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Abstract—Today’s datacenters and large scale enterprise com-
puting are power hungry. A lot of research effort is devoted
in industry and academy to address this challenging issue. In
this context, a new type of enterprise computing platform is
being investigated. This computing platform is composed of
hundred of millicomputers, each requiring orders of magnitude
less power. However, this approach brings challenges that must
be met in order to compete with the current practice. This paper
addresses two such critical challenges. First, it suggests how to
decompose large applications into smaller tasks, better suited
to millicomputers. Then, it casts the performance oriented and
energy efficient problem into a soft real-time scheduling problem,
for which several algorithms are then proposed and evaluated.
Sensitivity analysis is used to provide insights into the model, and
plan the evaluation of the scheduling algorithms. The contention
found in multi-core millicomputing processors is also accounted
for.

I. I NTRODUCTION

Energy efficiency is justified by the rising energy costs in the
data center [1]. The components responsible for the majority
of the electrical costs are the server machines used in data
centers. These costs come from the direct power consumption
of the servers, but also indirectly from the cooling equipment
required to keep the data center operational [1]. The combined
costs for the direct and indirect power consumption can
amount to 75% of the total energy costs in a data center.

The current server machines are based on high perfor-
mance multi-core processors, where the number of cores
is steadily increasing. Despite the recent improvements in
energy-efficiency of these processors, they remain power hun-
gry and dissipate significant heat. This is aggravated by the
recent trend to package these machines in so-called blades,
themselves grouped in racks. This aggravation is due to
cooling costs not growing linearly with the temperature [2].

Millicomputing [3] is an alternative computing platform for
data centers. It suggests to use computing elements, such as
processors, that require much less power than those found
in conventional servers. Because the individual performance
of these low power machines is much less than the current
data center servers, they need to be grouped into clusters in
order to collectively provide enough performance. Clusters of
millicomputers are called milliclusters [3].

The millicomputing initiative raises several issues, ad-
dressed in this paper. How to design applications for milliclus-
ter machines, which also scale to the many -distributed- cores
available? How can a millicluster keep the low power property
of its millicomputers, when attempting to meet performance

objectives comparable to those found in data centers? This
paper is a preliminary investigation of the millicluster alterna-
tive.

The contributions of this paper are:

• proposes an application architecture that allows large
applications to run on a millicluster,

• proposes and evaluate several heuristics for the energy
efficient use of resources in a millicluster, while meeting
application performance objectives,

• includes the effect of contention in multi-core processors,
such as those found in millicomputers,

• analyzes the models introduced with sensitivity analysis.

This paper is organized as follow. Section II presents
milliclusters. Section III details how to design applications for
this distributed platform. Section IV provides the energy model
considered in this paper. Scheduling algorithms, sensitivity
analysis of the models and experimental results are described
in Section V. Section VI concludes the paper.

II. M ILLICOMPUTING

This section describes millicomputing and its challenges.

A. Milliclusters

The computing platform considered in this paper is based
on millicomputing [3]. It investigates the issue of rising energy
costs by replacing the components responsible for the majority
of the cost of energy with, existing, more energy-efficient and
less heat producing equivalents.

The idea is to turn to the market of mobile phones, smart-
phones and other mobile computing devices, for solutions to
the increasing cost of energy in data centers. The mobile de-
vice industry has designed components, including processors,
that can consume milliwatts (hence the name millicomputing),
as opposed to the hundreds of watts of traditional servers.
Furthermore, these devices do not require cooling.

The processors suitable for a millicomputer cannot delivera
performance comparable to that of a typical server processor.
Therefore, it is suggested to group several of these energy
efficient devices into a small distributed system, which is
called amillicluster.

B. Multi-core processors

It is important to note that the millicomputer processors
can be multi-core, but with a smaller number of cores than
typically found in data center servers.



Multi-core processors are not true parallel machines, in the
sense that significant resources are shared between cores. The
resulting contention considerably impacts the performance of
a task [4], [5], [6], [7], [8], [9], [10], and indirectly its energy
consumption.

