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ABSTRACT

In this paper, the focus is on the reconstruction of a diffusive field

and the localization of the underlying driving sources on arbitrary

graphs by observing a significantly smaller subset of vertices of the

graph uniformly in time. Specifically, we focus on the heat diffusion

equation driven by an initial field and an external time-invariant in-

put. When the underlying driving sources are modeled as an initial

field or external input, the sources (hence the diffusive field) can be

recovered from the subsampled observations without imposing any

band-limiting or sparsity constraints. When the diffusion is induced

by both the initial field and external input, then the field and sources

can be recovered from the subsampled observations, however, by

imposing band-limiting constraints on either the initial field or ex-

ternal input. For heat diffusion on graphs, we can compensate for

the unobserved vertices with the temporal samples at the observed

vertices. If the observations are noiseless, then the recovery is exact.

Nonetheless, the developed least squares estimators perform reason-

ably well with noisy observations. We apply the developed theory

for localizing and recovering hot spots on a rectangular metal plate

with a cavity.

Index Terms— Graph signal processing, graph sampling, heat

diffusion, non-bandlimited signals, source localization on graphs.

1. INTRODUCTION

Graph signal processing extends tools from classical signal process-

ing to deal with data defined on networks and other irregular do-

mains [1–3]. We often come across such datasets in many diverse

applications such as environmental sensing, traffic monitoring, map-

ping the human brain [4], cybersecurity [5], and social networks, to

list a few.

Similar to how we understand many physical phenomena by

a partial differential equation that explains the evolution of a spa-

tiotemporal field and relates it to the inducing sources, we can also

understand the temporal evolution of data over a network or an irreg-

ular domain using a partial differential equation. For example, the

heat equation is often used to model the traffic movement, infection

or virus spread, or rumor propagation [5, 6].

In this work, we focus on heat diffusion over networks. Specif-

ically, we are interested in recovering diffusive signals on a graph

by sampling a significantly smaller subset of vertices of the graph.

This essentially amounts to localizing the underlying sources that

drive the diffusion process from the observations that are collected

at a few nodes. Oftentimes, the sources (e.g., traffic bottleneck or

rumor sources) that induce the diffusion process are highly local-

ized in the network or sparse in the vertex domain and hence are

not usually bandlimited. Therefore, we require new sampling and

Software to reproduce the figures in this paper is available at
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recovery methods for graph signals that do not impose any struc-

tural or band-limiting constraints, unlike some of the existing graph

sampling methods [7–9]. Although band-limiting constraints are

not needed for recovering the second-order statistics of a signal de-

fined on a graph from the subsampled observations, the framework

developed in [10] cannot be used for localizing diffusive sources.

Spatio-temporal sampling and reconstruction of diffusive fields on a

regular domain under the assumption that the inducing sources are

sparse are studied in [11, 12]. Assuming that the underlying sources

are known, [13] focuses on estimating the time instance when the

sources appear. In contrast, we will assume that the start time of the

sources are is known.

In this work, we develop a graph sampling method to recover

diffusive fields induced by an initial field and/or an external input

that does not vary with time. The main results of this paper are as

follows. When the underlying driving sources are modeled as an ini-

tial field or external input, we can localize and recover the sources

by sampling a significantly smaller subset of vertices of the graph

uniformly in time and by using a simple least squares estimator. To

do so, we do not impose any constraints on the sources such as spar-

sity or bandlimitedness. Since we can compensate for the unob-

served vertices with the temporal samples at the observed vertices,

we can recover the sources without imposing any constraints. How-

ever, when the diffusion field is due to both the initial field and ex-

ternal input, to reconstruct the diffusive fields from the subsampled

observations, we require either the initial field or external input to

be bandlimited. If the observations are noiseless, then the recovery

is exact. Nonetheless, the developed estimators perform reasonably

well with noisy observations.

Throughout this paper, we will use upper (lower) case boldface

letters to denote matrices (column vectors), and we will denote sets

using calligraphic letters.

2. GRAPH SIGNALS

Consider an undirected graph G = {V, E} with N vertices (or

nodes), where V = {v1, v2, . . . , vN} and E represent the vertex set

and edge set, respectively. Let us denote the graph Laplacian matrix

associated with G as L ∈ R
N×N . A graph signal is a function

x : V → C with x(v) being the value of the function at vertex

v ∈ V . Let us collect the function values {x(vn)}
N
n=1 in a length-N

vector x = [x1, x2, . . . , xN ]T .

