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Abstract—As processor power consumption continues to grow,
thermal issue is becoming critical in the design of computing
systems. While there have been extensive theoretical researches
conducted on thermal aware computing, most of these researches
are based on idealized theoretical models and, sometimes, un-
realistic assumptions. In this paper, we develop a practical
thermal aware scheduling algorithm to optimize its throughput
under a given temperature constraint. We identify limitations of
related theoretical work and implement a practical algorithm on
an Intel i5 desktop computing running Linux 2.6.34. We also
use SPEC2000 benchmark to validate the effectiveness of the
proposed algorithm.

I. INTRODUCTION

Fueled by human’s increasing appetite for high computing

performance, semiconductor technology has now entered into

the deep sub-micron era. The more and more complicated

circuit architecture together with the continuously shrinking

transistors have resulted in an exponentially increased power

density in IC chips. The rapid increase of power consumption

makes it challenging to provide enough power supply for

computing systems, especially the computing systems with

limited power sources such as the portable computing devices.

Moreover, it also generates a large amount of heat to the extent

that makes the thermal management a major design issue in

computing system design today.

The rapid increase of heat generation can greatly increase

the packaging/cooling cost, and adversely affect the life span,

performance, and reliability of a computing system. It is esti-

mated that [13] the thermal packaging increases total package

cost at 1-3 dollar per watt. Moreover, according to Yeh and

Chu [21], every 10oC increase in operating temperature can

cut a device’s life span by half. From Santarini et al. [12],

every 15oC increase in temperature can lead to as mch as

10-15% in circuit delay. In addition, high temperature also

increases leakage power consumption, which is becoming

more and more prominent in total power consumption. Based

on the research proposed by Liao et al. [10], increasing

temperature from 65oC to 110oC can increase leakage power

by 38% for IC circuits using the 65nm technology. Evidently,

high temperature is becoming a more and more critical issue

in the design of computing systems.

Thermal aware scheduling, as one of the most effective

dynamic thermal management techniques, has been researched

extensively in recent years. Some researches (e.g. [2], [19],

[7]) take the temperature and leakage interdependency into

consideration to optimize the total energy consumption. Some

other approaches (e.g. [4], [9]) seek to minimize the peak run-

time temperature. There are also some other researches that

studied the thermal aware performance maximization problem

(e.g. [3], [23], [24]). Many modern processors today have

thermal aware self-protect mechanism, which automatically

shuts down a processor to avoid physical damage [11] when

its temperature exceeds certain threshold. As a result, the

processor temperature needs to be carefully monitored and

managed to avoid sudden performance disruption. To this end,

Zhang and Chatha [23] presented a pseudo-polynomial time

speed assigning algorithm based on dynamic programming to

minimize the total execution latency. They further developed

several heuristics [24] to maximize the throughput of a real-

time system by sequencing the execution of a task set con-

sisting of tasks with different power/thermal characteristics

for processors with and without dynamic voltage/frequency
scaling (DVFS) capabilities. Chantem et al. [3] proposed to

run real-time tasks by frequently switching between the two

speeds which are neighboring to the constant speed whose

stable temperature is the given peak temperature limit.

Most theoretical thermal aware scheduling results are de-

rived based on simplified models and assumptions. For exam-

ple, most of the above research employ the lumped first order

RC thermal model to model the temperature dynamics. Also,

as shown later in this paper, some of the assumption such as

the exact knowledge of the actual temperature may not always

be possible. While theoretical researches simplify the research

problem and help to uncover the fundamental principles in

practical scenarios, practical applications must deal with some

important details in the practical environment. To this end, a

number of researches were conducted based on more practical

computing systems (e.g. [18], [15], [1], [20], [11], [8]). For

example, Ahn [1] et al. developed and validated a heuristic to

reduce the power consumption and control the temperature

on Intel Centrino Duo and ARM-11 MPCore platformss.

Erven [11] et al. proposed an algorithm to ensure the system

temperature under a pre-defined threshold by adjusting the

utilization of the CPU in a Pentium-II desktop. Wang [20]

et al. developed a feedback control based on-line temperature

control method and implemented their novel algorithm on an

Intel Xeon desktop. Amit [8] et al. incorporated hardware and

software thermal management technologies and proposed a
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hybrid thermal management algorithm to optimize the heat

dissipation in a Pentium-4 system.

In this paper, we study how to maximize the workload on a

general desktop computer under certain temperature constraint.

Specifically, we are interested in studying the applicability

of existing theoretical results for the workload maximization.

