
A Hybrid Semantic Matchmaker for IoT Services
Gilbert Cassar, Payam Barnaghi, Wei Wang, Klaus Moessner

Centre for Communication Systems Research
University of Surrey,

Guildford, UK, GU2 7XH
{g.cassar, p.barnaghi, wei.wang, k.moessner} @surrey.ac.uk

Abstract—The use of semantic Web technologies and service
oriented computing paradigm in Internet of Things research
has recently received significant attention to create a semantic
service layer that supports virtualisation of and interaction
among “Things”. Using service-based solutions will produce a
deluge of services that provide access to different data and
capabilities exposed by different resources. The heterogeneity
of the resources and their service attributes, and dynamicity of
mobile environments require efficient solutions that can discover
services and match them to the data and capability requirements
of different users. Semantic service matchmaking process is the
fundamental construct for providing higher level service-oriented
functionalities such as service recommendation, composition, and
provisioning in Internet of Things. However, scalability of the
current approaches in dealing with large number of services and
efficiency of logical inference mechanisms in processing huge
number of heterogeneous service attributes and metadata are
limited. We propose a hybrid semantic service matchmaking
method that combines our previous work on probabilistic service
matchmaking using latent semantic analysis with a weighted-link
analysis based on logical signature matching. The hybrid method
can overcome most cases of semantic synonymy in semantic
service description which usually presents the biggest challenge
for semantic service matchmakers. The results show that the
proposed method performs better than existing solutions in terms
of precision (P@n) and normalised discounted cumulative gain
(NDCGn) measurement values.

I. INTRODUCTION

Transparent and seamless access to millions of smart de-
vices and resources is one of the main promises of the Internet
of Things (IoT) [1]. Service Oriented Architecture (SOA) is
a promising solution for enabling access to smart devices
through loosely coupled services [2]. Web Services provide
interfaces for emerging technologies in pervasive systems and
make the capabilities and/or data of physical or software
entities available to other entities as services on the Web. A
service-oriented approach allows resources such as sensors,
actuators, and other mobile devices to be represented as a
Web service, providing common interfaces that allow users or
machines to access their functionality or data through the In-
ternet. We term the services exposed by the connected Things
in the physical world as IoT Services. Adding semantics to
IoT services makes this information machine-interpretable and
enables more autonomous IoT service interactions.

Semantic service matchmaking is an important and chal-
lenging task in distributed service-oriented environments such
as the IoT because it enables human users or software agents
to form queries and to search and discover IoT services based

on different requirements. This enables implementation of
high-level functionalities such as IoT service recommendation,
composition, and provisioning. A common practice in seman-
tic service matchmaking is to take advantage of machine-
interpretable annotations in the service descriptions to match
the semantic input/output (IO) signature of a service to a
service request [3]. Methods based on logical reasoning tend to
be very accurate given its solid mathematical basis. However,
strictly matching the semantic signature of an IoT service to
the request alone may lead to false negatives when services
are relevant to the request but do not have an IO signature
that directly matches that of the request [4]. Another known
limitation of logic-based approaches is that when two concepts
are semantically synonymous but defined differently in their
terminological definitions, the similarity between the two is not
captured by the subsumption hierarchy and a reasoner would
fail to find the match between the two [5].

The limitations of logic-based semantic service matchmak-
ers gave rise to a separate category of non-logic-based seman-
tic matchmakers. Non-logic-based semantic service discovery
approaches [6], [7], [8], [9] aim to reduce the complexity
of semantic matchmaking by analysing the frequency of
occurrence of certain terms within service descriptions and
determine semantics which are implicit in service descriptions.
These approaches generally use techniques such as graph
matching, linguistic analysis, data mining, and information
retrieval (IR) [10] to process the meta-data provided in service
descriptions in terms of vectors. However, this transformation
results in the loss of the machine-interpretable semantics
found in some service descriptions and thus non-logic-based
approaches cannot perform the fine-grained matchmaking as
logic-based approaches. Furthermore non-logic-based seman-
tic matchmakers do not possess the logic-based functions
to determine whether the IO parameters of a service are
compatible with the requirements of the user.