For undirected graphs L is real symmetric, and hence admits

an eigendecomposition L = UΛUT with U = [u1, · · · ,uN ] be-

ing the eigenvector matrix collecting the eigenvectors {un}
N
n=1 and

Λ = diag[λ1, · · · , λN ] being the diagonal matrix containing the

corresponding eigenvalues {λn}
N
n=1. Here, diag[·] refers to a di-

agonal matrix with its argument on the main diagonal. The eigen-

vectors and eigenvalues of L provide the notion of frequency in the

graph setting [2, 3]. Specifically, {un}
N
n=1 forms an orthonormal

Fourier-like basis for graph signals with the graph frequencies de-
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noted by {λn}
N
n=1. The graph Fourier transform of x, denoted by

xf , is given by

xf = U
T
x ⇔ x = Uxf . (1)

We say that a graph signal x is bandlimited, if its graph Fourier

transform xf is sparse (i.e., contains a very few nonzero entries).

Due to the uncertainty principle [14], a sparse graph signal x is not

bandlimited in general.

The frequency content of graph signals may be modified using

linear shift-invariant graph filters [15] of the form

H = U diag[hf ]U
T ∈ R

N×N
, (2)

where hf is the frequency response of the graph filter.

3. DATA MODEL

Let us consider a signal x(D, t) in a physical domain D and temporal

domain t. We will assume that x(D, t) obeys the heat equation

∂x(D, t)

∂t
= α∇2

x(D, t) + q(D), (3)

where ∇2 is the Laplace operator, α is the diffusion constant, and

q(D) is the external time-invariant input. When t = 0, x(0) =
x(D, 0) represents the initial field distribution. Without loss of gen-

erality, from now on we will assume α = −1.

To solve such a differential equation on a surface or manifold,

the manifold is discretized (e.g., using a Delaunay mesh), and the

Laplace operator is replaced with a discrete Laplacian matrix (more

specifically, a cotan-Laplacian matrix) denoted by L. Thus, approx-

imating (3) to
∂x(t)

∂t
= −Lx(t) + q, (4)

wherex(t) = [x1(t), . . . , xN (t)]T ∈ R
N and q = [q1, . . . , qN ]T ∈

R
N are signals defined on the graph represented by the Laplacian

matrix L. The differential equation (4) models heat diffusion on

graphs, where the diffusion field is induced by x(0) and q.

The solution to the non-homogenous differential equation (4) is

given by [16]

x(t) = e
−tL

x(0) +

∫ t

0

e
−sL

q ds

= Ue
−tΛ

U
T
x(0) +U

(∫ t

0

e
−sΛ

ds

)
U

T
q

= Ue
−tΛ

xf (0) +U

(∫ t

0

e
−sΛ

ds

)
qf

(5)

where eL = UeΛUT ∈ R
N×N denotes the matrix exponential of

L ∈ R
N×N , x(0) is the initial field distribution at t = 0. Here,

xf (0) = UTx(0) and qf = UT q are, respectively the graph

Fourier transforms of x(0) and q. From (2), we can see that the dif-

fusive field x(t) is obtained by filtering x(0) and q with graph filters

having frequency responses e−tΛ and
∫ t

0
e−sΛ ds, respectively.

Let us introduce the vectors a(t) = [e−λ1t, . . . , e−λN t]T and

b(t) = [ft(λ1), . . . , ft(λN)]T , where

ft(λ) =

∫ t

0

e
−λs

ds =
1− e−tλ

λ

with ft(0) = t, and f0(λ) = 0. We can now express (5) compactly

as

x(t) = U diag[xf (0)]a(t) +U diag[qf ]b(t). (6)

Next, let us sample x(t) uniformly in time at instances {tk =
∆k, k = 1, 2, · · · , T} with step size ∆ to obtain the data matrix

X = [x(t1),x(t2), · · · ,x(tT )] ∈ R
N×T , which is given by

X = U diag[xf (0)]A
T +U diag[qf ]B

T
, (7)

where A = [a(t1),a(t2), . . . ,a(tT )]
T ∈ R

T×N and B =
[b(t1), b(t2), . . . , b(tT )]

T ∈ R
T×N . Also, let us observe a subset

of K out of N mesh points and denote this subset with K ⊆ V ,

where |K| = K. By introducing a selection matrix Φ ∈ {0, 1}K×N

that selects the field values at vertices indicated by K, we can

mathematically relate the subsampled observations to X as

Y = [y(t1),y(t2), · · · ,y(tT )] = ΦX .