In this paper, we identify several limitations of existing

theoretical algorithms on the practical desktop platform and

propose a new Dynamic Voltage Frequency Scaling (DVFS)

algorithm based on an Intel i5 computing system. We also

use SPEC2000 benchmark to validate the effectiveness of the

proposed algorithm.

The rest of the paper is organized as follows. Section II

introduces the practical environment based on which we

develop our algorithm and discusses several related theoretical

approaches and their limitations. We then present our approach

in Section III. We discuss the experiment results in Section IV

and conclude this paper in Section V.

II. PRELIMINARY

In this section, we first introduce the practical desktop envi-

ronment that we target. We then discuss the related theoretical

work on workload maximization and their limitations.

A. The practical working environment

An overview of the practical desktop environment we con-

sider is depicted in Figure 1. The target platform is a Dell

Precision T1500 desktop workstation with Intel i5 750 quad

core microprocessor. The Intel i5 microprocessor supports 12

different working frequency levels ranging from 2.66GHz to

1.2GHz, as shown in Table I. The processor has integrated with

Enhanced Intel SpeedStep Technology(EIST) [14] that enables

the adjustment of frequency or voltage either separately or

simultaneously. We installed the Ubuntu 10.04.1 Linux oper-

ating system on top of the hardware platform. To implement

the DVFS features, we adopted the CPUfreq Linux kernel

subsystem, which provides an interface between the user level

frequency-controlling policy and the underlying mechanisms.

Moreover, CPUfreq subsystem provides different governors

which enable us to assign different frequencies in TableTable I

to each individual core.

In our tests, we always set the voltage to the lowest level

that can support the designated working frequency. In addition,

our research in this paper focuses on thermal aware scheduling

for single processor systems. Since Intel I5 is a quad core

processor, we manually generated four copies of the same

program and allocated each copy to each individual core, and

the frequency and voltage were always set to the same level

at the same time.

A Dell Precision T1500 desktop workstation has two cool-

ing components: the heat sink and cooling fans. The cooling

effect of the heat sink depends on its physical characteristic,

which does not change when running an application. The fans,

on the other hand, can be adjusted dynamically between the

maximal of 4500RPM (round per minute) and minimal of

1500RPM. To simplify our test cases, we fixed the fan speed

at 1500RPM.

Intel i5 core� Thermal Sensor�

SPEC Benchmark�

DVFS Technique�

Fan Speed Control �

Process Allocation�

Computing system hardware monitoring tool�

Fig. 1. Structure of hardware platform

TABLE I
INTEL I5 AVAILABLE FREQUENCY LEVELS (GHZ)

1 2 3 4 5 6
2.667 2.533 2.4 2.267 2.133 2.0

7 8 9 10 11 12
1.867 1.733 1.6 1.467 1.333 1.2

A key aspect in our study is to capture the temperature

information accurately and timely. Dell Precision T1500 desk-

top has an external thermal sensor, located underneath the

CPU chip. An alternative method is to read temperature value

directly from the built-in digital thermal sensor integrated with

each core. The temperature is stored in the Model Specific
Register (MSR), which can be accessed through the Industry
Standard Architecture (ISA) ports or the System Management
Bus (SMBus). In our tests, we used the average temperature

values of all four on-chip thermal sensors to get the instant

temperature of the processor chip.

To ease our implementation and tests, we simply adopted a

Linux hardware monitoring tool called Lm-sensors to capture

the temperature, to set the fan speed, to vary supply voltage

and working frequency. For temperature, it can report not only

the chip temperature but also the ambient temperature. In

our experiments, we found that the time to access the on-

chip sensor takes approximately 8ns; the resolution of the

on-chip thermal sensor is only 1oC; and the minimal time

for a temperature sensor to reflect a change in temperature is

approximately 1 second [6].

B. Workload optimization under the peak temperature con-
straint

As discussed in the introduction section, there have been

many approaches published to address the thermal aware

performance maximization problem, such as [3], [23], [24].

However, most of these approaches require detailed knowledge

of processes running on the platform, such as the exact

numbers of processes and their execution times, which is not

always available on a general computing platform such as the
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Fig. 2. An example of temperature trace.

desktop. Some other information such as the thermal resistance

and thermal capacitance, which is essential to build the thermal

model for the processor, is also not immediately available.

In addition, some common assumptions used in these ap-

proaches may not be applicable. For example, it has been a

common practice to assume (e.g. [23]) that power consumption

of a processor remains constant as long as it is executed

using a constant speed. In reality, power consumption varies

with not only temperature but also applications. Also, it is

not surprising that a process may consume different power

consumptions at different execution stages.

