
Data-Intensive Workload Consolidation on Hadoop Distributed File System

Reza Moraveji

School of Information

Technologies
The University of Sydney and

National ICT Australia

(NICTA)
Sydney, Australia

reza.moraveji@sydney.edu.au

Javid Taheri

School of Information

Technologies
The University of Sydney

Sydney, Australia

javid.taheri@sydney.edu.au

MohammadReza
HosseinyFarahabady

School of Information

Technologies

The University of Sydney and
National ICT Australia

(NICTA)

Sydney, Australia
mreza@it.usyd.edu.au

Nikzad Babaii Rizvandi

School of Information

Technologies
The University of Sydney and

National ICT Australia

(NICTA)
Sydney, Australia

nikzad@it.usyd.edu.au

Albert Y. Zomaya

School of Information

Technologies
The University of Sydney

Sydney, Australia

albert.zomaya
@sydney.edu.au

Abstract— Workload consolidation, sharing physical resources

among multiple workloads, is a promising technique to save

cost and energy in cluster computing systems. This paper

highlights a few challenges of workload consolidation for

Hadoop as one of the current state-of-the-art data-intensive

cluster computing system. Through a systematic step-by-step

procedure, we investigate challenges for efficient server

consolidation in Hadoop environments. To this end, we first

investigate the inter-relationship between last level cache

(LLC) contention and throughput degradation for

consolidated workloads on a single physical server employing

Hadoop distributed file system (HDFS). We then investigate

the general case of consolidation on multiple physical servers

so that their throughput never falls below a desired/predefined

utilization level. We use our empirical results to model

consolidation as a classic two-dimensional bin packing problem

and then design a computationally efficient greedy algorithm

to achieve minimum throughput degradation on multiple

servers. Results are very promising and show that our greedy

approach is able to achieve near optimal solution in all

experimented cases.

Keywords-Workload Consolidation; Hadoop; Throughput

Degradation; Last Level Cache; Bin Packing;

I. INTRODUCTION

Recently, data-intensive cluster computing systems have
increasingly become important to perform a wide range of
applications including –but not limited to– machine learning,
data mining, and image/text processing [1]. MapReduce [2]
is among the most well-known cluster computing
frameworks directly benefited from consolidation
technologies to perform its heavy data-intensive applications.
Hadoop [3], an open-source version of Google‟s
MapReduce, is a reliable and cost-effective framework for
data-intensive distributed computing applications. This
framework is built on a large-scale cluster storage managed
by Hadoop distributed file system (HDFS) [4]; HDFS is
designed for storing very large files on clusters of
commodity hardware where the chance of node failure is
high [1].

Data centers benefited from consolidation through
various ways. Firstly, consolidation is aligned with recent
trends in data center management which aims to reduce
resource cost and improve resource utilization [5]. Secondly,
it is one of the most important techniques to conserve energy
in cloud computing environments [13] where physical

servers are aimed to maintain well utilized without
compromising throughput of concurrent workloads more
than a threshold. Poor workload consolidation, on the other
hand, may lead to high resource contention, and
consequently unbalanced distribution of workloads among
nodes; i.e., some computational nodes may attain
significantly worse throughput and utilization than others [6,
22]. For example, job latency on Facebook‟s Hadoop
clusters started to become unacceptably high when a wrong
mixture of production daily, ad hoc, and real-time jobs were
consolidated on them [1]. Poor consolidation can also
paralyze an entire Hadoop cluster and put production jobs at
risk [8]. Performance unpredictability for run-times of
MapReduce jobs on EC2 cluster is another example of
inefficient workload consolidation [7].

From workload consolidation point of view, Shared
resources such as last level processor cache (LLC) in
multicore physical servers have always showed unique
challenges to seamless adoption of servers in distributed
computing environments [9]. While sharing such resources
through increasing resource utilization is generally
beneficial, lack of control over concurrent workloads can
significantly lead to unacceptable loss of throughput and
unpredictable response time of individual workload [10].

The objective of our study in this paper is to
experimentally investigate how to load shared resources of a
cluster of servers with data-intensive applications so that
their throughput degradation never falls below a threshold.
To achieve this, firstly, we investigate the throughput of a
single workload on a single physical server. We show that
system parameters such as LLC, disk cache, and system file
cache are the main bottlenecks to maintain high throughput;
also, throughput varies according to two application-specific
parameters: file size and request size. Secondly, we examine
throughput of multiple workloads when combined on a
single physical server. Results of these experiments are then
used to model the effect of LLC contention, disk bandwidth,
and processor execution time on throughput. Finally, we use
the results from our second step and generalize our problem
for workload consolidation of multiple workloads on
multiple physical servers. In this step, we also formulate the
general workload consolidation as a two-dimensional bin
packing problem and design a greedy algorithm to solve it.

