
Using End-to-end Data Encryption to Secure SIP Device Configuration

Xudong Chen

 School of Software Engineering

Beijing Jiaotong University, 100044

Beijing, China

Email: chenxd@bjtu.edu.cn

Wenjun Fan

Departamento de Ingeniería de Sistemas Telemáticos

ETS de Ingenieros de Telecomunicación

Universidad Politécnica de Madrid, 28040

Madrid, Spain

Email: efan@dit.upm.es

Abstract—Security between the endpoints is an important

requirement for network transmission. One existing

solution of End-to-End security is based on the certificate

of the third-party enterprise such as the authorization

from ISP. And the other methods usually established a

virtual private tunnel between the two endpoints.

Considering the SIP device configuration basically used

tftp protocol to transmit the configuration file, we

proposed a free End-to-End security scheme using

Application Gateway and data encryption to secure this

transmission process. In this paper, Application Gateway

used FastCGI programming to protect the HTTP server

from attacking. On the other hand, the file encryption

approach applied symmetrical encryption to ensure that

only the authentic client could share the data from the

server.

Keywords-End-to-End security; Application Gateway;

FastCGI; SIP Device Configuration

I. INTRODUCTION

End-to-end security relies on protocols and
mechanisms that are exclusively used on the endpoints
with a connection. The most typical example is an
HTTPS connection (based, for example, on Transport
Layer Security (TLS) [1]) to a Web server; IP Security
(IPsec) [2] can also be used for end-to-end security,
which was initially proposed as a default connection
mechanism for IPv6.

In the traditional definition, the end-to-end security
usually starts from the client side and then ends on the
server side. However, this definition should be adjusted
because of the multitude of parallel applications running
on an operating system and the virtualization
technology. The operating system can establish a
security connection using session on application level. It
also can be terminated in the front end, which is on
behalf of numerous servers, as a case in many TLS [1]
deployments.

Admittedly, an endpoint is an entity that
communicates with another entity on the network. This
definition, albeit vague, is enough for discussion at hand
to understand why the network has a role to play in the
security.

However, in this article, the definition of an
endpoint is a server or a client. End-to-end security
including sever-server, client-server, or client-client

ensures secure communication. Several solutions had
been proposed, such as eDonkey for the peer-to-peer [3]
[4] that is a kind of client-client way, and VPN for
client-server security used by many enterprises for
special purpose.

VPN uses IPsec, SSL, TLS or Socks5 to implement
E2E security. However, VPN must establish a virtual
and private tunnel between two endpoints, and the user
has to get the certificate from the third-party enterprise
such as ISP.

IPSec works at the network layer in TCP/IP protocol
stack. If the developer wants to filter the IP packets,
they have to revise the kernel of the operating system.
We can get the source code for free from the open
source operating system like Linux; Under Windows, it
is impossible to get the source from Microsoft, we just
can use the Drive Development Kits (DDK) to capture
the IP packet. Thus, the platform difference limits the
wide use of IPSec.

Tunneling is a method used to circumvent firewall
restrictions by disguising forbidden traffic such as P2P,
remote computing and telnet - as ordinary Web surfing
content. Tunneling could also be used by various
software and even Trojan horses to transmit unexpected
traffic to a remote server. Tunneling is possible because
of the fact that organizations must allow HTTP, and
usually also FTP and SMTP traffic transmit through the
firewall in order to conduct routine business and allow
their users surf the web, download files and use email.

Some studies had proposed several methods to build
a reliable network access on the public network to
transmit the data through the gateway, such as HTTP
Tunnel [5], a method and system for providing a
persistent HTTP tunnel for a connection-oriented
protocol between a client and a Web server. Basically,
there are two ways to implement HTTP Tunnel: (1)
HTTPS, using SSL [6] (Secure Socket Layer) 443 port;
(2) applying HTTP 80 port.

In the first method, with the 443 port, a TCP
connection can be established, which implements
bidirectional data transmission. According to SSL
protocol, all data passing through the 443 port is
encrypted, which the firewall can’t block, so all packets
can pass through the firewall transparently. Although
the 443 port can be achieved through NAT and firewall
penetration, but based on some security causes, some

58

2013 IEEE International Conference on Granular Computing (GrC)

978-1-4799-1282-7/13/$31.00 ©2013 IEEE

business systems will close the 443 port. Thus, hackers
can make use of the fact that a firewall can’t decrypt the
data passing through the port 443 to invade or attack the
systems.