Although milliprocessors provide less cores than their data
center server counterparts, it is necessary to account for the
contention, because of its impact on performance and energy.
This aspect is included in this paper.

III. A CHIEVING PERFORMANCE OBJECTIVES IN A

MILLICOMPUTING SYSTEM

The use of millicomputers raises a challenging question:
how to deliver equivalent performance to the current data cen-
ter servers, when relying or considerably slower processors?

Milliclusters also introduce the difficulties associated with
distributed systems.

A. Pipelining

Large applications must be split in smaller parts, which are
then distributed across the milliprocessor machines in hope of
matching performance of current multi-core processors.

The chosen message-based decomposition is software
pipelining (also called stream processing), introduced byD.
Mc Ilroy in Unix shells. A software pipeline is a set of
tasks, connected via uni-directional communication links. The
advantage of a pipeline is to increase throughput, at the cost
of increased delay for completing all the steps in the pipeline.
Therefore pipelines can provide better overall application
performance, if this performance is based on throughput.
Applications which rely on throughput versus latency may be
servers handling many concurrent requests, where the latency
for each request is less critical than the total number of
requests served. This includes many Internet services.

Decomposing existing applications into software pipelines
is not straigthforward. The application becomes distributed
across the millicluster, which also introduces some complexity.
This paper does not aim to indicate how to perform such
decomposition. However, the widespread use of piped shell
commands on the Unix operating systems, and the various
distributed queue-based applications (such as workflows) pro-
vide examples of successful pipelined software constructions.

B. Application model

An application is decomposed into a set oftasks, connected
by message queues. Tasks are arranged in a pipeline, a
sequence of tasks, where each output is the input of the
next task in line. Several copies of the same tasks may be
run concurrently, all serving the same queue. However, this
possible set up is not investigated further here.

The objective is to match the performance of the application
on data center class processors. However, the application over-
all performance is now distributed across the tasks. Each task
must respect some service level, in order for the application
to do as well.

Soft real-time deadlines provide a natural way to express
this constraint. Each task is therefore given a deadline. The

overall pipeline performance is equal to the slowest task’s
performance. The performance of a task is modeled as a time
needed to process an unit of input, called the estimated time
to complete (ETC) [16]. Therefore, the deadline for each task
is the largest ETC. All tasks share the same deadline.

In practice, that deadline is extended by a factor,delta, to
account for variability in the ETC of the slowest task.

IV. ENERGY MODEL

The motivation behind millicomputing is energy saving.
Therefore, operating a millicluster should also aim to minimize
energy costs. Although milliclusters do not require cooling,
they should still minimize the energy used by their compo-
nents.

In fact, the motivation for energy saving is cost saving.
Reducing the computing infrastructure reduces costs. Total
energy consumption for the system is related to the overall
size of a computing infrastructure. Therefore total energy
consumption is a good indicator of the overall operating costs
for a computing infrastructure.

This section presents the model for energy consumption in
a millicluster.

A. Machine energy estimation

The cores are packaged in processors, which are themselves
grouped in a computing machine. This paper supposes that
each core is capable of dynamic voltage frequency scaling
(DVFS); that is, it can be operated on a set of supply voltages
and different speed performance (associated to different clock
frequencies) [17], [18]. DVFS seeks to exploit the convex
relationship between the core supply voltage (that impactsthe
speed of execution) and the energy consumption. Moreover,
different cores of a same processor are assumed able to
independently operate at different voltage/frequency points.

Energy-efficiency using DVFS often considers that applica-
tion could specify the voltage/frequency point of operation of
each core. This is not the assumption in this paper. Indeed,
inspection of the kernel power management tools of the
GNU/Linux kernel version2.6.35-24, reveals that DVFS
is very dynamic and self-regulated. Default values for the
On-demand governor show a sampling rate of 10 ms (time
period when a DVFS change is considered). Fundamentally,
the complexity of a cluster is such that whenever possible,
local decision making should be preferred over a global one.
In this case, the regulation is based on CPU utilization, which
is also under the control of the kernel.

