
Efficiently observing Internet of Things Resources

Girum Ketema, Jeroen Hoebeke,

Ingrid Moerman, Piet Demeester

Information Technology Department

Ghent University - iMinds

Ghent, Belgium

{firstname.lastname}@intec.ugent.be

Li Shi Tao

Huawei Technologies

Huawei Base

Nanjing, Jiangsu, China

lishitao@huawei.com

Antonio J. Jara

Department of Information Technology

and Communications

University of Murcia

Murcia, Spain

jara@um.es

Abstract—The Constrained Application Protocol (CoAP) is a

lightweight protocol that enables the implementation of

RESTful embedded web services. Observe is one of the CoAP

extensions, which allow servers to send every resource state

change to interested clients. In this paper we present an

interesting extension to the observe option, called conditional

observation, where clients specify notification criteria along

their observation request. We evaluate the feasibility of

implementing this on a constrained device and evaluate the

correct operation for a simple scenario. It is shown that the use

of conditional observations can result in a reduced number of

packets and power consumption compared to normal observe

in combination with client-side filtering.

Keywords - Conditional Observation, IoT, REST, CoAP

I. INTRODUCTION

Smart Objects have been in use for quite a while to
interact with the real world and communicate the
information to hosts connected to the Internet. They usually
have limited bandwidth, processing and storage capacity [1].
The existing Internet protocols and applications are too
heavy to be used directly on these objects. Recently, an
IETF working group, called Constrained RESTful
Environments (CoRE), has been founded specifically to
work on the standardization of a framework for resource-
oriented applications, allowing realization of RESTful
embedded web services in a similar way as traditional web
services.

Their work resulted in the Constrained Application
Protocol (CoAP). CoAP provides a compact transfer
protocol on top of UDP that realizes exactly the subset of
HTTP methods (GET, PUT, POST and DELETE) that is
necessary to offer RESTful web services in a Wireless
Sensor Network (WSN)-compatible manner [2]. A simple
mapping between HTTP and CoAP can be realized (and vice
versa). CoAP can run on top of 6LoWPAN networks, but
also on top of proprietary networks that are connected to
IPv6 Internet. The details of the CoAP specification can be
found in [2].

In addition to the main CoAP draft, a number of
extensions have been proposed. One of those extensions is
the observation of resource states through the introduction of
the observe option, which allows clients to register with
servers to be notified whenever the state of a resource
changes. A client interested in observing a resource includes

the option in its GET request. Whenever there is a change of
the resource state, the server sends a notification to the client.
As such, observe offers the possibility for a client to have an
up-to-date representation of the resource without the client
having to constantly poll for changes. If the client acts upon
these states and is only interested in specific states, it is up to
the client to filter out the values sent by the server,
discarding resource states that are not significant enough for
its purpose.

A better alternative to these observations in combination
with client-side filtering could be to specify filtering criteria
when sending the observe request. This way, the server sends
a notification only when it meets the particular criteria. In
this paper we will present such an extension of the
observation functionality by allowing notification criteria to
be specified along with observe requests. This approach will
provide a built-in mechanism to the CoAP protocol to allow
transfer of states of interest, rather than transferring all states.

As such, this paper contributes to further extend the
CoAP protocol by providing a new, lightweight extension to
publish values or events to interested subscribers, which is
built into the protocol as an option. We also show the
feasibility of implementing this new option on a constrained
device with less than 64KB of memory. In addition, we also
demonstrate the relevance of the new option compared to the
use of the currently built-in observation mechanism in
combination with client-side filtering. To the best of our
knowledge, this is the first implementation to extend the
CoAP protocol to allow conditional observation. It is clear
that this paper does not try to compare performance of the
new solution against normal observation.

Section 2 of the paper presents normal observation and
its limitation. Section 3 introduces the new Condition option
and our approach. The fourth section presents our
implementation and evaluation results. Finally, the paper will
conclude after related work is discussed.

II. MOTIVATION

One of the optional extensions of CoAP is observing the
state changes of a resource as stated in [3]. The observation
functionality has considerable importance in many
applications such as home automation, building control and
environmental monitoring. Figure 1, below shows a normal
observation request and response communication between a
client and a server. The client could be a smart object

responsible to switch on and off an air conditioning system
while the server is a node with a temperature sensor.

 Figure 1: Normal Observe

In case of normal observation, if the client would like to
switch on an air conditioning system depending on current
temperature, it has to send an observe request to the server.
Whenever the temperature changes, the node sends a
notification to the client. However, the client will not do
anything with that information unless the temperature is
above a pre-determined threshold. Therefore, many packets
received from the server are just wasted. Because filtering
and processing happens by the client, this approach has a
major impact on bandwidth and requires extra processing of
packets that are not going to be used by the client.

