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Abstract—Beamforming with large-scale antenna arrays
(LSAA) is one of the predominant operations in designing
wireless communication systems. However, the implementation
of a fully digital system significantly increases the number of
required radio-frequency (RF) chains, which may be prohibitive.
Thus, analog beamforming based on a phase-shifting network
driven by a variable gain amplifier (VGA) is a potential alterna-
tive technology. In this paper, we cast the beamforming vector
design problem as a beampattern matching problem, with an
unknown power gain. This is formulated as a unit-modulus least-
squares (ULS) problem where the optimal gain of the VGA is
also designed in addition to the beamforming vector. We also
consider a scenario where the receivers have the additional
processing capability to adjust the phases of the incoming
signals to mitigate specular multipath components. We propose
efficient majorization-minimization (MM) based algorithms with
convergence guarantees to a stationary point for solving both
variants of the proposed ULS problem. Numerical results verify
the effectiveness of the proposed solution in comparison with the
existing state-of-the-art techniques.

Index Terms—Analog beamforming, large-scale antenna ar-
rays, majorization-minimization, MM, beampattern matching.

I. INTRODUCTION

In mmWave systems, a large-scale antenna array (LSAA)
is used to achieve beamforming gains and to combat se-
vere propagation losses [1], [2]. However, the fully-digital
implementation of such a system requires as many radio
frequency (RF) chains as the number of antenna elements.
Consequently, hardware cost and power consumption may
substantially increase. These drawbacks limit the applicability
of a system with an LSAA, thus a potential candidate is to
employ beamforming networks based only on simple analog
components, like phase shifters (PS). Such systems only
manipulate the phase of each beamforming component while
keeping the magnitude constant; this, coupled with a constant
beamformer magnitude, eases their practical implementation.

The analog phase-only beamforming problem has been
studied in the past [3]–[7], where the optimal beamforming
vector is designed by optimizing a performance metric subject
to unit-modulus constraints, e.g., by solving the signal-to-
interference-plus-noise ratio (SINR) maximization problem
[3]. Due to unit-modulus constraints, the resulting optimization
problem is nonconvex and in general NP-hard. The referenced
work presents an algorithm based on the conjugate gradient
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and Newton’s method to compute the beamforming weights.
A gradient search algorithm is presented in [4], which pa-
rameterizes the unit-modulus constraint to adaptively adjust
the phases of the entries of the beamforming vector. Receive
beamforming is studied in [5] and the optimal beamforming
weights are designed by minimizing the mean squared error
(MSE) between the array output and the desired signal. For
null steering, a position-perturbation technique is presented in
[6].

Recently, the analog beamforming problem is considered
in [7]. The referenced work designs the analog beamforming
weights by minimizing the beampattern matching error in a
least-square sense, subject to the unit-modulus constraints.
The beampattern matching error is the difference between
the desired and the designed beampatterns. This problem is
termed as a unit-modulus least squares (ULS) problem [7].
The closely related problem of unimodular radar sequence (or
code) design also arises in several active sensing applications
[8]. The ULS problem is also nonconvex and shown to be
NP-hard [9]. In the literature, an approximate solution to
the ULS problem is found by employing the semidefinite
relaxation (SDR), which increases the dimensionality of the
search space from M to M2. Therefore, a large number of
design parameters need to be optimized, resulting in increased
memory usage and storage requirements. Another disadvan-
tage with SDR is that it empirically returns a rank-1 solution,
but in cases when the solution is not rank-1, an appropriate
randomization technique should be employed [9], [10]; this
further increases the time overhead. Therefore, in order to
keep the computational complexity low, gradient-projection
(GP) based algorithms are proposed in [7]. Another recent
work proposed an alternating direction method of multipliers
(ADMM) based algorithm for beamforming in the context of
sensor networks [11].

Following similar lines, in this paper, we propose efficient
analog beamforming algorithms with convergence guarantees
to solve the variants of the ULS problem. Specifically, we
consider the analog beamforming architecture with a common
variable gain amplifier (VGA) driving the phase-shifting net-
work. Therefore, in addition to the beamforming vector design,
we also consider the gain of the VGA as a design variable. We
propose to design these variables by solving the beampattern
matching problem. This scenario is modeled as the constant-
modulus least squares problem, where the VGA gain is mod-
eled as the magnitude of the beamforming vector. To solve this
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problem, we propose a block majorization-minimization (MM)
(or more precisely an alternating majorization-minimization
(MM)) [12] based algorithm.