Here, the operating system (OS) manages power using the
cpu-freq tools under the on-demand governor. The on-
demand governor implements therace-to-idlepolicy. When-
ever there is a need for CPU, then the voltage/frequency is set
to its maximum value. Later, when the utilization decreases,
the voltage/frequency point of operation is chosen so as to
match the needed load. It should be mentioned that the
automatic adjustment of the CPU frequency results in jitter,
delayed comunications, in a large-scale system, which is the
case of the millicluster.



Processor is not the only component of the millicluster to
consume energy. Because the intention is to capture the total
energy consumption of the millicluster, other components need
to be included. The power model adopted is summarized by
the relation:

Pm = Pconstant + Phigh, (1)

wherePm is the total power of a machine (millicomputer),
Pconstant represents the constant power term, for components
which do not scale according to voltage or frequency, this also
include the network, andPhigh represents the power increase,
compared to the idle state, when components subject to DVFS
are in high performance mode (in an active state, the machine
dissipatesPconstant + Phigh). This is automatically adjusted
by the OS and the hardware, and does not only include the
processor.

This model is preferable because it lends itself to experi-
mental validation through power measurements.

Energy is the product of power and time. The energy should
also reflect the race-to-idle policy. Total energy is definedhere
by:

Em = Pconstant × CTmax + Phigh ×

cores∑

c

CTc, (2)

whereCTc is the sum of all ETC of the tasks assigned to a core
of a machine (its finishing time), andCTmax is the maximum
CTc over all cores of all machines. If no tasks are run on a
machine, then that machine is considered switched off. When
running a task, the core is at maximum voltage/frequency
consumingPhigh, when idle, onlyPconstant. The idle time
lasts until the last core finishes its tasks.

All machines in the milliclusters are considered identicalin
this study. Usually, clusters are assembled at a given pointin
time, and machines are bought together.

B. Impact of contention in multi-core machines

As discussed in Section II-B, the millicomputers part of the
millicluster are multi-core, which suffer from contention.

The contention considered in this study is related to com-
ponents shared across a machine, such main memory. The
contention factor is proportional to the memory parts of the
other tasks running on the other cores of the same machine.
Tasks running on the same core are not subject to contention
because they do not run concurrently, but are preempted by
the OS.

Contention effects impact the ETC of a task (access of a
shared resource are serialized). Each task is defined by an
ETC, which is split into:

• ETC under possible contention,
• the rest of the ETC, which is independent of sources of

contention.
This effect of contention on a task’s ETC is approximated

by a delay added to its ETC. This penalty delay is the sum
over all the other cores of the machine, of the time period
spent concurrently in contention prone activity.

This definition requires the schedule of execution for each
task on every core, which is the topic of the next section.

V. SCHEDULING PIPELINES IN MILLICLUSTERS

As mentioned at the end of the previous section, efficiently
running software pipelines on a milliclusters of multi-core
processors requires the precise scheduling of the tasks onto
the cores.

Before describing the algorithms proposed in this paper,
which is the topic of the next section, the nature of the
scheduling in the millicluster must be made precise. Indeed,
various components in a computing system use schedulers,
making the term scheduling ambiguous.

The scheduler investigated here is a non-privileged instance
of a program, operating at the cluster level. The main activity
of the millicluster scheduler is to periodically define the set of
concurrent tasks in a processor, so as to minimize contention,
meet task deadlines and save energy.

It is similar to an OS long term scheduler, described in [19]
by: “The long-term scheduler deals with the high-level or
”big picture” issues; it is invoked infrequently and taskedwith
deciding which processes should inhabit the ready queue. The
idea is that the long-term scheduler takes on the role of load
balancing: it might try to maintain a mix of I/O bound (i.e.,
those that perform mainly I/O) and computationally bound
processes for example, in order to give the best overall system
performance.”