In the second method, depends on HTTP protocol,
the HTTP tunnel through port 80 can protect the IP
packet passing through firewall and NAT, avoiding
being filtered. But to establish a special connection of
the HTTP tunnel will cost many resources, such as the
network bandwidth. And in some cases, the efficiency
of communication with this method is also a problem.

eSafe Gateway [7] with AppliFilter can identify and
block HTTP-tunneling activities. AppliFilter monitors
gateway traffic in real-time, making sure for instance,
and only standard HTTP packets are allowed passing
through port 80. However, nasty user also can fabricate
standard HTTP packets to send the uninspected traffic
to a remote server. So, eSafe can’t solve the network-
based security.

Manuel Crotti et al. [10], detecting HTTP tunnels
with Statistical Mechanisms, propose the application of
a statistically-based traffic classification technique to
solve this problem. By the analysis of parameters–
arrival time, size and order of the packets crossing a
gateway, they showed that it was possible to detect with
high accuracy whether an observed flow is carrying a
legitimate HTTP session, or the flow is being used to
another tunnel protocol. The authors described how this
technique can be used effectively to enhance
Application Level Gateways and firewalls, helping to
better apply network security policies but can’t insure
the end-to-end security.

Internet Server API (ISAPI) filters improved the
internet servers with custom features such as enhanced
logging of HTTP requests, custom encryption and
compression schemes, or new authentication methods.
The filter application locates between the client side and
the HTTP server side. Depending on the options that the
filter application requests notification for, it can make
several server actions. Filters can be set to receive
notification when corresponding events occur, including
reading raw data from the client, processing the headers,
managing communications over a secure port using
Personal Communications Technology (PCT) or Secure
Sockets Layer (SSL), or handling other stages in the
processing of the HTTP request.

The principal difference between the CGI
programming model and the ISAPI programming model
is that CGI creates a unique process for every request,
while ISAPI does not. With CGI, every time an HTTP
server receives a request, it must initiate a new process,
and maintain the processes, which is very resource
intensive. This inherent limitation in CGI has made it
difficult to develop responsive applications on the
Internet. However, the ISAPI only can be used in IIS, so
we still use CGI because of its platform independent
features. In our scheme, Application Gateway only
opens the port 80, and the data output from the server
has to be encypted by the FastCGI application. And

only the legal client who knows the key could decrypt
the ciphertext.

Granular computing (GrC) is an emerging
computing paradigm of information processing. Data
processing is an aspect of information processing and
the data security is an important issue. In this paper, we
proposed a scheme to protect the information of SIP
device configuration by using end-to-end data
encryption. The article is organized as follows: In
Section 2, we briefly describe the technical background;
in Section 3, we propose the implementation of free
end-to-end security; in Section 4, the experiment shows
the result; in the Section 5, we make a conclusion.

II. TECHNICAL BACKGROUND

A. Application Gateway

An Application Gateway is a type of firewall. All
internal computers establish a connection with the
proxy server. The proxy server performs all
communications with the Internet. External computers
only see the IP address of the proxy server and never
communicate directly with the internal clients. The
Application Gateway examines the packets more
thoroughly than a circuit-level gateway before making
packet-forwarding decisions. Obviously, it is more
secure, but uses more memory and processor resources.
Also known as application proxy or application-level
proxy, an Application Gateway is an application
program that runs on a firewall system between two
networks. When a client program establishes a
connection to a destination service, it connects to an
Application Gateway, or proxy. The client then
negotiates with the proxy server in order to
communicate with the destination service. In fact, the
proxy establishes the connection to the destination
behind the firewall and acts on behalf of the client,
hiding and protecting individual computers on the
network behind the firewall. This creates two
connections: one locates between the client and the
proxy server and the other locates between the proxy
server and the destination. Once the connection
established, the proxy makes all packet-forwarding
decisions. Since all communication is conducted
through the proxy server, computers behind the firewall
are protected.

However, this is secure method of firewall
protection, Application Gateways require significant
memory and processor resources compared to other
firewall technologies, such as stateful inspection.

B. FastCGI

FastCGI is viewed as a new implementation of CGI,
designed to overcome CGI's performance problems.
The major implementation differences are:

(1)FastCGI processes are persistent. After finishing
a request, they wait for a new request instead of exiting.
Thus, the fundamental difference between FastCGI and
CGI is that FastCGI applications are long-lived, which

59

http://en.wikipedia.org/wiki/Information_processing
http://www.webopedia.com/TERM/A/application.html
http://www.webopedia.com/TERM/F/firewall.html
http://www.webopedia.com/TERM/N/network.html
http://www.webopedia.com/TERM/C/client.html
http://www.webopedia.com/TERM/D/destination.html
http://www.webopedia.com/TERM/P/proxy_server.html
http://www.webopedia.com/TERM/P/packet.html
http://www.webopedia.com/TERM/S/stateful_inspection.html

means that the Web Server needs to rendezvous with a
running application, rather than starting the application
in order to explicitly communicate with it.