To develop a general thermal aware scheduling algorithm

for the desktop computing platform, the less information

is required regarding the processes and platform, the more

effective can the algorithm be. In this regard, the reactive
two speed scheduling approach, proposed by Wang et al [16],

seems to be a good choice. According to this algorithm,

the processor runs at the maximum speed before it reaches

the temperature limit and then runs at a speed, so called

the equilibrium speed, to maintain this temperature. It has

been proved [5], theoretically, this is the optimal approach to

maximize the workload under a peak temperature constraint.

However, there are a number of problems with this ap-

proach. First, since most processors support only discrete

levels of working frequencies. The ideal equilibrium speed

may not always be available for a given peak temperature

constraint. Furthermore, the power consumption the processor

varies with not only the processor speeds, but also other factors

such as the types of processes, operating temperature, etc. In

fact, even a single processor running a single process may have

different power consumptions at different times. Therefore, the

the equilibrium speed is not unique and constant at all, and it

is simply not possible to simply set a processor to a constant

speed once and for all to maintain a constant temperature.

To deal with these problems, another approach [11], as

shown in Figure 3, seems to be more flexible. This approach

assumes no a priori knowledge of the applications running on

the computing system at all. It monitors the chip temperature

regularly and adjusts the processor performance dynamically.

At each temperature sampling point, if the current temperature

does not reach the threshold, the processor speed is elevated

to one level higher. Otherwise, if the current temperature

equals or exceeds the temperature limit, the processor speed

If (Tc < Tb )
Speed=speed+1

If (Tc >= Tb) 
Speed=speed-1

Set frequency

Read
current

temperature

Compare
with

threshold

Execute with 
Max speed

Sampling
Period

Fig. 3. A simple dynamic approach for throughput maximization.

is changed to one level lower to cool down the temperature.

At the first sight, it seems that this approach solves all the

problems mentioned above. It naturally assumes the processor

has a discrete working frequency levels. It does not assume any

a priori knowledge of the programs running on the processor

either. However, there are still a few problems that make this

approach less effective in a practical desktop environment.

First, this approach assumes that the instant temperature

information is available immediately and accurately. Second,

updating the frequency level one at a time may not be

quick enough to respond to temperature change and meet the

temperature constraint.

We use a simple example to explain these two problems.

Consider Figure 2. Recall that it takes about 1 second for

the thermal sensor in our desktop to reflect any temperature

changes. It is possible that even though the system temperature

has already reached or surpassed the temperature threshold at

t1, the sensor reading may still be lower than temperature

limit. The algorithm continues to increase the performance

level of the processor and thus violates the peak temperature

constraint. Moreover, even though the algorithm can sense the

accurate temperature at t1 and find that it has already reached

the temperature threshold, since it adjusts frequency level one

at a time, it may not be able to reduce the temperature fast

enough. The temperature continues to rise and violates the

peak temperature constraint. To address these problems, in

what follows, we develop a new algorithm that can maintain

processor temperature under limit while maximizing the sys-

tem performance.
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III. OUR APPROACH

Being able to monitor the temperature change timely and

accurately is one of the most critical issues for our approach.

Theoretically, it is possible to use interrupt mechanism to

monitor thermal sensor readings, and it will be our future work

to study the effectiveness and efficiency of using interrupt

for this purpose. In this work, as that in [11], we use the

simple polling method to monitor thermal sensors for the

temperature variations. As a result, defining the appropriate

sampling period becomes critical.

A. Identify the sampling period

One intuitive idea to define the sampling period is to set the

period as small as possible in order to track the temperature

change quickly, provided the accumulated overhead can still

be negligible. Unfortunately, using a very small sampling

period can in fact increase the possibility of temperature

constraint violation. Figure 4(a) shows a temperature trace

when the sampling period was set to a very small value, i.e.

8ns. From this figure, we can see that processor temperature

violates the given temperature constraint frequently and can

exceed the temperature threshold as much as 4oC. This is

mainly due to two factors: First, the thermal sensor cannot

keep up with the temperature changes instantly; Second, as

mentioned before, the thermal sensor resolution is only 1oC.

Simply relying on the thermal sensor reading can actually

mislead the performance setting of the processor. On the other

hand, setting the sampling period too large cannot catch the

temperature variations timely.

Given the limitations of the temperature sensor in our

platform, in our approach, we set the sampling period to be

equal to the minimal response time of the thermal sensor

for temperature change. To identify the minimal temperature

response time, we ran different benchmarks at different speeds

with different sample periods. The minimal interval within

which the temperature sensor has the same reading is set to

be the sampling period. From our empirical work, we found

the minimal temperature response time to be 0.98 seconds.