We further consider the case when the receivers employ
additional processing to mitigate the specular multipath com-
ponents. This results in additional degrees of freedom in the
aforementioned problem. Again, we employ the alternating
MM framework to solve the problem.

We show that the proposed algorithms have convergence
guarantees to a stationary point. We provide numerical sim-
ulations to demonstrate the effectiveness of the proposed
algorithms to the ones proposed in [7], resulting in a much
better beampattern approximation.

II. PROBLEM FOMRULATION

We consider two analog beamforming architectures (i)
scaled analog beamforming (SAB) and (ii) phase-corrected
analog beamforming (PSAB) shown in Fig. 1. We then formu-
late the analog beamforming problem for these architectures.
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Fig. 1: Analog Beamforming Architectures.

A. SAB Architecture
A transmitter equipped with a phase-shifting network driven

by a common VGA serving multiple single-antenna users is
considered, as shown in Fig. 1a. The use of a common VGA
for all branches motivates the term SAB architecture. Herein,
we consider a uniform linear array (ULA) with M antenna
elements and a spacing d = λ

2 at the transmitter, where λ
represents the wavelength of operation. The array transmits
the same information to the users, therefore, this a broadcast
beamforming scenario [13]. The array response of a ULA in
a direction θi is modeled as,

a(θi) =
[
1 e−jθi e−j2θi . . . e−j(M−1)θi

]T
. (1)

We consider an uniform discretization of the angular space into

N points as θ =
[
0, 2πN ,

4π
N , . . . ,

2(N−1)π
N

]T
. Then, the array

response from these directions can be written in matrix form
as A(θ) = [a(θ1),a(θ2), . . . ,a(θN )]H , where θi represents
the i-th element of θ. For notational convenience, henceforth,
we write A(θ) and a(θi) as A and ai, respectively.

The beampattern in the direction θi takes the form yi =
a(θi)

Hw̃, where w̃ is the beamforming vector to be designed.
Therefore, the least-squares beampattern matching problem
considering the requirements in all {θi} is formulated as,

P1 : min
r∈R,w̃

‖y −A(θ)w̃‖22 (2)

subject to w̃ ∈ A′,

where y is an N -dimensional vector denoting the desired re-
sponse along the directions represented by the elements of vec-
tor θ, A′ =

{
w̃ ∈ CM×1| |w(i)| = r, ∀i ∈ {1, 2, . . . ,M}

}
and the variable r models the gain introduced by the VGA.
The elements of w̃ are constrained to be constant modulus,
thus representing phase-only beamforming.

We reformulate P1 in a compact manner as,

P2 : min
s∈C,w

‖y − sA(θ)w‖22 (3)

subject to w ∈ A,

where A =
{
w ∈ CM×1| |w(i)|2 = 1,∀i ∈ {1, 2, . . . ,M}

}
.

The constant modulus constraint in P1 is equivalently replaced
by an unconstrained complex factor s multiplying w. The
beamformers are now constrained to have unit-modulus en-
tries.

Problem P2 is nonconvex and a joint solution in s and w
is intractable. But the objective function is partially convex:
it is convex in one variable given the other. This observation
naturally leads to the development of a block-MM (or more
precisely speaking an alternating-MM) algorithm, which also
works on the MM principle for each block [12]. However, in
the case of block-MM, the optimization problem with respect
to each block is approximated using a majorizing function such
that the approximate problem admits a closed-form solution.
For more information, one may refer to [12], [14]–[17] and
references therein. As mentioned earlier, our approach is
different from block-MM as we do not consider a majorizing
function for all the variables; instead, we approximate the
problem only with respect to those blocks for which the
subproblem is not easy to minimize.

Assuming w to be given, it can be readily seen that the
minimization problem to solve for variable s admits the
following closed-form solution [7],

s =
wHAHy

‖Aw‖22
. (4)

Now, considering s to be given, the minimization problem
with respect to w can be written as,

P3 : min
w

f(w) = ‖y − sAw‖22
subject to w ∈ A.

The objective in problem P3 takes the form,

f(w)= yHy − 2Re
(
syHAw

)
+ |s|2wHAHAw. (5)

It is easy to see that the last term of the objective function in
(5) is convex in w. Therefore, we approximate this term using
the Lemma II.1

Lemma II.1. The quadratic function of the form aHSa,
with S being a Hermitian matrix is majorized by aHTa +
2Re

(
aH(S−T)ak

)
+ aHk (T− S)ak at the point ak, where

T is a Hermitian matrix such that T � S.

