customers rather than tables [5],
[17]. Tt follows the ddCRP version of the conditional prior
distribution for time step t:
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where j;(¢) is the link assignment between two measurements
Y, Yy, all previous link assignments are denoted by j_; and
dii(yi(t),yi(t)) is a distance dependent probability function.

3) Data To Cluster Assignments: The data to cluster
assignment is dependent on the current cluster parameters
and previous assignments. Therefore, the likelihood is defined
as follows:

Ta(t) = {Th J ke, 4

Algorithm 1 GDPF - Greedy Dirichlet Process Filter
1:1=0
2: for i < #measurements do
3: Choose best label for measurement y; with:

(bl (t) = Bly' i, 20— 1))

kj:

arg max
keKtU{kncw}

4 Update posterior distribution p(0., 4 |yi—1(t), 2(t))
5: end for
6: pruneComponents(7y)

where z(t) denotes all measurement to cluster assignments
for time step t. Moreover, the transition between different
time steps depending on measurement y; is defined as:

T (ty=k = P (2:(t) = k|z(t — 1), 9:(t)
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where p (y;(¢)|0x(t)) is the likelihood of measure-
ment y;(t) dependent on cluster parameters 0y (t) and
p(zi(t) = k|z(t — 1)) is the transition of the cluster assign-
ments between two time steps, which mostly is defined as
uniformly distributed.

4) Kalman Filtering: For state estimation of the dynamical
part £ € R™ of the mixture components, we use the standard
Kalman Filtering approach. Therefore, consider the following
probabilistic and Gaussian state space model for measurement
y and time step ¢ [18]:

p(x(t)|e(t —1)) = N (2(t)|@(t — Dot — 1), Q(t - 1)()6)
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where ®(t — 1) € R™*™ is the transition matrix, C(t) €
R™>™ is the measurement model matrix, Q(¢t — 1) is the
unbiased and Gaussian process noise and R(#) is the unbiased
and Gaussian measurement noise. Naturally, this part can be
extended for non-linear Kalman Filtering. For example, ® (¢ —
1) and C(t) of non-linear dynamic, respectively measurement
models could be approximated by Extended Kalman Filtering
techniques.

B. Greedy Dirichlet Process Filter

Given the previous definitions, we can finally define our
GDPF. Our proposed GDPF is a direct extension of the SUGS
algorithm of [6] by incorporating dynamic and temporal
modeling. The basic procedure of the GDPF is shown in
Algorithm 1. Moreover, the underlying model of the filter is
illustrated in Figure 2. In the following the single steps of
the filter are defined.

1) Choosing the best label: Let y;(t) be the i-th measure-
ment for ¢ = 0,...,n. Then, with Equations (3) and (5)
we get the conditional posterior probability of assigning
measurement y; to cluster k given the data for measurements
Yit) = (yo(t),y1(t),...,y:(t)) and the previous link
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Fig. 2: Graphical model of our GDPF. The numerical indices denote
the corresponding time step. Moreover, rectangles denote repetition
in the model for every cluster/component. Additionally, « is the
concentration parameter which controls the birth of new clusters
and Gy is the base distribution of the model.

Observations

assignments j_;:

p(z(t) = k[Y'(t), 50, 2(t — 1)) =
p(Ji = UJ—ir @) - Ty (1) =k
ZmGKt p(]l = m|j*i7 a) C T2 (t)=m

®)

2) Update: The cluster parameters are updated according
to the following posterior distribution:
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where the first part denotes the generation of new components
with the base prior distribution, the second part includes the
update of the dynamic parameters as well as other cluster
parameters, e.g, existence probability. Finally, the third part
models the time evolution of the cluster parameters.

3) Pruning: The easiest way to prune components is
done by erasing the components which have an existence
probability smaller than a death threshold v € R+.

Two exemplary applications are presented in the next
section.

IV. EXAMPLE APPLICATIONS & RESULTS

Our proposed GDPF is examined in a real-world scenario

in a suburban area with passing cars as dynamic objects.

Video footage can be found online!. For computation, we
used a standard office computer with an Intel(R) Core i7
CPU. Moreover, the experiments were recorded with our
institute’s autonomous car MuCAR-3 [19] with roof-mounted
Velodyne HDL64-S2. Furthermore, for the ground truth data
we installed an INS-sensor into our ground-truth object.
The goal of our evaluation is to estimate the x and y
position of our ground truth object without id-switches. We

Thttp://mucar3.de/globalsip2018-gdpf

(a) Measurement assignments to the corresponding clusters.
Different measurements are assigned to the same cluster, which
is indicated by color similarity.

(b) The measurement assignment likelihoods of the bounding
boxes depending on the current cluster parameters are illustrated
as ellipses. This can be seen as a cluster prior.