To avoid this, authors of this paper have proposed a new
CoAP option “Condition” as an extension to the Observe
Option in order to support conditional observations [4]. This
option can be used by a CoAP client to specify the
conditions the client is interested in. Now, the CoAP server
will send a notification response with the latest state change
only when the criterion is met. In our earlier example, the
client may say, “send me a notification only if the
temperature is above 25

0
C”. Figure 2 shows the operation of

conditional observation.
This approach is different from other similar works such

as the CoRE interfaces draft detailed in [8]. Here, conditional
observation requests are represented by URI queries. An
important problem with this approach is its complexity. The
queries that are generated have limited readability and could
be difficult to represent. Furthermore, URI queries are very
resource specific complicating automatic processing of
conditional observations or code reuse over several
resources. Using a CoAP Option for conditional observations
makes this functionality independent of any specific resource
implementation, whereas URI queries can be used for
resource specific functionalities. Further, the link with the
Observe option is lost by spreading this functionality over
both URI queries and options and the multitude of URI
queries that can occur makes it more complex for
intermediaries to process this information.

 Figure 2: Conditional Observation

III. APPROACH

In this section, we will briefly present the new CoAP
Option called Condition Option in order to support
conditional observations. A detailed description can be found
in [4]. This option has to be used in combination with the
Observe option and can be used both in request and response
messages. In a GET request message, the Condition option
represents the condition the client wants to apply to the
observation relationship. It is used to describe the resource
states the client is interested in.

The Condition option is an elective option with length
between 1 and 5 bytes. This option has a header and a value
component. The header consists of Observation Type (5
bits), Value Type (2 bits) and Reliability Flag (1 bit). The
value field could be between 0 and 4 bytes in size. The
observation type field contains the type of condition the
client is interested in. Using 5 bits, up to 32 different
observation types can be specified. Currently some
commonly occurring filtering options are identified based on
realistic use cases including, time series, maximum response
time, minimum response time, step, All Values Less Than,
All Values Greater Than, Value Equal, Value Less Than
Greater Than, and Periodic. The detailed description of these
observation types can be found in [4].

IV. IMPLEMENTATION AND EVALUATION

Our implementation of conditional observations is based
on Erbium – a low-power REST Engine for Contiki [5]. We
extended this CoAP implementation to support the new
Condition Option and provided some resources that allow
conditional observations.

A. Experiment Setup

We used Sky sensor nodes in Cooja to run all our tests.

The Sky nodes have an MSP430 16-bit CPU running at

3.9MHz with CC2420 radio chip. Sky nodes are highly

constrained in memory having only 48kB of program

memory and 10 kB RAM for data. We used one border

router, one client, a few server nodes and variable numbers

of intermediate nodes with RPL as a routing protocol. The

root for the RPL network is the border router. For different

tests we used different hop counts and different number of

servers. We used X-MAC as Radio Duty Cycling (RDC)

protocol with 16 Hz wake-up frequency and CSMA as

MAC layer protocol so that packets lost due to collision are

retransmitted. The well-known Contiki power profiler,

powertrace [6], was used to compute power consumption. In

addition to power consumption, we also collected the

number of packets transmitted in the network. As a proof of

concept we used the “AllValuesGreaterThan” condition

type for the experiment
To prove the significance and added value of conditional

observations, we computed the power consumption and the
number of packets generated for normal observations and
conditional observations by using different scenarios. In a
first set of experiments, we only used 1 CoAP server and 1
CoAP client with the number of intermediate nodes varying
from 0 to 5. Next, we conducted several similar experiments
by keeping the hop count to 4 and using two servers. In all
cases, we used 100 pseudo-random integers between 20 and
29 to be sent to clients as temperature sensor readings. The
average of the numbers is 24 and the values change every 4
or 8 seconds. To evaluate the impact of the condition value,
we repeated each experiment 10 times with the condition
value increasing from 20 through 29. We also repeated all
experiments by sending the requests as confirmable and non-
confirmable. In all scenarios, every experiment runs for 444
seconds.

B. Scenario 1 – Single Client and Single Server

To validate the correctness of the implementation, we set

up one client and one server without intermediate nodes. We

first run the experiment for normal observe and then for

conditional observe with the condition values changing from

20 to 29. We measured the number of packets transmitted

and the power consumption.

From the experiment we found out that the overall power

consumption for normal observation was 2.25mW while

that of conditional observation reduces from 2.24mW to

2.1mW as we go to the more extreme thresholds (Figure 3).

The results showed the correct operation of the

implementation. The results also prove that the reduced

power consumption of conditional observation, due to

reduced number of packet transmissions, can be significant

compared to transferring all state changes in combination

with client-side processing. Of course, the real gain will

depend of course on the resource states the client is

interested in.

C. Scenario 2- One client and one server multiple hop

connection

The next sets of experiments are done for multiple hops

between the client and the server.

Figure 3: Power Consumption vs. Threshold of Conditional

Observation

1) Power Consumption

To evaluate the power consumption, we ran the

simulation with the number of hops between the client and

the server increasing from 0 to 5. We did this both for

normal observe (assuming filtering at the client) and for

conditional observe. For the latter, we run the experiment

three times with two extreme conditions and an average

condition value. As it can be seen from the figure below, the

average per-node power consumption for normal observe

and client-side filtering is higher than that of conditional

observation. The increase in power consumption is mainly

due to the power consumed for transmission of mostly

unimportant packets. It is also interesting to see that the

power consumption gap between normal observe and

conditional observe gets larger with larger network sizes.
In most cases, Internet of Things objects will only have a

limited power supply, usually batteries. To compare the
battery lifetime, we assumed our IoT nodes are using two
Lithium AA batteries (in series, providing 3 Volts) with a
capacity of 8820 Ampere-Second. Therefore, the batteries
will have 26460 Joule (Watt/sec) total capacity. Figure 5
below shows the percentage increase of the resulting battery
lifetime, expressed in days. Since power consumption is
lower for conditional observations, there is a considerable
increase in battery life.