Lemma II.1 can be easily proven using second order Taylor
expansion and subsequently replacing the S by another Her-
mitian matrix T such that T � S, [14], [17]. Using Lemma
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Algorithm 1 MM Based Scaled Analog Beamforming
Input: The matrix A, y and w0 ∈ A
Output: w, s
Set k = 0, P = AHA, ỹ = AHy, β = λmax(A

HA)

1: repeat . index over k = 0 : N ′ − 1

2: sk+1 =
wH

k AHy

‖Awk‖22
;

3: ck+1 = s∗k+1ỹ − |sk+1|2(P− βI)wk;
4: Compute wk+1 = ej arg (ck+1);
5: until convergence

II.1 with T = λmax(P̃)I where I is a M ×M identity matrix
and P̃ = |s|2AHA, the quadratic term in (5) is majorized as,

wHP̃w ≤ λmax(P̃)wHw (6)

+2Re
(
wH(P̃− λmax(P̃)I)wk

)
+wH

k P̃wk,

where wk is the solution available k-th iteration. It is easy
to see that the first term in (6) equals λmax(P̃)M , due to the
unit modulus property of the beamfomring vector w. The third
term is independent of w. Neglecting the constant terms in (5)
and (6), the overall majorizer of the objective function in (5)
can be expressed as,

−2Re
(
syHAw

)
+ 2Re

(
wH(P̃− λmax(P̃)I)wk

)
. (7)

The resulting majorized problem can be formulated as,

P4 :min
w
−2
[
Re
(
s∗wHAHy

)
− Re

(
wH |s|2(P− βI)wk

)]
subject to w ∈ A,

where P = AHA and β = λmax(P). Problem P4 can be
further reformulated as,

P5 : min
w

∥∥w − (s∗AHy − |s|2(P− βI)wk

)∥∥2
2

subject to w ∈ A.

Now, P5 readily admits the following closed-form solution,

w = ej arg (ck), (8)

where ck = s∗AHy − |s|2(P− βI)wk. The overall method-
ology is presented in Algorithm 1. This algorithm is based on
the alternating-MM framework, where the sub-problems with
respect only those variables (here, w) are approximated for
which direct minimization is difficult.

Theorem II.2. Let {wk, sk} be the sequence of outputs gen-
erated by Algorithm 1. Then this solution sequence converges
to the set of KKT points (K) of problem P5.

Proof. For brevity, the proof is omitted and will be available
in a future journal submission. �

B. PSAB Architecture

Until now, the beampattern matching problem was mainly
considered around transmit beamforming. As already consid-
ered in [7], in many cases, the receiver is also required to
control the phase response of the incoming signal by using an

analog phase-shifting network as shown in Fig. 1b. This entails
additional degrees of freedom to enhance the beamforming
performance.

Taking care into account scaling and phase-correction, the
beamforming design problem can be formulated as,

P6 : min
s∈C,w,u

h(s,w,u) = ‖y ◦ u− sAw‖22
subject to w ∈ A,u ∈ A,

where ◦ denotes the element-wise product between two vectors
or matrices. Further, u is a vector having unit-modulus entries
and thus models the phase correction term. The problem P6

is also nonconvex; we, therefore, adopt the alternating-MM
framework again for finding a solution. Considering variables
w and u to be given, the problem with respect to variables s
admits the following closed-form solution,

s =
wHAHYu

‖Aw‖22
, (9)

where Y = diag (y) is a diagonal matrix with entries
of y. With regards to the variable u, upon expanding the
objective function and ignoring the constant terms, we obtain
the following problem,

P7 : min
u

−2Re
(
suHYHAw

)
subject to u ∈ A.

Problem P7 can be further reformulated as,

P8 : min
u

∥∥u− sYHAw
∥∥2
2

subject to u ∈ A.

It is straightforward to see that problem P8 admits the follow-
ing closed-form solution,

u = ej arg (sY
HAw). (10)

With regards to the variable w, the solution can be found by
majorizing the objective function using Lemma II.1, similar
to the one obtained for P3. After ignoring the constant terms,
we arrive at the following problem,

P9 : min
w

−2Re
(
w
(
s∗AHYu−Qwk

))
subject to w ∈ A.

where Q = |s|2(P−λmax(P)I) and wk is the solution at k-th
iteration. Problem P9 is equivalently reformulated as,

P10 : min
w

∥∥w − (s∗AHYu−Qwk

)∥∥2
2

subject to w ∈ A.