Hybrid semantic matchmakers [4], [5], [11], [12], [13], [14],
[15] combine the advantages of Non-Logic-based techniques
with the fine grained reasoning capabilities of Logic-based
techniques. Klusch et al. [5] state that the objective of this
hybrid semantic matchmaking is to appropriately exploit both
crisp logic-based and non-logic-based semantic matchmaking
where using each of the solutions alone could fail.

We propose a hybrid semantic service matchmaking method
for IoT services that combines our previous work on prob-
abilistic service matchmaking using latent semantic analy-

sis [16] with a logical signature matchmaking method based
on the concept of individual Links between a source parameter
and a destination parameter (defined in Section IV-B). This
method provides an added flexibility needed when searching
for candidate IoT services to be used in complex mechanisms
such as IoT service composition or IoT service provisioning.
The hybrid method can overcome most cases of semantic
synonomy in IoT service description which usually present
the biggest challenge for semantic service matchmakers. The
evaluation results show that the proposed method performs
better than existing solutions in terms of precision (P@n) and
normalised discounted cumulative gain (NDCGn) measure-
ment values.

The rest of this paper is structured as follows. Section II
describes the IoT service modelling framework. In Section III,
we briefly explain our previous work on probabilistic service
matchmaking. Section IV-B presents the use of links and a
weighted-link measure for matching the IO signature of an IoT
service to a request. Section V discusses how the probabilistic
service matchmaking and the weighted-link measure can be
combined to create a hybrid semantic matchmaker. Sections VI
and VII perform a comparative study between our method
and existing semantic service matchmakers and describe the
evaluation results respectively. We discuss the merits and
limitations of our method and describe the future work in
Section VIII.

II. THE SERVICE DESCRIPTION MODEL

Semantic service modelling provides a machine inter-
pretable framework for representing many aspects (e.g., func-
tional, non-functional and transactional attributes) of services.
The semantic Web service community has developed several
models for semantically describing general Web services such
as the Ontology Web Language for Services (OWL-S)1 and
Web Service Modelling Ontology (WSMO)2. The work in [17]
proposed the ’Entity-Device-Resource’ model for representing
IoT resources and services based on the Semantic Sensor
Network ontology [18]. However, these heavyweight and
complex models are not suitable for describing IoT services.
IoT services exposed by IoT resources mostly have limited
computation capabilities and often operate in dynamic and
constrained physical environments; therefore, they are far less
reliable and stable compared to the carefully designed and
maintained Web services. Their logic is much simpler and
their output usually represents observation and measurement
of features of interest of physical entities (therefore, service
models have to be associated with IoT resources). Despite
these characteristics, in a service oriented IoT, they also
need to participate in service composition and the issues on
effective service adaptation and compensation mechanisms
become prominent.

For these reasons, a semantic IoT service representation
model preferably needs to be lightweight to facilitate com-

1http://www.w3.org/Submission/OWL-S/
2http://www.wsmo.org/

Domain Knowledge
and Linked Data

Domain Knowledge
and Linked Data

IoT Service

Profile
Non-Functional Attributes

(e.g., textual description, and
QoS) Model

Functional Attributes
(e.g., Operation and IOPE)

Grounding
Service Access Information
(e.g., mappings and service

method)

IoT ResourceIoT Resource

exposes

linksTo

supports

describedBy

presents

Fig. 1. Overview of the lightweight IoT service description model.

putation (experiences in ontology design shows that well-
designed lightweight ontologies have the potential to be widely
adopted), in particular efficient service discovery, composition
and adaptation given the stunning number of IoT resources
and services. The service model should be associated with
the model of its exposing resource and provide constructs
for linking to concepts in domain knowledge base (e.g.,
Geonames ontology3) or the linked data4. We have developed a
lightweight description ontology for IoT service based on the
existing research and the aforementioned requirements (See
Figure 1).