The sampling period defined above can be more effective

in avoiding the misjudgement of the temperature changing

trend. However, in the worst case scenario, it takes as long

as 0.98 seconds to find out that the thermal sensor readings

has changed. For example, the thermal reading changes exactly

after one sampling point. To further improve the performance,

we develop a polling algorithm (as described by Algorithm 1)

that uses non-constant sampling periods. Algorithm 1 adopts

two sampling speeds Tr and Ts with (Tr >> Ts). When the

thermal sensor changes its readings, a new processor speed

is set accordingly and the sampling period is set to Tr. If

the temperature sensor remains the same value, Algorithm 1

changes the sampling period to Ts and the processor perfor-

mance remains the same. In our case, Tr = 0.98 seconds and

Ts = 0.1 seconds. In comparison with the algorithm using

a constant sampling period, this approach catches temperature

change and responds to it more timely. Therefore this approach

can achieve better performance as shown in Figure 4(b).
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Fig. 4. (a) The temperature trace with very small sampling period. (b)The
temperature trace with sampling period from Algorithm 1.(c)The temperature
trace with sampling period from Algorithm 2.
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Algorithm 1 THE POLLING METHOD WITH VARIABLE

POLLING PERIODS

1: while Process is running do
2: Read current temperature Tcur;

3: if Tcur = Tprevious then
4: Wait Ts = 0.1 seconds;

5: else
6: if Tcur < Tbound then
7: Increase processor speed by one level;

8: else
9: Decrease processor speed by one level;

10: end if
11: Wait Tr = 0.98 second;

12: end if
13: end while

B. Buffer zone and temperature speed lookup table

Figure 4(b) shows clearly that Algorithm 1 greatly reduces

the number of “spikes” (i.e. temperature violations) over

the simple polling method with a constant sampling period.

However, as we can see from Figure 4(b), there are still

temperature violations occur. This is due to two reasons: First,

even though Algorithm 1 greatly reduces the probability of

temperature violations, in the worst case scenario, it still takes

as long as 0.98 seconds to confirm a temperature change.

This makes temperature violations inevitable for Algorithm 1.

Second, Algorithm 1 adjusts the processor speed one level

at a time. When temperature is really close to its limit, it is

simply not fast enough to slow down the processor speed to

cool down the temperature in time. On the other hand, when

the temperature is much lower then the temperature threshold,

the processor speed is not increased fast enough to maximize

the throughput.

To solve these problems, we first introduce a concept called

the temperature buffer zone. Given a temperature threshold

Tbound, the temperature buffer zone is defined as the interval

of [Tsafe, Tbound], where Tsafe is determined by the following

equation

Tsafe = Tbound −�T, (1)

where �T is the maximum possible temperature increase

within one sampling period. �T can be determined empiri-

cally. Using SPEC2000 benchmark, we found that�T = 4oC.

When the temperature is lower than Tsafe, we say that the

temperature is located in the temperature safe region.

When the processor temperature is located in the safe re-

gion, we can safely use the highest possible speed to maximize

the throughput before temperature enters into the buffer zone.

The problem is how to define the safe speed to run the program

and make sure the temperature does not exceed Tbound.

Consider the commonly used thermal model as follows

dT (t)
dt

= aP (s)− bT (t), (2)

where T (t) is the temperature at time t, P (s) is the power

consumption with processor speed of s, and a,b are the cooling

constants. To ensure that temperature does not exceed Tbound,

we only need to make sure when temperature is located in the

buffer zone, we have

dT (t)
dt

|T (t)∈[Tsafe,Tbound]= 0, (3)

By combining equation (2) and (3), analytically we can solve

for processor speed s. However, it can be extremely challeng-

ing if not possible to determine the analytical function of P (s)
and the cooling constants a, b. Hence, we determine the safe

speed empirically from SPEC2000 benchmark. Specifically,

let benchmark application set be T = {τ0, τ1, · · · , τn−1}. Let

Tstable(τi, sj) be the stable temperature when running τi using

processor speed sj . Let Si be the speed such that

Si = max{sj such that Tstable(τi, sj). ≤ Tbound}. (4)

And the safe speed Ssafe is determined as follows.