It is readily seen that P10 admits the following closed-form
solution,

w = ej arg (w̃k), (11)

where w̃k = s∗AHYu − Qwk. The complete algorithm
summarizing the steps is presented in Algorithm 2. Similar,
to Algorithm 1, the convergence of the sequence {sk,uk,wk}
generated by Algorithm 2 to a stationary point of problem P6

can be established.
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Algorithm 2 MM Based Scaled Analog Beamforming
with Phase Correction
Input: The matrix A, Y, w0 ∈ A and u0 ∈ A
Output: w, s
Set k = 0, P = AHA, Ỹ = AHY, β = λmax(A

HA)

1: repeat . index over k = 0 : N ′ − 1

2: sk+1 =
wH

k Ỹuk

‖Aw‖22
;

3: uk+1 = ej arg (sk+1Ỹ
HAw);

4: Q = |sk+1|2(P− βI);
5: w̃k+1 = s∗k+1Ỹuk+1 −Qwk;
6: wk+1 = ej arg (w̃k+1);
7: until convergence
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Fig. 2: Objective function variation with the number of itera-
tions, N = 36, M = 100.

III. SIMULATION RESULTS

We consider the objective functions of all the problems as
performance metrics of the proposed algorithms and compare
them to the ones proposed in [7]. Specifically, we analyze the
evolution of objective function with the number of iterations.
We consider M = 100 and discretize the angular space with
N = 36 points and generate y according to (12) below,

yi =

{
1 if i ∈ I,
0 otherwise,

(12)

where I ∈ [1, N ] denotes the index set for non-zero entries of
vector y with cardinality of card (I) = K. All the algorithms
are initialized identically. For fairness, we randomly choose
K = 2 entries for I from [1, N ], and select the corresponding
K angles from θ. We then obtain y according to (12).

Fig. 2 shows the comparison of Algorithm 1 and Algorithm
2 to those proposed in [7] to solve problem P2 and P6,
respectively. It is observed that the proposed algorithms have
much better beampattern approximation accuracy than those
from [7].

As mentioned earlier, in many cases, instead of drawing
pencil beams, we may be interested in a sector of angles.
For example, in multicasting scenarios where users in one
group receive the same information. Therefore, we consider a
different arrangement to study the performance of the proposed
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Fig. 3: Objective function variation with the number of itera-
tions, N = 150, M = 200.

TABLE I: Average running time comparison

Average running time (seconds)
Algorithms M = 50 M = 100 M = 200
Algorithm 1 4.6×10−5 1.2×10−4 3.8×10−4

Algorithm 2 [7] 5.8×10−5 1.3×10−5 3.8×10−4

Algorithm 2 2.0×10−4 3.6×10−4 7.0×10−4

Algorithm 3 [7] 2.3×10−4 4.1×10−4 8.4×10−4

algorithms. Specifically, we consider, N = 150, M = 200 and
I = {1, 2, . . . , 18, 55, 56, . . . , 90, 127, 128, . . . , 144}. For this
case, Fig. 3 shows the comparison of the proposed algorithms
with the ones in [7]. It can be easily seen that the proposed
algorithms show faster convergence and result in significantly
improved beampattern approximation. We also want to high-
light the fact that the performance of the proposed Algorithm
1 and Algorithm 2 from [7] is significantly degraded (but
our algorithm still has better performance) in the sectored
beamforming scenario, whereas Algorithm 2 results in much
better beampattern approximation due to the additional degrees
of freedom available at the receiver’s side.

In order to get insights about the execution time of the
algorithms, Table I shows the average running times. The first
two rows consider the pencil beams scenario whereas the last
two rows consider the sectored beam scenario. The stopping
criteria chosen for the algorithms is either ‖wk−wk−1‖2

‖wk‖2
≤

10−6 or 5000 iterations. It is readily seen that the proposed
algorithms require lower CPU time to converge with lesser
beampattern matching error (as observed from Figs. 2 and 3).

IV. CONCLUSIONS

In this paper, we considered two analog beamforming
problems namely, scaled analog beamforming and phase-
corrected analog beamforming. We proposed efficient algo-
rithms based on the majorization-minimization framework
with convergence guarantees to a stationary point for solving
these problems. Simulation results demonstrated that the pro-
posed algorithms require lesser time to converge with a better
objective value in comparison to the algorithms existing in
the literature. These result in a faster and better beampattern
approximation method.
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