(2)The application library provides replacements for
the C language standard I/O (stdio) routines such as
printf() and gets(). The library converts references to
environment variables, standard input, standard output,
and standard error to the FastCGI protocol. Instead of
using operating system environment variables and pipes,
the FastCGI protocol multiplexes the environment
information, standard input, output, and error on a
single full-duplex connection. This allows FastCGI
programs to run on remote machines, using TCP
connections between the Web server and the FastCGI
application.

FastCGI communicates the same information as
CGI in a different way. Because FastCGI is CGI, and
like CGI runs applications in separate processes, it
suffers none of the server API problems listed above.

Since a FastCGI application does not always run on
the same node as the HTTP server, we support two
implementations of the connection: a stream pipe [8],
for communications on the same machine, and TCP
streams, for communication when the client and the
server are on different machines.

The two security issues with remote FastCGI
connections are authentication and privacy. FastCGI
applications should only accept connections from Web
servers that they trust (the application library includes
support for IP address validation). Future versions of
the protocol will include support for applications
authenticating Web servers, as well as support for
running remote connections over secure transport
protocols such as SSL or PCT.

C. Encryption

Encryption is the process in which data (plaintext) is
translated into something that appears to be random and
meaningless (ciphertext). Decryption is the process in
which the ciphertext is converted back to plaintext.

Encryption can be divided into hard encryption, soft
encryption, and pseudo encryption

The so-called hard encryption is that each data bit of
the original file does a bit transformation by the key.
The output of the encryption is the garbled code of
which people cannot make sense. Hard encryption
encrypts the bit data of the file, completely independent
above the operating system. So the ciphertext results
from hard encryption can be decrypted by any other
kind of operating system. Decryption is the inverse
operation of the encryption. The bigger the size of the
file is, the longer duration the encryption and decryption
will take. Use of hard encryption is the fundamental
method of ensuring data security.

Soft encryption does not process the data of the file
transformation. It just applies some acrobatics and
makes the confidential data can be accessed. But the
data does present with plaintext form. For example,

some software modifies the registry of Windows and
makes the files with hidden attributes not visible.

Pseudo encryption is a kind of soft encryption, but it
is more dangerous than soft encryption. It alters the disk
sectors, utilizes system vulnerability, or adopts other
baleful means to hide the data. Tiding the disk fragment
or rebuilding the operating system will finish this kind
of encrypted data easily.

It is difficult to determine how good an encryption
algorithm is. Algorithm that seems promising
sometimes turns out to be very easy to break, given the
proper attack. When selecting an encryption algorithm,
it is probably a good idea to choose one that has been
around for a while, and has successfully resisted all
attacks.

III. IMPLEMENTATION

A. Application Gateway with FastCGI Programming

The main advantage of Application Gateway is that
the programmer doesn’t need to change the operating
system, and just create the Application Gateway. In
many cases, if it is impossible to access the system
source code, the programmers can’t modify the
operating system. However, programmers can use
conventional programming tools to build Application
Gateway, and the gateway does not require any
modifications to the underlying protocol software.
What’s more, as soon as the site owns the gateway, then
it will be able to apply standards programs of client and
server.

For most situations, various institutions in order to
address security issues chose the Application Gateway.
For example, in order to establish a remote connection,
any user on the host of the institutions had to call the
client software. The software is initially connected to
the Application Gateway, and the Application Gateway
then orients the users to connect to the desired
destination host.

For our context, SIP device configuration usually
applies tftp protocol to transmit the configuration file
that includes much private information. Thus, we
proposed this idea to secure the process of SIP device
configuration. Compared with other approaches, our
implementation is much more light and resource
efficiency.

Client

Software

FTP

Server

Web

Server

FastCGI

Program

Disk

HTTP FTP

Client

Application Gateway

Internal server

Figure 1. Application Gateway for Security

60

Our idea is illustrated in Fig. 1. The Application
Gateway is a media of connection between the client
and the destination server. In this situation, the server
only opens the port 80 to provide service rather than
open other port like 21. To achieve this kind of
application gateway, we need four facilities: an HTTP
and FTP access computers, a regular web server,
Application Gateway program, and the mechanism to
send file requests to the gateway program from a Web
server. Fortunately, most web servers have the
necessary facilities. The web server using FastCGI
technology makes the server to be able to call the
program.