Ssafe = min
τi∈T

Si. (5)

Our improved algorithm is depicted in Algorithm 2. When

a process is running, the processor uses the highest possible

speed to improve its throughput if the temperature is located in

the safe region (line 5-6). Otherwise, it adopts the safe speed

to make sure the temperature constraint is not violated. With

the establishment of the safe region, Algorithm 2 eliminates

temperature violations as demonstrated in Figure 4(c).

It is worth mentioning that if the running applications are

known a priori, we can further improve the performance of

our algorithm by building up a lookup table. The lookup

tables list the applications and their specific safe speeds under

different temperature constraints, as those defined in equation

(4). In that case, we can use the corresponding safe speed

depending on the current running process to further maximize

its throughput.

Algorithm 2 THE ENHANCED ALGORITHM USING THE SAFE

SPEED

1: while Process is running do
2: if Tcur = Tprevious; then
3: Wait Ts = 0.1 seconds;

4: else
5: if Tcur ≤ Tsafe then
6: Set processor speed to the maximum speed;

7: else
8: Set processor speed to Ssafe.

9: end if
10: Wait Tr = 0.98 seconds;

11: end if
12: end while

IV. EXPERIMENTS AND RESULTS

In this section, we use experiments to investigate the effec-

tiveness of our newly developed algorithms. The experimental

platform is the same as presented in section II. All experiments

were carried out with the same ambient temperature and initial

chip temperature. We selected several benchmark from SPEC

CPU2000, including gzip, vpr, gcc from integer operation and
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galgel from floating operation, to get credible and comparable

experiment results. We set the temperature constraint at 55 oC.

We first created the lookup table, shown in Table II, as dis-

cussed in section III. Table II shows running different applica-

tions can result in distinctly different stable temperature, even

with the exactly the same speeds. This clearly demonstrates

the limitations of many theoretical research results that assume

processor’s power changing only with its working frequency.

TABLE II
LOOKUP TABLE FOR SPEC 2000 BENCHMARKS

Frequency levels (GHz)
SPEC benchmark 2.6GHz 2.4GHz 2.2GHz 2.0GHz 1.8GHz

galgel 64oC 59oC 57oC 54oC 52oC
vpr 60oC 54oC 53oC 50oC 48oC
gcc 61oC 55oC 53oC 51oC 47oC
gzip 61oC 54oC 52oC 51oC 46oC

We next studied the performance of our approach in terms

of the total number of times that the processor violates the

temperature constraint. Four approaches are compared: the

approach using very small constant sampling period (namely

Psmall), the approach using a constant sampling period that is

equal to the thermal sensor’s shortest response time (namely

Pcalculte), the approach using the variable sampling periods

(namely Window size), and the approach that adopts the safe

speed and buffer zone (namely our approach). The results are

plot in Figure 5. In Figure 5, our final algorithm (i.e. our ap-
proach) guarantees the temperature constraints and there is no

temperature violation shown in the figure. In addition, Figure 5

shows that our approach using the variable sampling periods

can also significantly reduces the temperature violations times

than other two approaches. From the experiment results, we

clearly prove that our approach can perfectly control the chip

temperature under the threshold.

We next compare the throughput for the same four ap-

proaches. The execution times of four benchmarks are plot in

Figure 6. From Figure 6, we can see that the first approach al-

ways takes the longest execution time for all four benchmarks.

By properly increasing the sampling period, the redundant
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Fig. 6. Performance comparison of different algorithms

overhead has been significantly reduced and the execution time

has been improved as much as 2.4% on average. When using

variable sample periods, the throughput performance is further

improved because the unnecessary speed switching overhead

was reduced. Our final algorithm has the shortest execution

time. When comparing with the first algorithm, the execution

time could be reduced as much as 7%. The improvement

comes from the fact that we use maximum speed to run the

benchmark file if the temperature is in the safe region, which

outperform the cases when the processor speed has to be

increased every sampling period. Also, when the temperature

is located in the temperature buffer region, we can use the

safe speed to further maximize its throughput and ensure the

temperature constraint at the same time.

Overall, the experiment results show that our algorithm can

not only precisely control processor temperature under a pre-

defined temperature limit but also significantly improve the

system performance.

V. CONCLUSIONS

Dynamic thermal management is becoming more and more

critical as more transistors are integrated into one single

chip. While there have been extensive theoretical researches

conducted on this subject, most of these researches are based

on idealized theoretical models and assumptions. In this paper,

based on a desktop environment, we study the limitations

of the existing theoretical work. We also present a DVFS-

based thermal aware scheduling algorithms to maximize the

throughput under a given peak temperature constraint. We also

use SPEC2000 benchmark to validate the effectiveness of the

proposed algorithm.
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