The service model is also designed to be independent of any
particular service technologies (i.e., SOAP/WSDL and REST-
ful services) based on the analysis of their commonalities and
distinctiveness. The OWL-S model for SOAP/WSDL services
is designed using the ’Profile-Process-Grounding’ pattern and
much of the complexity stems from the process modelling. On
the contrary, the hREST model [19] for RESTful service is
too simple: it does not include a profile and grounding which
are important for service discovery and access. Our service
description model represents a trade-off between these two:
being lightweight and service technology independent while
at the same time providing sufficient modelling constructs for
represent service on the IoT (Details of the ontology can be
found at: http://purl.oclc.org/net/unis/IoT.est-Service.owl). We
refer to the design pattern as ’Profile-Model-Grounding’: Pro-
file and Grounding are adapted from the OWL-S and refined
(so it can also be used for RESTful services); the Model
excludes the process modelling and is based on the atomic
service modelling in OWL-S and RESTful service modelling
in hREST. Another advantage of our service model is that
although it is not fully compatible with existing modelling
methods, it can be easily transformed to each other using a
simple program. It should be noted that many of the existing
works on semantic service matchmaking [4], [13] and [16] are
based on the OWL-S model. For evaluation and comparison
purposes, we use a dataset of OWL-S service descriptions

3http://www.geonames.org/ontology/
4http:// linkeddata.org/

Fig. 2. An abstract representation of the probabilistic service matchmaking.

in this work. The main focus of our work is to show how
service descriptions can be used to efficiently discover IoT
services in a distributed environment (irrespective of what
service description model is used).

III. PROBABILISTIC SERVICE MATCHMAKING

The work in this paper builds upon our previous work on
service search and matchmaking and the ranking of search
results [16]. In [16] we showed how semantic concepts can
be extracted from OWL-S service descriptions and mapped
into a latent factor space using a technique called Latent
Dirichlet Allocation (LDA) [20]. LDA is an unsupervised
machine-learning technique which uses a generative proba-
bilistic model to map high-dimensional count vectors (such as
the distribution of semantic concepts describing the services
in a repository) to a lower dimensional representation in latent
variable space. An abstract overview of our approach is shown
in Figure 2.

For every service description si the model associates un-
observed latent factors z1, z2, ..., zk with the probability of
concept cj appearing in si. The generative model of LDA can
be represented as:

P (cj) =

K∑
k=1

P (cj |zk)P (zk) (1)

where P (zk) is the probability that latent factor k is
sampled for concept j and P (cj |zk) is the probability of
sampling concept j given latent factor k.

The LDA model assumes that the probability distributions
P (c|z) and P (z) follow a Dirichlet distribution: Φ(k) =
P (c|z) and Θ(i) = P (z) respectively.

Concepts describing functional parameters and profile data
are extracted from OWL-S service descriptions using a rea-
soner and listed in a Service Transaction Matrix which rep-
resents the probability distribution P(s,c) of concepts c over
service descriptions s. Using the observed data from the
service transaction matrix, the parameters Φ and Θ can be
estimated using a method based on Gibbs Sampling described

in [21]. This algorithm was implemented using the LingPipe5

toolkit.
The learned model describes each service as a vector of

latent factors (as shown in Figure 2). Using this method,
a request R (also following the OWL-S model) containing
semantic definitions can be converted into latent factor space
and matched accurately to the services in a service registry by
computing the vector similarity of each service vector to the
request vector. We compute this similarity using the proximity
measure called Multidimensional Angle (also known as Cosine
Similarity); a measure which uses the cosine of the angle
between two vectors [9]. The multidimensional angle between
a vector containing the distribution of latent factors p of a
service and a vector containing the distribution of latent factors
q of a query can be calculated using Equation 2.

cos(p, q) =
p · q

‖p‖ · ‖q‖
=

∑f
i=1 piqi√∑f

i=1 p
2
i

∑f
i=1 q

2
i

(2)

where f is the number of latent-factors.
In this work, we use the probabilistic matchmaking method

to search for the list of services that most accurately match to a
request. The list of search results returned by the probabilistic
matchmaking is then passed on to the logical signature match-
making method (described in the next section) which ranks the
services more accurately by checking the compliance of their
IO signature with the IO signature of the request.

IV. LOGICAL SIGNATURE MATCHMAKING

Logical signature matching has been used in different works
to verify whether the IO parameters of a service are compatible
with the IO parameters of a request [3]. A common approach
to logical signature matchmaking is to define a set of rules
(filters) which dictate what kind of logical relationships are
acceptable between the IO parameters of a service and the IO
parameters of a request [4]. However, this kind of matchmak-
ing takes into consideration the whole IO signature and can
only calculate the degree of match between one service and
one request.