The paper is organized as follows. Section II surveys
related works. Section III analyses throughput of a single
workload on a single server. Section IV studies the

https://www.google.com.au/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CCYQFjAA&url=http%3A%2F%2Fwww.informatik.uni-trier.de%2F~ley%2Fdb%2Findices%2Fa-tree%2Fr%2FRizvandi%3ANikzad_Babaii.html&ei=3b2KT77EBcGtiQeA8qjqCQ&usg=AFQjCNEl5uoDeM2Vr_fNKfmdODdP-56ZcA&sig2=1Onv-pg44BZLGM5DuwlkvA

throughput of multiple co-run workloads on a single physical
server and provides mathematical models for that. Section V
introduces two constraints to guarantee achieving minimum
makespan for coallocated workloads. In section VI, we study
the general case of multiple workloads on multiple servers.
In section VII, we propose a greedy algorithm for server
consolidation. Section VIII explained our experimental
evaluation followed by section IX that concludes our work.

II. RELATED WORKS

Workload consolidation has been a thoroughly studied
topic for cluster computing systems, especially to investigate
the tradeoff between workload consolidation and throughput
degradation. These studies usually consider different types of
workloads –e.g., CPU-intensive and data-intensive–,
different performance goals –e.g., throughput, response time,
and power–, and different frameworks –e.g., MapReduce,
Dryad [12] etc. Therefore, we only summarize works that
were closely related to the topics of interest in this paper.

A close work to our study is the task scheduler proposed
in [5] in which a scheduler designed to predict the
performance of concurrent MapReduce workloads and adjust
their resources so that job response times are minimized.
Delay scheduling [8] addresses the job latency problem on
Hadoop clusters at Facebook and focuses on studying the
tradeoff between fairness in scheduler and data locality in
Hadoop applications. Quincy [11], a platform-specific
scheduler implemented on Dryad distributed execution
engine, is a fair-share scheduler also addressing the same
problem. Authors of [7] address the problem of performance
unpredictability and variance in EC2 cloud for MapReduce
applications and discover that unpredictability is greatly
related to poor workload consolidation.

Apart from the aforementioned works, there are also
other works where consolidation is used to optimize power
and energy. Energy-aware workload consolidation in [13] is
an example attempts to conserve energy for disk-/CPU-
intensive applications in cloud computing environments;
their approach, however, lacks accurate workload
characterization. In [14], a novel runtime framework is
proposed to dynamically consolidate instances from different
workloads into a single GPU workload; they also propose
GPU performance and power models for effective workload
consolidation on GPUs. Joulemeter [15] that is initially
designed as a tool for power usage measurement of virtual
machines aims to consolidate multiple workloads on fewer
servers for improving resource utilization and power costs.

Analyzing the effect of last level processor cache (LLC)
on workload consolidation –another topic of interest we
investigate in this work– is also covered by several studies.
For example, authors of [16] study the behavior of
consolidated workloads particularly on sharing caches across
a variety of configurations. In [10] authors also study shared
resource monitoring to understand resource usage and ways
to improve overall throughput as well as quality of service of
a data center. A mathematical model has also been proposed
to predict the effect of cache contention on the performance
of consolidated workloads [17].

After close examination of all these works, we noticed
several shortcomings and decided to cover them in this
article; thus, we can highlight our contribution in this work
through the following items. The first difference of our work
with previously reported studies mainly lies in the way we
characterize data-intensive applications with two main
parameters: file size and request size; such characterization is
inspired by well-known filesystem benchmarking tools,
namely Iometer [18], IOzone [19], TestDFSIO [20], and
Bonnie++ [21]. Our second contribution is related to the
Hadoop distributed file system that has been never properly
covered in previous studies –to the best of our knowledge.
We believe this is the first work that thoroughly analyses
inter-relationship between workload consolidation,
throughput degradation, and LLC contention for data-
intensive applications employing HDFS. Our third
contribution is to propose mathematical models for different
aspects of this study based on imperial results from
TestDFSIO [20].

III. SINGLE WORKLOAD ON SINGLE SERVER

In this section, we measure the throughput of a single
workload on a single physical server. Here, we show that
throughput is a function of file size (FS) and file operation
request size (RS) of the workload. RS is the amount of data
that workload reads/writes from/to a file in a single file
operation. Our experimental results show that increasing FS
beyond LLC size noticeably degrades the throughput of
workload.