The web server contains a FastCGI program [9]
must deal with two types of requests. Upon receiving a
request from client to open a regular web page or to get
a file, the server obtains a copy of this page or file from
the disk, and sends it to the client. Upon receipt of a
request for information under FastCGI program
management, the server call FastCGI program, and pass
the request to it, and then wait for program execution.
FastCGI program establishes a FTP connection, and
accesses a copy of the file, and then the web server
returns the result to the client.

From the client's perspective, there is no difference
between conventional web pages and documents
generated by the FastCGI program. In both cases,
clients send a request first and then accept the document.
Finally, the document is passed to the customer.

Thus, in our case, the SIP device send a request for
configuring itself to the web server, and then the
FastCGI program process this request, later it gets the
configuration file from the ftp server or the disk, at last
it replies the configuration file to the SIP device.

The client could request the FastCGI using the URL
like this:
http://ServerName/cgi-bin/encryption.fcgi?FileName
 “encryption.fcgi” is the FastCGI program in our
system.

B. Client Development

We use the MFC program to develop the client
software. The MFC class CHttpConnection manages the
connection to an HTTP server. HTTP is one of three
Internet server protocols implemented by the MFC
WinInet classes.

Table I shows the steps in a typical HTTP client
application.

TABLE I. HTTP CLIENT APPLICATION

Goal Actions

Begin an HTTP session. Create a CInternetSession object.

Connect to an HTTP

server.

Use

CInternetSession::GetHttpConnection.

Open an HTTP request. Use CHttpConnection::OpenRequest.

Send an HTTP request. Use CHttpFile::AddRequestHeaders

and CHttpFile::SendRequest.

Read from the file. Use CHttpFile.

Handle exceptions. Use the CInternetException class.

End the HTTP session. Dispose of the CInternetSession

object.

Using the HTTP client application, the user could
access the FastCGI application.

C. Encryption/Decryption Process

In this paper, we used Symmetric-key algorithm (or
we call it Reciprocal Cipher). Once a message has been
encrypted, it can be stored on nonsecure media or
transmitted over a nonsecure network and still remain
secret. Later, the message can be decrypted into its
original form. This process is shown in the following
illustration, Fig. 2.

Encryption

Algorithm

Decryption

Algorithm

Message

(plaintext)

Encrypted

Message

(ciphertext)

Original

Message

(plaintext)

Encryption

Key

Decryption

Key

Figure 2. Encryption/Decryption Process

Data encryption and decryption are simple processes.
When a message is encrypted, an encryption key is used.
This is comparable to a key that is used to lock a
padlock. To decrypt the message, a decryption key must
be used. The encryption and decryption keys are often,
but not always, the same key. In this article, we adopt
the symmetric encryption principle, thus the both
encryption and decryption keys are the same.

It is very important to keep the keys safe and
transmit them securely to other users. This will be
discussed further in the Security Strategy. However, the
challenge is how to properly restrict access to the
decryption key and the encryption algorithm, because
anyone who possesses them will be able to decrypt all
messages that were encrypted with the corresponding
encryption key.

A symmetric encryption key (also known here as a
session key) is used during both the encryption and
decryption processes. In order to decrypt a particular
piece of ciphertext, you must possess the key that was
used to encrypt the data. Essentially, a session key
consists of a random number, of approximately 40 to
2,000 bits in length. The longer the key that is used, the
more difficult it is to decrypt a piece of ciphertext
without possessing the key.

The goal of each encryption algorithm is to make it
as difficult as possible to decrypt the generated
ciphertext without using the key. If a really good
encryption algorithm is used, then there is no technique
better than methodically trying every possible key. Even
for a key size of just 40 bits, this works out to 2

40
 (just

over 1 trillion) possible keys.
In our system, one of the hard encryption algorithm

pseudo-code is just like this:

61

1: char key[BUF], ch;

2: int i = 0;

2: fgets(key, sizeof(key), keyFileStream);

3: inFileStream = fopen(FileName, “rb”);

4: while(!feof(fileStream)){

5: ch=fgetc(fileStream);

6: fputc(key[i++]^ch, outFileStream);

7: if(key[i]==’\0’){

8: i=0;

9: }

10: }

In the implement, the key size is 8 bits for
encrypting and decrypting the configuration file.
Obviously, you can enlarge the size of the key if you
want to improve the secrecy of the process. One
problem we must take consideration in our system is
that the C language has the platform difference. In other
words, for example, the result of function fputs() is a
little different between Windows OS and Linux OS.