While we agree that logical signature matchmaking is
important to check that the IO signature of a service is
compatible before using it for a task that requires specific IO
paramters, we argue that complex mechanisms such as service
composition or service provisioning require a more flexible
approach than the rigid matchmaking filters discussed in [4].
We build our logical signature matchmaking method based on
the concept of individual Links between a source parameter
and a destination parameter.

A. Links

We define a link as a logical relationship between two
IO parameters. A link has a source parameter Source
and a destination parameter Destination and is denoted
Link(Source,Destination). Links in automated service

5http://alias-i.com/lingpipe/

S
In_S1 Out_S1

In_S2 Out_S2
R

In_R1

In_R2

Out_R1

In_R1

In_R2

In_S1

In_S2

TemperatureUnit

TemperatureUnit

0.5 x 1.0 = 0.5

0.5 x 0.8 = 0.4

Find
Matches

Calculate
Link Score

Link(In_R2,In_S1)= Exact

Link(In_R1,In_S2)= Plug-In

ϵ {Exact, Plug-In, Subsumes, No Match}

Out_S1

Out_S2

Out_R1 1.0 x 0.8 = 0.8
Find

Matches

Calculate
Link Score

Link(Out_S2,Out_R1) = Plug-in

Room

VolumeFlowRate MeetingRoom

ExtractorFan

AirFlowDevice

(a)

(b)

Total Score = 0.5 + 0.4 + 0.8 = 1.7

Fig. 3. Link Weight Matching example.

matchmaking can represent a possible connection between two
services, the dependency of an input of a service on one of the
input parameters specified in a service request, or the ability of
a service to generate one of the outputs specified in a service
request. The definition of links defined in this paper derives
from the definition of Casual Links [22].

Given a domain ontology model τ , a casual link between the
output parameter Out sy of service sy and the input parameter
In sx of service sx can belong to five different categories:

1) Exact: if Out sy and In sx are equivalent concepts;
formally, τ |= Out sy ≡ In sx.

2) PlugIn: if Out sy is a sub-class of In sx;
formally, τ |= Out sy v In sx.

3) Subsumes: if Out sy is a super-class of In sx;
formally, τ |= Out sy w In sx.

4) Intersection: if the intersection of Out sy and In sx
is satisfiable; formally, τ 6|= Out sy u In sx v⊥.

5) Disjoint: if Out sy and In sx are incompatible;
formally, τ |= Out sy u In sx v⊥.

Our definition of a link differs from casual links in that
we specify that every link has a source parameter and a
destination parameter and does not always necessarily exist
only from an output of a service to the input of another service.
While casual links are only applied in service composition
where the output of one service is linked to the input of
another service, our definition of a link can also be used to
perform logical signature matchmaking between a service and
a request. Checking individual links makes it possible to assess
the degree of match between a service and a request more
flexibly than with rigid logic filters such as those described
in [4].

We argue that a Subsumes link between an output Out sy of
service sy and the input In sx of service sx cannot be used in
practical cases because the super-class of a parameter is more
general and may consist of other sub-classes of parameters
which In sx is not compatible with and would result in
service sx not being able to work properly. The same argument
applies for Intersection links. The only instance in which a
Subsumes link is applicable is when the output of a service is

linked to an output of a request. In such a case, if an Exact or
PlugIn link does exist, providing a super-class of the desired
output parameter as the final output is better than not providing
any output at all. Thus in our work, a link can belong to only
one of the four categories defined below.

Let τ be a domain ontology model. Let Source be
a source IO parameter concept and let Destination be
an IO parameter concept that Source can be linked to.
Then, the type of link between Source and Destination:
Link(Source,Destination) can be classed as one of the four
categories explained below:

1) Exact: Source is an exact match to Destination if
τ |= Source ≡ Destination.

2) PlugIn: Source plugs into Destination if
τ |= Source v Destination.

3) Subsumes: Source subsumes Destination if
τ |= Source w Destination.

4) Disjoint: Source is not related to Destination in any
of the above ways.

Note that although we didn’t drop the Subsumes link, we
only allow such links when linking the output of a service to
the output of a request.