A. Workload Characterization

We conduct a series of experiments on two physical
servers to capture the effect of FS and RS on throughput. The
experiments are based on the intuition that data-intensive
workloads can be characterized by FS and RS [18-21]. As
expected, the throughput curves for all servers follow the
same pattern by varying FS and RS for both read and write
operation.

TABLE I. EXPERIMENTAL SETUP

Experimental Setup

processor
last level

cache
memory

System

File Cache

Disk

cache

P
h

y
si

c
a
l

S
e
r
v
e
r
s M

1
 Core(TM) i7

CPU @2.00

GHz

6MB 8GB 980MB 12MB

M
2

Core(TM)2 Duo

@ 3.00 GHz
6MB 3GB 455MB 8MB

B. Experimental Setup

Table I shows the experimental setup for these two
servers (M1 and M2). On all physical servers, system file
cache and file buffering are always activated in operating
systems; thus, workloads always interact with system file
cache rather than system disk. Through enabling this feature
write-back cache always delays flushing file data until
triggered by cache manager –usually at predefined time
intervals. Note that although system file cache is a feature of
native filesystem not that of HDFS, it still can significantly
impact the performance of writing/reading data to/from

HDFS. Also, disk cache –embedded memory in hard drive–
is enabled, therefore, systems do not wait for any device to
access the correct location on the disk to write the data; here,
the disk controller rather sends an acknowledge to operating
system and saves significant amount of time needed for
actual writing on the disk. Therefore, both system file cache
and disk cache can significantly increase workload
throughput as they (1) act as a read-ahead buffer so that the
data can be read-ahead for future requests, and (2) act as
write-back cache that delays actual writings.

As stated earlier, we use HDFS as the default filesystem
for our experiments; Hadoop is particularly designed for
storing very large-sized files where large files are split into
block-sized chunks (64MB by default) to be independently
stored in the system. Each workload –i.e., a map task– in
turn works on these block-sized chunks. In our experiments,
to work with non-defualt block-sized chunks, we change the
filesystem installation parameters.

C. Experimental Results on One Single Server

Figure 1 and 2 plot the throughput of data-intensive
workloads against FS (block-sized chunk) and RS for read
and write operations on both M1 and M2 from Table I. It is
worth noting that these figures show the FS of a Hadoop task
(usually in order of 64MB) and not the FS of a Hadoop job
that is usually in order of Terabytes. Both figures show how
throughput is affected by FS and RS of each experiment.

For each RS, these figures show two/three throughput
levels for read/write operations in each plate. From left to
right: (1) the first/highest throughput levels are related to

small FSs that can easily fit into LLC of the servers (6MB
for both servers), (2) the second/intermediate throughput
levels start when FS becomes greater than LLC however less
than the summation of system file cache and disk cache; and,
(3) the third/lowest level –only for write operation– starts
when FS exceeds such summation where the actual disk I/O
speed can also be observed. For example, in Figures (1)b and
(2)b, the third throughput level starts around
(980MB+12MB) and (455MB+8MB) that are the summation
of system file cache and disk cache for M1 and M2,
respectively.

These figures also show that throughput is always
improved by increasing size of RS. In details, there are four
components contributing to affect total access time to a disk
–either read or write–, they are: controller access time, seek
time, rotational latency, and data read/write time. In real
systems, the portion related to the actual read/write is
negligible compared to the other components which are
overhead. Reading/writing 1MB of data with RS=1KB takes
much more time than that of RS=512KB because overhead
happens 1000 times for the former and 2 times for the latter
case. Therefore, accessing disks with large RSs are always
much more efficient than acceding disks for small ones. We
also like to stress that based on our extensive experiments we
noticed that LLC, system file cache, and disk cache
parameters from physical servers and FS and RS parameters
from workloads greatly affect throughput of a system.
Therefore, they must all be carefully designed/selected to
achieve high-throughput workload consolidation schemes.

 (a) (b)

Figure 1. Single workload on a single server (a) read and (b) write operations on M1.

 (a) (b)

Figure 2. Single workload on a single server (a) read and (b) write operations on M2.

IV. MULTIPLE WORKLOADS ON SINGLE SERVER

Upon our experiments for a single workload, we extend
our experiments by measuring throughput of multiple
workloads on a single physical server. Here, we consider
different RSs, FSs, and number of concurrent workloads (N)
to measure throughput. To present our results, we replace the
“request size” axis of Figures 1 and 2 with the number of
concurrent workloads to produce Figures 3 and 4 for this
case. Because similar trend of throughput degradation were
observed for different RSs, we only reflect result of
RS=64KB and 256KB on M1 server in this article. We also
like define “saturation point” to refer to conditions where
throughput degradation becomes greater than 50%; i.e.,
conditions in which the execution time of a workload is at
least doubled. More discussion will be made in the following
sections to highlight the importance of saturation points in
achieving minimum makespans for consolidated workloads.