D. Security Strategy

We have mentioned that it is important to ensure the
key security and transmit it safely to clients. In our
context, our aim is to transmit the SIP device
configuration file to the user, and one example of the
SIP device configuration file is like this:

User Passwd=
ETH1 PPPOE User=
ETH1 PPPOE Passwd=
ETH1 IP Address=
ETH1 Subnet Mask=
Gateway Address=
HostName=
Domain=
1st DNS=202.106.0.20
2nd DNS=208.67.220.220
1st NTP Server=ch.pool.ntp.org
2nd NTP Server=216.218.192.202
ETH0 IP Address Mode=Static IP
DHCP Lease Time=864000
ETH0 IP Address=192.168.18.1
ETH0 Subnet Mask=255.255.255.0
Number Of Client IP Address=
DHCP Start IP Address=192.168.18.100
DHCP End IP Address=192.168.18.222
STUN Enable=no
STUN Test Enable=no
STUN Server=
Phone1 Encrypt Algorithm=NONE
Phone1 Encrypt Key=
Phone2 Encrypt Algorithm=NONE
Phone2 Encrypt Key=
Resync Rule=
Resync Periodic=3600

When the client asks for the configuration file from
the server, the client has to send its serial ID encrypted

by an initial password to the server side. We should
know that the client equipment was sold by the server-
side provider, thus this serial number and initial
password was saved in the database of the server. When
the server receives the encrypted serial ID, it can
decrypt the serial ID by the initial password. Later, the
server exams the serial number of the device of the
client. If the serial number is authorized, the server will
send the encrypted configuration file to the client. And
the client can decrypt the configuration file with the
decrypt algorithm and the decrypt key. Here, the key for
encrypting and decrypting the SIP device configuration
file is preset in the SIP device according to the
algorithm that is related with the serial of the SIP device.

The algorithm and the key for encrypting and
decrypting the SIP session data are from the parameters
in the SIP device configuration file. To select which key
and algorithm depends on the programmer.

Therefore, using this security strategy, the key for
the client to decrypt the SIP device configuration file is
preset, and we don’t need to transmit it on the network.
Thus, there is no potential security hazard that the
hacker can hijack the key from network, only if
someone can get the key that had been burned on the
SIP device. Thus, the key and algorithm for encrypting
and decrypting the SIP session data are safe, too. Only
if hacker can get the key and algorithm that encrypted
the SIP device configurations file.

IV. VERIFICATION

In this section, we describe the system test
environment and the result of the tests.

A. Test environment

Table II shows the system configuration parameter
of the two endpoints.

TABLE II. SYSTEM CONFIGURATION PARAMETER

Client System

Operating System Windows XP

CPU Intel Core i5 460M 2.53G 2cores

Client development kit Microsoft VC 6.0

Server System

Operating System Linux Fedora 10

CPU Intel Core i5 460M 2.53G 2cores

Web Server Apache httpd-2.0.64

Apache httpd FastCGI module mod_fastcgi-2.4.6

FastCGI Development Kit for C

language

fcgi-2.4.0

B. Result

The performance is a requirement to keep the
algorithm feasible. This experiment demonstrated the
performance of the proposed approach. Time
consumption of File encryption or decryption was

62

shown in Figure 3. It is obvious that with the increasing
size of the file needed to be encryption or decryption,
the system takes more and more time to process the file.

Figure 3. Encryption /decryption time cost

We can find that, if the file size is less than 1MB,
and the system takes time less than 1s. As we all know,
for most file data, the size is not very large. However, if
the file is a streaming media file, such as a FLV format
file, and the size is 84,753KB in the Fig. 3, the time cost
is about 8s. It seems a little slow. However, our aim is
to secure the transmit procedure of the SIP device
configuration file. The size of this kind of file is
basically less than 1MB. Thus, using our scheme the
performance is reliable and efficiency. Besides, we
never build any channel on the network, thus this
approach won’t impact on the bandwidth, and won’t
affect the network resource.

In this paper, we used the sequential (or centralized)
information processing. Last but not least, if our system
has a GPU, we could use the CUDA [11] programming
to accelerate the speed of encryption and decryption
process evidently, which is parallel (or decentralized)
information processing. W. Fan, X.D. Chen and X.F. Li
[12] had implemented a method using the CUDA to
parallel encrypt the data based on using RSA.