B. Weighted-Link Matchmaking

We propose Weighted-Link Matchmaking as a means to
measure the logical signature match between a service S and a
request R. A weighted-link match operates separately on each
one of the IO parameters making the logical signature of a
service. For matching the inputs of a request to the inputs of
a service (an input-input link), the total link score that can be
assigned to a link Twin

depends on the number of inputs of
the service i.e.

Twin
=

1

|in(S)|
(3)

For matching the outputs of a service to the outputs of a
request (an output-output), the total link score that can be
assigned to a link Twout

depends on the number of outputs
specified in the request i.e.

Twout =
1

|out(R)|
(4)

The maximum weight given to an input-input link depends
on the number of inputs of the service rather than the inputs
of the request because the highest priority here is to make sure
that all the inputs necessary for the service to operate can be
satisfied. If one of the inputs is missing, the service cannot
be used properly while it is ok to leave one of the inputs
specified by the request unused. Conversely the maximum
weigth given to an output-output link depends on the number
of outputs specified in the request. The reason behind this is
that the imporant aspect is whether a service can generate all
the outputs required by the request. In automated systems, it
could be acceptable that a service generates an extra output
if that output is not used. What matters is that all the outputs

specified in the request are ultimately generated and supplied
to the service consumer.

For example, service S shown in Figure 3a. can provide
two outputs but only one output parameter is specified in the
request R. Thus Twout

= 1.
We define a weight function wf that assigns a weight to

the strength of a link between a source parameter Src and a
destination parameter Dst depending on the type of the link.

wf (Link(Src, Dst)) =

1.0, ifLink(Src, Dst) = Exact
α, ifLink(Src, Dst) = PlugIn
β, ifLink(Src, Dst) = Subsumes
0.0, ifLink(Src, Dst) = Disjoint

(5)
where α and β are penalizing weights that allow the user

to bias the algorithm towards preferred link types.
For example, from Figure 3b., if we select α = 0.8

the degree of match between input parameter In R2

of the request and input parameter In S1 of the
service is Link(In R2, In S1) = Exact, thus
wf (Link(In R2, In S1)) = 1.

The weighted-link score is calculated using the equation:

LinkScore(Src, Dst) = Twx
wf (Link(Src, Dst)) (6)

where x ∈ {in, out} depending on whether the link is an
input-input link or an output-output link. The total matching
score MatchLogic(S,R) between service S and request R
is given by adding the weighted-link score of all the links
between S and R:

MatchLogic(S,R) =
∑
IO

LinkScore(Src, Dst) (7)

For example, in Figure 3b, the total logical signature match
between service S and request R is 0.5 + 0.4 + 0.8 = 1.7.

V. HYBRID SEMANTIC MATCHMAKER

In this section, we explain the hybrid matchmaking ap-
proach proposed in this paper. The matchmaking relies on
the probabilistic matchmaking component described in Sec-
tion III to find a short list of candidate IoT services which
is then passed to the weighted-link matchmaking component
described in Section IV-B to accurately arrange the results.

The probabilistic component is first used to match IoT
services to the request based on latent factors extracted from
the underlying concepts in the IoT service descriptions. This
approach helps to identify statistical similarity between a
service and a request and can find relevant candidate services
that would otherwise have been ommitted by strict logic
matchmaking [16]. The probabilistic component then passes
a short list of results to the logic-based component, thus
restricting the scope of search for this component and reducing
the complexity of the matchmaking. The size of the short list
is specified by the user depending on the number of service
required.

The logic-based compoment verifies the IO signature of
each candidate service and calculates the weighted-link score.
Finally, the results from the logic based are ranked based on
their weighted-link score. In case of a tie, the score from the
probabilistic compoment is used as a tie-breaker. The final
ranked list of results is presented to the client.

VI. EVALUATION

Many of the existing works on semantic service matchmak-
ing are based on the OWL-S model [4], [5]. In order to com-
pare our approach with state-of-the-art service matchmakers,
we perform the comparative analysis in this paper using the
OWL-S service retrieval test collection OWLS-TC v3.06. The
close relationship between the OWL-S service model and the
IoT service modelling framework was explained in Section II.
The dataset consists of 1007 service descriptions defined in
OWL-S form. The services are divided into seven categories
and a total of 29 OWL-S queries are provided together with
a relevant answer set for each query. The answer set for each
query consists of a list of relevant service and each service
i has a graded relevance value label(i) ∈ {1, 2, 3} where 3
denotes a high-relevance to the query and 1 denotes a low-
relevance. Table I shows the number of services and queries
belonging to each of the seven categories.