The millicluster scheduler defines the current list of pro-
cesses, per machine, that a usual OS scheduler (or short term)
schedules for execution at a much higher frequency. The core
on which to run the process is not important, because the
millicomputers are considered single processor (yet multi-
core), and the exact core mapping is not important (as opposed
to the concurrent set of processes).

A. Algorithms

In this section, three scheduling algorithms are presentedto
meet the stated objectives.

The particular context for the scheduling question lies at the
intersection of two fields:

• distributed system, for the scheduling independent tasks
(tasks in a pipeline have become independent tasks, which
is another benefit of this program structure),

• soft real-time, because of the deadlines for each task.

The first algorithm evaluated is a variant of Min-Min [20],
[21], a mapping algorithm for resource allocation. It originates
from the field of distributed systems. It is a greedy algorithm,
which considers all possible task-to-core mappings, and then
performs the assignment of the best mapping, constructing the
schedule incrementally. ”Best” is defined here by the energy
delay product (EDP)D · E, where:

• D is the total time by which all tasks exceeded
their deadlines, D =

∑tasks

t max(0, deadline −

finishing time),
• E is the total energy spent.

To influence the decisions of the algorithm, a paramaterα

is introduced, such that a mapping is considered better than
the current bestMax, if α ·D · E < Max.



The other two novel algorithms we propose are inspired
from real-time scheduling algorithms: rate monotonic and
earliest deadline first [22]. These algorithms have been proven
optimal in a specific context, which is not the one set here,
but similar. These variants are called Shortest Slack First(SSF)
and Longest Slack First (LSF).

SSF orders the tasks to schedule in increasing slack time,
the difference between their deadline and ETC. It then assigns
a core (which minimizes the EDP according the same rule as
Min-Min) for each task in turn, incrementally constructingthe
schedule.

LSF works identically, but orders the tasks by decreasing
slack.

Before these algorithms can be experimentally compared, all
the parameters of the different models (task, machine, energy,
contention, algorithm) need to be set. It is best done once their
respective influence is established. This is the topic of thenext
section.

B. Sensitivity analysis

Sensitivity analysis (SA) [23] of a model provides many
benefits. First it determines the influence of each of the factors
of the model. This allows future users of the model to focus
on the most important parameters of the model, while ignoring
the least influential.

It also helps design models, because understanding the
influence of each factor allows to verify of the model. For
example, SA allowed the authors to uncover an error in the
earlier version of a model. The SA reported that a presumed
key factor had in fact almost no influence.

The objective for this SA is Factors Prioritization (FP),
whose goal is [23] “to make a rational bet on what is the
factor that one should fix to achieve the greatest reduction in
the uncertainty of the output”. A factor corresponds to our
model parameters.

The different parameters for our model are presented in Ta-
ble I, with their range of possible values. Parameter maximum
ETC is the maximum value used for the random generation
of ETCs of all tasks. The maximum contention rate is the
maximum value for the proportion of the ETC the task spends
in contention prone instructions. This value is used for the
generation of ETCs. Deadline is the additional time added
to the largest ETC to obtain the common deadline. It is an
additional percentage to the largest ETC. Powers have been
defined in Section IV-A. The values forPhigh is taken from
the specifications of the ARM 9 processor. The values for
Pconstant are arbitrarily chosen, to reflect the non-processor
related components. Parameterα is part of the objective func-
tion defined in Section V-A. A small value forα indicates that
sub-optimal scheduling decisions are allowed, whereas greater
than 1 values indicate that scheduling decisions improve the
objective by a greater margin.

Two SA are performed: a quantitative and a qualitative
method.