Figure 4: Per-node average power consumption for normal

observation and conditional observation (3 Thresholds)

Figure 5: Percentage increase in battery life

In most cases, Internet of Things objects will only have a

limited power supply, usually batteries. To compare the
battery lifetime, we assumed our IoT nodes are using two
Lithium AA batteries (in series, providing 3 Volts) with a
capacity of 8820 Ampere-Second. Therefore, the batteries
will have 26460 Joule (Watt/sec) total capacity. Figure 5
below shows the percentage increase of the resulting battery
lifetime, expressed in days. Since power consumption is
lower for conditional observations, there is a considerable
increase in battery life.

2) Number of Packets Transmitted.

One of the scarce resources of constrained environments is

bandwidth. Therefore, the number of packets transmitted is

an important parameter to see the impact of conditional

observations on the number of packets transmitted. For this

purpose, we also measure the number of packets transmitted

for every threshold (between 20 and 29) and every hop

count (0 to 5).

It is clear that the average number of packets transmitted

will be less for conditional observation. It is interesting to

see that the difference between normal observe and

conditional observe gets higher for higher hop counts.

D. Other Scenarios

We have also tested several other scenarios by sending

packets as confirmable and non-confirmable; using multiple

servers with multiple hops. In all cases, the gain of using

conditional observation can be quite significant. Therefore,

depending on the use case, it proves to be a good

optimization for the CoAP protocol.

V. RELATED WORK

There are a number of research activities under way on
WSN and IoT. Different groups are using different
approaches to come up with outstanding solutions and
technologies. The Open Geospatial Consortium (OGC) Inc.
developed the Sensor Observation Service (SOS) standard
that deals with the specifications of data observation from
different sensors in different, possibly geographically
scattered, sensor networks [7]. The standard specifies that a
GetObservation request may have several mandatory and

optional parameters. One of the optional parameters is
featureOfInterest, which is similar to our observation type.
However, this approach is more focused for geographical
observations and is a subset of a bigger framework, which
significantly differs from the IETF recommendation. The
other related work is CoRE Interfaces proposed by Zack
Shelby, as discussed in Section 2 of this paper.

VI. CONCLUSION

In this paper we presented and implemented the concept

of conditional observations as an extension to the CoAP

protocol in general and the Observe option in particular. Our

implementation shows the feasibility of implementing this

functionality on very constrained devices. We also

presented comparative results of using normal observation

in combination with client-side filtering versus conditional

observations. From the results, it is evident that the

conditional observations are a useful extension, both from

an application point of view and from a network efficiency

point of view. It enables clients to receive notifications that

contain only state changes they are interested in. This has a

twofold advantage: an application has the expressiveness to

selectively collect data and the data of no interest does not

have to travel over the network. The latter advantage will

become even more important in larger constrained networks

where notifications have to travel over multiple hops. As

such, conditional observations can greatly contribute to the

reduction of battery consumption and increase of network

lifetime. Of course, the concrete gain will depend on the

conditions of interest and thus the actual use cases: more

extreme conditions will lead to larger gains.
In the future, we will continue the implementation to

support condition types and do an evaluation based on real
scenarios. We will also further evaluate run-time overhead
and trade-off between reduced number of packets and
processing requirement.

ACKNOWLEDGEMENT

The research leading to these results has received funding from the

European Union's Seventh Framework Programme (FP7/2007-2013) under

grant agreement n°258885 (SPITFIRE project), from the IBBT ICON
projects GreenWeCan and O’CareCloudS

REFERENCES

[1] Vasseur, J. P. a. (2010). Internetworking Smart Objects with IP.
Burlington: Elsevier Inc.

[2] Z. Shelby, K. H. (2012, June 25). draft-ietf-core-coap-10.

[3] Hartke, K. (2012, March 12). draft-ietf-core-observe-05.

[4] Shi Tao. Li, J. H. (2012, June). draft-li-core-conditional-observe-02 .

[5] M. Kovatsch, S. D. (2011). A Low-Power CoAP for Contiki.
Proceedings of the 8th IEEE International Conference on Mobile Ad-
hoc and Sensor Systems (MASS 2011), (pp. 855-860). Valencia.

[6] A. Dunkels, J. E. Powertrace: Network-Level Power Profiling for
Lowpower Wireless Networks. 2011.

[7] Open Geospatial Consortium Inc. (2007). Sensor Observation
Service. Open Geospatial Consortium Inc.

[8] Shelby, Z. (2012, July 11). CoRE Interfaces. draft-shelby-core-
interfaces-03