TABLE I
NUMBER OF SERVICES AND QUERIES FOR EACH DOMAIN.

Domain Services Query
Education 284 6
Food 34 1
Medical 73 1
Travel 165 6
Communication 58 2
Economy 359 12
Weapon 40 1

The probabilistic method (based on LDA) described in
Section III and the hybrid method described in Section V are
compared with a text-matching approach powered by Apache
Lucene7 and also methods from the OLWS-MX 2.08 hybrid
semantic Web service matchmaker (M0, M3, and M4) [5].
M0 is a logic-based approach and M3 and M4 are hybrid
approaches which use both logic and non-logic based methods.
In the next section, the probabilistic method based on LDA is
labeled LDA and the hybrid method is labeled LDA + Logic.

For the hybrid method, in these experiments we have
given a higher weight to PlugIn links and have penalized
Subsumes links. The parameters α and β are set to 0.8 and
0.4 respectively based on heuristic measures. The size of the
short list which should be specified by the user was set to 40
services since our evaluations were carried out to up to 40
services retrieved.

The sample queries are all in the form of OWL-S templates
and contain the semantic requirements together with a text

6http://www.semwebcentral.org/projects/owls-tc/
7http://lucene.apache.org/
8http://semwebcentral.org/projects/owls-mx/

description of the queried functionality. For the text-based
approach, the text descriptions of the service attributes are
retrieved from the query templates and used as the query
string.

We evaluated our approach by calculating the Precision at
n (P@n) and the Normalised Discounted Cumulative Gain
(NDCGn) for the results obtained for each of the sample
queries. These are standard evaluation techniques used in
Information Retrieval to measure the accuracy of a search
mechanism with respect to completeness of the results re-
turned.

1) Precision @ n: Precision is a measure used to evaluate
the results of the search and matchmaking process. Precision
@ n is a measure of the precision of the system taking into
account the first n retrieved services. Precision reflects the
number of retrieved services which are relevant to the search.
The precision for a set of retrieved services is given by:

precision =
|{RelevantServices} ∩ {RetrievedServices}|

|{RetrievedServices}|
(8)

where the set of relevant services to a given query is
defined in the OWLS-TC v3.0 test collection. Only services
with a graded relevance value of 3 were considered for this
evaluation.

2) Normalised Discounted Cumulative Gain: NDCGn is
a measure that takes into account the graded relevance of
each service retrieved. This measure is particularly useful for
evaluating ranking results since not all services in a relevance
set are of the same relevance to the query. The NDCGn for
n retrieved services is given by Equation 9.

NDCGn =
DCGn

IDCGn
(9)

where DCGn is the Discounted Cumulative Gain and
IDCGn is the Ideal Discounted Cumulative Gain.

The IDCGn is found by calculating Discounted Cumula-
tive Gain of the ideal first n returned services for a given
query. The DCGn is calculated by Equation 10.

DCGn =

n∑
i=1

2label(i) − 1

logb(1 + i)
(10)

where n is the number of services retrieved, label(i) is
the graded relevance of the service in the ith position in the
ranked list, b is the Discounting Factor which models the
user’s persistence (e.g. impatient: b = 2; persistant: b = 14).
NDCGn gives higher scores to systems which rank ser-

vices with higher relevance first and penalizes systems which
return services with low relevance. In our experiments we set
b = 2 and used graded relevance scheme with values from 3
(high relevance) to 1 (low relevance).