Fig. 3: The GDPF results with clustered bounding boxes as
measurements.

(a) Measurement (grid cells) assignments to the corresponding
cluster and their ellipses. The same cluster assignment is
denoted by the same color.

(b) The measurement assignment likelihoods of grid cells
depending on the current cluster parameters are illustrated
as ellipses, which again can be seen as a cluster prior.

Fig. 4: The GDPF results with grid cells as measurements. The
grid cells in (a) are associated to the correct component through the
combination of the prior and ddCRP. Furthermore, the object in the
red circle at (b) is correctly segmented through the ddCRP, even
though the assumed prior, illustrated as the blue ellipse, is wrong.



compare our results with the well-known Labeled Multi-
Bernoulli Filter (LMB) [4], its variation the Generalized-
LMB (GLMB) [20] and a classical filtering approach with an
underlying track management [21] denoted as BuTd. As the
other filters need clustered detections, we cluster the point
cloud in coherent objects with the methods of [9], [10], [22].
Then, the x and y positions of the bounding box centers z;’
and z! are used as measurements for the different methods.
Here, the measurement assignment likelihood of Equation (5)
is the following car-model based cluster prior:

( ((wmu—l)—z:ﬂmﬁ <wy(t—1>fz§v’<t>>2)>
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where x,(t — 1) and @, (¢ — 1) are the x and y position of
the kth-component’s state of time step ¢ — 1 and a,b € R are
factors. The ddCRP depends on the relationship (intersections,
distance) between the bounding-box measurements, which is
realized through the signed distance to the nearest side of
the bounding-box to the state. An example can be seen in
Figures 3a and 3b.

Furthermore, a simple constant velocity model with x, y
positions and velocities as state variables for the dynamics
of the tracks [1] is applied. At last, the tracked object which
is the nearest to the ground truth object is evaluated in every
frame.

Additional to the object based filtering, we implemented
a grid based variant, which has grid cells as measurements.
In this case, the link assignment between neighboring grid
cells for the ddCRP is utilized. The measurement assignment
likelihood is again the car-model based prior of Equation (12).
Figures 4a and 4b show an exemplary application of the filter
variant.

Figures 5 and 6 show that GDPF, in both variants,
outperforms the other approaches. It smoothly follows the
ground truth trajectory and has zero, respectively, two id-
switches. Contrary, the LMB and the GLMB have difficulties
to stabilize the track at the beginning of the trajectory with
resulting id-switches. Moreover, the BuTd approach has
a similar estimation quality of the position but many id-
switches, which indicate track losses. Table I confirms the
previous conclusions. Our approach has the smallest RMSE,
where BuTd has a similar result. Furthermore, the LMB has
a significant higher RMSE through the difficulties at the
beginning of the test drive and 69 id-switches. Moreover, we
tested the LMB and GLMB with less detections, considering
only detections which are in a 5 meter radius around the
ground truth object. Here, the LMB has a comparable result
to the BuTd approach with an RMSE of 3.539 meter and
33 id-switches. Furthermore, the GLMB approach has less
id-switches but a higher RMSE. Additionally, the mean
computation time for all steps of the GDPF has been 34ms
and 58ms (grid), for an average of 193 objects.

, (12)

V. CONCLUSION

In this paper, we propose the GDPF a multi-target tracker
based on temporal dependent Dirichlet Process Mixture
Models. The GDPF has the ability to track an unknown
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Fig. 5: The tracked object’s trajectories for every filter. The LMB
particularly has problems at the initialization phase (black). The
green dots correspond to the ground truth trajectory.
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Fig. 6: The tracked object’s id for every filter. The optimal outcome
is no id-switch at all, which means continuous tracking. The GDPF
variants show good performances with only two and zero id-switches.
In contrast, the BuTd and LMB approaches have many tracking
fractions through a lot of id-switches.

Filter RMSE | id-switches
GDPF (bbox) 0.63657 0
GDPF (grid) 0.89681 2

LMB 62.729 69

LMB (low det) 3.539 33
GLMB (low det) 2.334 5
BuTd 0.68749 31

TABLE I: RMSEs resulting from the position errors of the tracked
objects and the corresponding id-switches throughout the test-drive.

number of targets in real-time with a probabilistic data
association approach. We demonstrated improved tracking
results compared to other multi-target tracker. Furthermore,
we have shown the ability to handle non-clustered data, e.g,
grid-cells as measurements as well as previously clustered
objects.

Future work will focus on a classifying extension to utilize
class specific priors in the association step. Furthermore, we
will investigate to integrate an extended object tracking by
modeling the object appearance in the tracking part.
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