V. CONCLUSION

In this paper, we proposed a novel scheme to
implement the security in endpoints, especially server-
client structure. The Application Gateway using port 80
protects the Web server from malicious access of the
nasty users, and uses the FastCGI programming to
access the client desiring destination. In addition, in
order to ensure the data transition security, we use the
symmetrical encryption to process the data at the sever
end. When clients receive the data from the server, it
uses the same encryption algorithm to decrypt the data.

Absolutely, End-to-end security protocols and
solutions are an essential cornerstone in network
security. In today's networks scenario, however, it is
unrealistic to assume that end-to-end security solution is
adequate. First, the cryptographic protocols that are
used to provide secure communication are already often
targeted by diverse attacks. The paper [13] proposed an
anomaly-based detection system by sniffing the

encrypted traffic, extract features to construct normal
usage behavior profiles. Due to the deviations from
these normal profiles, the system can detect the
suspicious activities. Second, there are countless
examples where network-based security is also essential,
and where the end-to-end security solutions are not only
useless, but also present an extra problem [14]. Thus, in
order to have robust end-to-end security, it is essential
to combine with network-based security solutions and
also necessary to make a combination with intrusion
detecting system. This is one of our future works.

In addition, inspired by the paper [15], we are also
supposed to consider whether our approach could be
used to secure the media stream in peer-to-peer systems.
This is another future work for us to extend the
application of our scheme.

REFERENCES

[1] T. Dierks, et al., “The Transport Layer Security (TLS) Protocol
Version 1.2,” RFC 5246, August 2008.

[2] S. Kent, et al., “Security Architecture for the Internet Protocol,”
RFC 4301, December 2005.

[3] D. S. Milojicic, V. Kalogeraki, R. Lukose, K. Nagaraja, J.
Pruyne, B. Richard, S. Rollins, and Z. Xu. Peer-to-peer
computing. Technical Report HPL-2002-57, HP Labs, March,
2002

[4] A. Oram, editor. Peer-to-peer: harnessing the power of
disruptive technologies. O'Reilly & Associates, Inc., March,
2001.

[5] Rodger D. Erickson, St. Louis, MO(US); Ronald D. Sanders,
Spokane, WA(US). METHOD AND SYSTEM FOR
PROVIDING A PERSISTENT HTTP TUNNEL, Method and
system for providing a persistent HTTP tunnel, United States
Patent Application Publication, Pub.No.:US 2002/0156901 A1,
Pub. Date: Oct. 24, 2002

[6] Kipp E.B. Hickman “The SSL Protocol,” Nov. 29th, 1994

[7] New Threats Requiring. Gateway-level. Application Filtering,
White paper, eSafe, September 26, 2006

[8] W. Richard Stevens, UNIX Network Programming, Prentice-
Hall, Section 7.9, 1990

[9] http://www.fastcgi.com/devkit/doc/fastcgi-prog-
guide/cover.htm, April 10th, 2011

[10] Crotti, M.; Dusi, M.; Gringoli, F.; Salgarelli, L., “Detecting
HTTP Tunnels with Statistical Mechanisms,” Communications,
2007. ICC '07. IEEE International Conference on , vol., no.,
pp.6162,6168, 24-28 June 2007

[11] NVIDIA Corporation. NVIDIA Compute Unified Device
Architecture Programming Guide Version 2,April 2009

[12] Wenjun Fan; Xudong Chen; Xuefeng Li, “Parallelization of
RSA Algorithm Based on Compute Unified Device
Architecture,” Grid and Cooperative Computing (GCC), 2010
9th International Conference on , vol., no., pp.174,178, 1-5
Nov. 2010.

[13] Fadlullah, Z.M.; Taleb, T.; Vasilakos, A.V.; Guizani, M.; Kato,
N., “DTRAB: Combating Against Attacks on Encrypted
Protocols Through Traffic-Feature Analysis,” Networking,
IEEE/ACM Transactions on , vol.18, no.4, pp.1234,1247, Aug.
2010

[14] Michael H. Behringer, “End-to-End Security,” The Internet
Protocol Journal, Volume 12, No.3, September 2009

[15] Zhijie Shen, et al, “Peer-to-Peer Media Streaming: Insights and
New Developments,” Proceedings of the IEEE 99(12): 2089-
2109 (2011)

63

ftp://ftp.rfc-editor.org/in-notes/rfc4301.txt