VII. RESULTS

The average P@n and NDCGn are obtained over all 29
queries for LDA + Logic, LDA, Pure Text-Matching, OWLS-
M0, OWLS-M3, and OWLS-M4. The results are shown in

Fig. 4. Comparison of average P@n values over 29 queries

Figures 4 and 5 respectively. The Precision@n results show
that Pure Text-Matching and the logic-based OWLS-M0 were
unable to find some of the relevant services that were not
directly related to the queries through logic descriptions or
keywords. LDA used the information captured in the latent
factors to match services based on statistical similarity rather
than just semantic or syntactic similarity and thus exhibited
better precision than Text Matching and OWLS-M0. OWLS-
M3 and OWLS-M4 also found more relevant services than
the Pure Text-Matching and the logic-based OWLS-M0. LDA
performed better than OWLS-M4 but OWLS-M3 exhibited
better precision than LDA for the first 15 services retrieved.
The hybrid LDA + Logic method successfully combined the
merits of LDA with weighted-link matching to accurately re-
arrange the results thus outperforming all the other methods
in terms of precision.
NDCGn evaluates the ranking mechanism and it is the

most important measure for automated search and matchmak-
ing engines. The top most relevant (i.e. the first five or ten)
results retrieved by a search and matchmaking engine are the
main results that will be used by the client. The LDA and LDA
+ Logic matchmakers perform better than the other search and
matchmaking mechanisms in this experiment. LDA + Logic
holds a higher NDCGn than all other methods for any number
of services retrieved, this reflects the accuracy of the hybrid
ranking mechanism used by our method. Pure Text-Matching
and OWLS-M0 have a low NDCGn because, as shown in
the P@n results, both mechanisms are unable to find some of
the highly relevant services. OWLS-M3 and OWLS-M4 both
exhibit a high NDCGn but they are outperformed by the LDA
and LDA + Logic matchmakers.

VIII. CONCLUSIONS

Web services provide an ideal solution to enable machine-
controlled and automatically structured service-oriented dy-
namic systems in Internet of Things. Semantic service match-
making is the fundamental construct on which higher level
service-oriented functionalities such as IoT service recommen-
dation, composition, and provisioning are provided.

The hybrid semantic matchmaker for IoT Services proposed
in this paper combines probabilistic matchmaking with a

Fig. 5. Comparison of average NDCGn values over 29 queries

logical signature matchmaking method. The probabilistic com-
ponent uses a latent semantic analysis model to extract latent
factors from the IoT Service description data and uses these
latent factors to overcome problems often encountered with
logic-based techniques such as semantic synonomy. However,
probablistic service matchmaking alone does not check the
IO signature of a service. Therefore, logic-based IO signature
matchmaking is important when specific input and output
parameters are needed such as in service composition or
service provisioning scenarios.

The proposed method exhibits higher performance than ex-
isting methods in terms of P@n and NDCGn. The weighted-
link matchmaking provides a versatile approach for evaluating
the degree of match of individual links and paves the way for
the integration of the hybrid semantic service matchmaking
method with higher-level service-oriented functionalities in
the Internet-of-Things. Future work will focus on creating
an automated IoT Service composition solution that uses our
hybrid semantic matchmaker to find candidate services for
composition and/or compensation in the Internet-of-Things.

ACKNOWLEDGMENT

This paper describes work undertaken in the context of
the EU IoT-A project, IoT-A: Internet of Things - Archi-
tecture (http://www.iot-a.eu/public) contract number: 257521.
The second and third authors are also funded by the EU ICT
Iot.est project (www.Ict-Iot.est.eu) contract number: 288385.

REFERENCES

[1] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,”
Comput. Netw., vol. 54, pp. 2787–2805, October 2010.

[2] F. Chen, C. Ren, J. Dong, Q. Wang, J. Li, and B. Shao, “A compre-
hensive device collaboration model for integrating devices with web
services under internet of things,” in Web Services (ICWS), 2011 IEEE
International Conference on, july 2011, pp. 742 –743.

[3] M. Klusch, “Chapter 4: Semantic web service coordination,” in CAS-
COM: Intelligent Service Coordination in the Semantic Web, 2008.

[4] M. Klusch and P. Kapahnke, “isem: Approximated reasoning for adap-
tive hybrid selection of semantic services,” in Semantic Computing
(ICSC), 2010 IEEE Fourth International Conference on, sept. 2010, pp.
184 –191.

[5] M. Klusch, B. Fries, and K. Sycara, “Automated semantic web service
discovery with owls-mx,” in Proceedings of the fifth international joint
conference on Autonomous agents and multiagent systems, ser. AAMAS
’06. New York, NY, USA: ACM, 2006, pp. 915–922.