The quantitative method used is an extension to the Fourier
Amplitude Sensitivity Test [24]. This method allows the

TABLE I
MODEL PARAMETER VARIATION

Parameter Probability Range of values
maximum ETC uniform 15 – 30 [time unit]

Contention rate max uniform 30 – 60%
Deadlinedelta uniform 0 – 30%

Power (constant) uniform 15 – 25 W
Power high uniform 0.1 – 2.0 W

α uniform 0.7 – 1.2
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Fig. 2. Fast99 of Energy

computation of first order effects and interactions for each
parameter. Parameters interaction occurs when the effect of
the parameters on the output is not a sum of their single (first
order) effects. This variance decomposition method has the
following desirable properties [23]. It is model independent (it
does not place requirements on the type of model to work).
It evaluates the effect of a parameter while all others are also
varying. Finally, it copes with the influence of scale and shape
(the probability density function and its parameters).

The results for this method are shown in Figures 1, 2.
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The output in the case of performance is the amount of time
by which the deadlines were exceeded. Part of the hypothesis
for the SA was a small number of machines, such that most
tasks failed to meet their deadline. The amount of time by
which they failed to meet their deadlines is the output.

Regarding the performance analysis, the factors have pre-
dominantly a linear impact on the output. The most influent
factor isα. Maximum ETC, the deadline factor and maximum
contention playing minor roles. Indeed, the definition ofα

makes it play an influential role. Maximum ETC sets the
maximum value for the task generation. The ETC for each
task is randomly chosen in a given range. A higher value for
maximum ETC leads to heterogeneous task ETC.

Regarding the energy analysis, the three important factors
areα, maximum ETC and power. This is interesting because
it exposes the tight relation between performance and energy.

The qualitative method used is a ”one factor at a time”
(OAT). It is commonly used for screening the least important
factors from the rest. The method used here is the method of
Morris. It also captures the linear and non-linear interaction
of factors. Qualitative methods require less computationsthan
quantitative ones.

The results for the method of Morris are shown in Figures 3,
4. The x-axis indicates the linear impact of the factor, while
the vertical axis indicates the non linear impact.

Regarding the performance analysis, deadline andα show
the strongest impact. Maximum ETC and maximum contention
play a minor role. Both SA methods find the same four
important factors, but in different order of importance.

Regarding the energy analysis, maximum ETC, power and
α have the most influence on the output. This is identical to
the results of Fast 99.

C. Comparison of the scheduling heuristics

This section compares the three scheduling heuristics pre-
sented in Section V-A.
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TABLE II
MODEL PARAMETERS FOR HEURISTIC COMPARISON

Parameter Value
# tasks 16

# machines 4
# processor/machine 1

# cores/processor 2
ETC range 5 – 25 [time unit]

Contention range 10 – 60%
Deadlinedelta 10%

Power (constant) 20 W
Power high 1.0 W

The SA results show that special care should be taken when
setting the parametersα, maximum ETC and to a lesser extent
deadline and maximum contention. Therefore, experiments
ran the different heuristics on the same ETC instances (30
instances for each run). Table II lists the parameter settings.

The choice for the machines are based on ARM 9 proces-
sors. The power values come from the hardware specifications.

Figure 5 presents the performance results for the three
heuristics. The x-axis lists different values forα, the heuristic
score parameter. Performance is the amount of time by which
the deadlines were exceeded. All heuristics reach their best
score whenα ≃ 1. LSF is the best algorithm for performance,
but only slightly better than Min-Min. However, it is faster
than Min-Min.

Figure 6 presents the total energy results for the three
heuristics. All heuristics reach their best score whenα = 1.
SSF is the best algorithm for energy, and LSF is slightly better
than Min-Min.

VI. CONCLUSION

In this paper, milliclusters along with their specific chal-
lenges were presented.

Software pipeline was introduced as a powerful application
architecture to overcome the limited individual performance of
each millicomputer, and allows to benefit from a low energy
system.
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Three scheduling algorithms were introduced and evaluated
to further reduce the energy consumption while meeting per-
formance objectives, by adding soft real-time considerations to
the software pipeline. The contention in multi-core processors
was also part of the model.

Finally, this was accomplished by applying two different
sensitivity analysis methods.

Future work will focus on the validation of the results by
experimenting on a real millicluster.
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