In what follows, we will develop estimators to recover x(0) and/or

q(0) from Y .

4. DIFFUSION FIELD INDUCED BY x(0) OR q

In this section, we will develop a simple least squares estimator for

reconstructing the diffusion field induced by x(0) or q from the sub-

sampled data matrix Y . More importantly, we do not impose any

band-limiting constraints on the sources. This means that the sources

may be sparse in the vertex domain and can model localized events

such as rumor or infection sources in a complex network, traffic ac-

cidents in a road network, or diffusion of hot spots on a surface, to

list a few .

Consider the case in which the diffusion field (5) is induced by

only the initial field x(0) and the external input q = 0. From (5)

and (7), we have

Y = ΦX = ΦU diag[xf (0)]A
T
.

Vectorizing Y , we get a system of KT equations in N unknowns

given by

y = vec(Y ) = (A ◦ΦU)xf (0), (8)

where ◦ denotes the Khatri-Rao (i.e., columnwise Kronecker) prod-

uct, vec(·) refers to the matrix vectorization operator. Here, we have

used the property vec(Adiag[b]C) = (CT ◦A)b.

Suppose we choose K and T such that KT ≥ N , and if the

matrix A ◦ ΦU has full-column rank, then we can estimate xf (0)
using least squares as

x̂f (0) = (A ◦ΦU)† y,

and localize the sources as

x̂(0) = Ux̂f (0).

Using this in (5) allows us to compute the diffusive field at any time

t and at all the vertices. When the diffusion field is induced by q

with x(0) = 0, the least squares estimator for q may be developed

along the similar lines.

The rank of the Khatri-Rao product of two matrices A and B

(of appropriate dimensions) with no all-zero column satisfies [17]

rank(A ◦B) ≥ max{rank(A), rank(B)}.

When the sampling time instances {t1, · · · , tT } and the eigenvalues

of L are distinct, then the T ×N Vandermonde matrix A will have

full column rank of N for T ≥ N and by construction does not have

an all-zero column. Therefore, selecting rows of U such that there

are no all-zero columns ensures that the rank of the matrix A ◦ΦU



Fig. 1: Discretized metal plate with a cavity. The red (black) dots

represent the observed (unobserved) vertices.

will be N . In fact, observing only one node uniformly in time might

result in the matrix A ◦ ΦU that has full column rank. However,

in practice, depending on the observation time window, diffusion

constant and the spectrum of L, A might be ill-conditioned. In such

cases, Φ may be designed using sparse sensing (or sensor selection)

techniques (e.g., see [18, 19]) to obtain a full column rank matrix

A ◦ΦU .

5. DIFFUSION FIELD INDUCED BY x(0) AND q

In this section, we consider the case in which the diffusion field

is induced by x(0) and a bandlimited time-invariant input q, and

provide a simple least squares estimator to recover the underlying

sources from the subsampled data matrix Y . Although we restrict

q to be bandlimited, we do not impose any band-limiting or other

structural constraints on x(0). The heat diffusion equation may be

used to understand the movement of traffic in cities. Although the

usual traffic movement may be assumed to be a smooth signal on a

road network, there could exist a localized traffic bottleneck (e.g.,

due to an accident), which is a sparse non-bandlimited graph signal.

Such diffusive fields may be modeled using (4) with a sparse x(0)
representing the localized events and a bandlimited q representing

the usual activity.

Recall that if q is bandlimited, then qf will be sparse.Without

loss of generality, let us assume that the first P entries of qf =

[qf,1, qf,2, . . . , qf,N ]T are nonzero. Then, the bandlimited (or

smooth) signal q may be expressed as a linear combination of the

first few eigenvectors as

q =

P∑

i=1

uiqf,i = UPqf,P , (9)

where UP ∈ R
N×P .

Vectorizing Y in (7), we have

y = vec(Y ) =
[
A ◦ΦU B ◦ΦU

] [ xf (0)
qf

]
. (10)

Substituting (9), we get a linear system of KT equations in N + P

unknowns

y = (A ◦ΦU)xf (0) + (B ◦ΦU)UT
UPqf,P

=
[
A ◦ΦU (B ◦ΦU)UTUP

] [ xf (0)
qf,P

]
.