[6] A. Segev and E. Toch, “Context-based matching and ranking of web
services for composition,” IEEE Transactions on Services Computing,
vol. 99, no. PrePrints, pp. 210–222, 2009.

[7] H. Fethallah, C. Amine, and B. Amine, “Automated discovery of web
services: an interface matching approach based on similarity measure,”
in Proceedings of the 1st International Conference on Intelligent Se-
mantic Web-Services and Applications, ser. ISWSA ’10. New York,
NY, USA: ACM, 2010, pp. 13:1–13:4.

[8] O. Mola, P. Emamian, and M. Razzazi, “A vector based algorithm
for semantic web services ranking,” Information and Communication
Technologies: From Theory to Applications, 2008. ICTTA 2008. 3rd
International Conference on, pp. 1 –5, apr. 2008.

[9] C. Platzer, F. Rosenberg, and S. Dustdar, “Web service clustering using
multidimensional angles as proximity measures,” ACM Trans. Internet
Technol., vol. 9, no. 3, pp. 1–26, 2009.

[10] K. Mohebbi, S. Ibrahim, M. Khezrian, K. Munusamy, and S. G. H.
Tabatabaei, “A comparative evaluation of semantic web service discov-
ery approaches,” in Proceedings of the 12th International Conference
on Information Integration and Web-based Applications & Services,
ser. iiWAS ’10. New York, NY, USA: ACM, 2010, pp. 33–39.

[11] M. Klusch and F. Kaufer, “Wsmo-mx: A hybrid semantic web service
matchmaker,” Web Intelli. and Agent Sys., vol. 7, no. 1, pp. 23–42, 2009.

[12] S.-L. Pan and Y.-X. Zhang, “Ranked web service matching for service
description using owl-s,” Web Information Systems and Mining, 2009.
WISM 2009. International Conference on, pp. 427 –431, nov. 2009.

[13] G. Fenza, V. Loia, and S. Senatore, “A hybrid approach to semantic web
services matchmaking,” Int. J. Approx. Reasoning, vol. 48, pp. 808–828,
August 2008.

[14] M. Klein and B. Knig-ries, “Coupled signature and specification match-
ing for automatic service binding,” in In Proc. of the European Confer-
ence on Web Services (ECOWS 2004. Springer, 2004, pp. 183–197.

[15] U. Keller, R. Lara, H. Lausen, A. Polleres, and D. Fensel, “Automatic
location of services,” ser. Lecture Notes in Computer Science, vol. 3532.
Springer Berlin / Heidelberg, 2005, pp. 1–16.

[16] G. Cassar, P. Barnaghi, and K. Moessner, “A probabilistic latent factor
approach to service ranking,” in Intelligent Computer Communication
and Processing (ICCP), 2011 IEEE International Conference on, aug.
2011, pp. 103 –109.

[17] S. De, P. Barnaghi, M. Bauer, and S. Meissner, “Service modelling for
the internet of things,” in Computer Science and Information Systems
(FedCSIS), 2011 Federated Conference on, sept. 2011, pp. 949 –955.

[18] M. Compton and et al, “The ssn ontology of the w3c semantic sensor
network incubator group,” Web Semantics: Science, Services and Agents
on the World Wide Web, vol. 0, no. 0, 2012.

[19] J. Kopecký, K. Gomadam, and T. Vitvar, “hrests: An html microformat
for describing restful web services,” in Proceedings of the 2008
IEEE/WIC/ACM International Conference on Web Intelligence and
Intelligent Agent Technology - Volume 01, ser. WI-IAT ’08. Washington,
DC, USA: IEEE Computer Society, 2008, pp. 619–625. [Online].
Available: http://dx.doi.org/10.1109/WIIAT.2008.379

[20] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,” J.
Mach. Learn. Res., vol. 3, pp. 993–1022, 2003.

[21] M. Steyvers and T. Griffiths, Latent Semantic Analysis: A Road to
Meaning. Laurence Erlbaum, 2007, ch. Probabilistic topic models.

[22] F. Lécué, E. M. Goncalves da Silva, and L. Ferreira Pires, “A framework
for dynamic web services composition,” in 2nd ECOWS Workshop
on Emerging Web Services Technology (WEWST07), Halle, Germany.
Germany: CEUR Workshop Proceedings, November 2007.