(11)

If the matrix Ψ =
[
A ◦ΦU (B ◦ΦU)UTUP

]
has full column

rank, which requires KT ≥ N + P , we can use least squares to

obtain [
x̂f (0)
q̂f,P

]
= Ψ

†
y,

and subsequently localize the underlying sources as

x̂(0) = Ux̂f (0); q̂ = UP q̂f,P .

In the previous subsection, we have seen that by appropriately

selecting K < N rows of U we may obtain a full column rank

matrix A ◦ ΦU as A has full-column rank. As a consequence, by

appropriately selecting P > K rows of U will only increase the

rank of [A ◦ΦU B ◦ΦU ] by N + P . This means that we have

to impose some structural constraint on q to recover it uniquely from

the subsampled data when the diffusive field is induced by both x(0)
and q. In other words, by sampling in time and observing all the N

nodes, we can recover 2N unknowns x(0) and q without any band-

limiting constraints.

6. NUMERICAL EXPERIMENTS

In this section, we apply the developed theory of graph sampling for

reconstructing diffusive fields induced by hot spots on a metal block

with a cavity. We use the partial differential equation toolbox from

MATLAB to mesh the surface. The generated mesh with N = 134
vertices is shown in Fig. 1. We observe K = 32 vertices uniformly

in time in the interval [0, 1.44]s with step size ∆ = 0.16s and T =
10. The sampled vertices are also indicated in Fig. 1. We present

results for the following two cases: (i) diffusive field induced by

x(0), and (ii) diffusive field induced by x(0) and q.

As discussed in Section 4, to recover diffusive fields induced by

x(0) with q = 0, we do not require any band-limiting constraints.

To demonstrate this, for x(0), we use a very sparse vector with only

two non-zero entries at vertices v88 and v89. Since this initial field

distribution is highly localized in the vertex domain, it is not ban-

dlimited. Fig. 2a shows the initial field distribution at t = 0, and

Fig. 2b shows the evolution of the diffusive field at vertices v73, v88,

v89, and v90 for different time instances. In Fig. 2c, we can see

the exact localization of the hot spots in the noiseless setting using

a simple linear least squares estimator, and more importantly, with-

out using any sparsity constraints. In Fig. 3, we consider a noisy

setting in which the observations in (8) are corrupted with Gaussian

noise having zero mean and variance 10−5. We show the normalized

root mean squared error (RMSE), averaged over 1000 independent

Monte-Carlo experiments, for different values of K. Although the

error decreases as K increases, we can see that increasing T beyond

a certain value does not lead to better performance. This is because

A becomes ill-conditioned as T increases.

For the case in which the diffusion field is induced due to both

x(0) and q, we use a sparse x(0) as before, and a bandlimited q

with P = 5. Fig. 2d shows the external time-invariant input, which

is smooth on the surface. When q 6= 0, we can see in Fig. 2e that

the field values do not decay with time as earlier. Fig. 2f shows the

exact recovery of q using a simple linear least squares estimator (the
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Fig. 2: Recovery of diffusive fields. (a) Initial field distribution. (b) Evolution of the field with time when q = 0. (c) Least squares based

localization and reconstruction of x(0). (d) Time-invariant and smooth external input q. (e) Evolution of field with time due to x(0) and q.

(f) Least squares based reconstruction of q.

reconstruction of x(0) is similar to Fig. 2c, hence not shown), where

we do not impose any sparsity constraints for recovering x(0). As

before, gathering more samples in time does not lead to better per-

formance as both A and B become ill-conditioned, and as a conse-

quence we need to sample more vertices.

7. CONCLUDING REMARKS

In this paper, we discussed the sampling and recovery of diffu-

sive fields on graphs induced by possibly non-bandlimited sources.

When the diffusion field is induced by an initial field or a time-

invariant external input, we can localize and recover the sources

by sampling a significantly smaller subset of nodes uniformly in

time without imposing any band-limiting constraints and by using

a simple least squares estimator. For diffusive fields induced due to

an initial field and external input, we can exactly recover the sources

from noiseless subsampled data when we constrain the external

input to be bandlimited. When the observations are noiseless, the

recovery is exact. In essence, for diffusion models on graphs, we can

compensate for the unobserved vertices with the temporal samples

at the observed vertices.
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induced by x(0) with q = 0.



8. REFERENCES

[1] A. Ortega, P. Frossard, J. Kovačević, J. M. Moura, and P. Van-
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