A. Last Level Cache and Consolidation

Figure (3 and 4) shows that each plate gets a moderate
slope till a particular FS (point) where throughput is sharply
dropped. Such drop-off point in each plate is greatly related
to condition where different workloads start to evict each
others‟ cached data from their shared LLC. We will use the
term “throughput degradation point” (TDP) to refer to such
sharp degradation points for the rest of this paper. One of our
aims in this work is to find/calculate TDPs for any
combination of workloads and relate them to FSs and RSs.

Our observations showed that TDPs always occur when
total amount of competing data for access LLC exceeds its
capacity. In fact, the total amount of competing data to
access LLC is a function of FSs and RSs of concurrent

workloads. For instance, one of the TDPs in Figure 4(a)
occurs when N=4, RS=256KB, and FS=1280KB; for this
particular point, the total competing data to access LLC is
around 4×(1280KB+256KB)=6MB: the exact cache size of
M1. This figure also shows that increasing any of these
values (N,RS, or FS) always results in greater degradations
of throughput as expected through our experimental model.
Based on that we observed that TDP always occurs when:

N

i

ii FSRSCacheSize
1

where FSi and RSi are the file and request size of
workload i, respectively. Dotted points in Figure (3 and 4)a
show calculated points of TDP from Eqn. (1) for each plate
and graphically confirm our hypothesis for predicting sharp
degradation points for concurrent workloads.

Our further observation also shows that Eqn. (1) always
holds only when FS are smaller than LLC; otherwise, it will
not compete to access LLC. Hence, if FS of a workload
becomes greater than LLC, then it will not compete with
others to access LLC. As a result, it should not be considered
in calculating TDP. Based on such observations, we replace
Eqn. (1) by the following:

 CacheSizeFS iCS

FSRSCacheSize

i

N

CSii

i

N

i

i

 &11

to predict when TDP will occur.

B. Mutual Throughput Degradation and Consolidation

Because LLC is not the only resource shared by
consolidated workloads, other shared resources such as
processor execution engine, system file cache, disk
bandwidth, and disk cache can also cause throughput
degradation if overloaded. The effect of these sources of
throughput degradation can also be seen in Figures (3 and
4)a along the depth axis. The degradation is mostly related to
competition of different workloads to access shared disk
bandwidth and processor execution time. In fact, observed
throughput is linearly degraded by increasing N. Therefore,
we propose another model to predict the degradation caused
by a group of workloads on a single workload, j, as follows:

N

jii

jij DD
,1

,

where Di,j is the throughput degradation caused by
workload i on j. Validation of our hypothesis (model) is
illustrated in Figure (3 and 4)b. In the figures, we compare
the actual throughput degradations with the ones predicted
by the model for two RSs. Indeed, the model predicts the
degradations with reasonable accuracy.

 As a basis of our model, we need to collect all Di,j‟s
through running (10×23)×(10×23)=52900 individual
experiments to capture all possible combination of our
experimental setups; i.e., ten RSs (1KB-512KB) and 23 FSs
(1KB-1GB) for each workload.

 (a) (b)

Figure 3. (a) Multiple workloads with 64KB request size on a single server (M1) and (b) model validation for throughput degradation .

 (a) (b)

Figure 4. (a) Multiple workloads with 256KB request size on a single server (M1) and (b) model validation for throughput degradation .

V. BOUNDS FOR CONSOLIDATION PROBLEM

Before formulating consolidation problem, we like to
introduce two criteria to achieve desired throughput. The
goal of the first criterion is to achieve minimum makespan
by restricting the maximum number of consolidated
workloads on a physical server. Our proposed criterion is to
decide where a new workload must be run upon its arrival to
the system; new workload is allocated to a server where
throughput degradation of all its co-run workloads (including
the new workload) becomes less than 50% after
consolidation. If, no server is found to satisfy this criterion,
then, the new workload will be queued until a server to
satisfy this criterion is found –most probably upon
completion of another workload. Here, we like to show how
following this criterion always results in a lower makespan –
compared with when it is not followed– for the consolidated
workloads of each server. For better explanation, consider
two scenarios depicted in Figure 5. In this figure, ARi
represents the actual running time of workload i (Wi) when it
is solely run on a physical server; Oi represents the time
overhead imposed on Wi because of its coallocations to
another workload. As can be seen, in the first co-run
scenario, because O1<AR1 and O2<AR2, the makespan of
colloating W1 and W2 is always less than W1 + W2
(sequential). The second co-run scenario shows the other
possibility in which O3>AR3 and O4<AR4. As indicated in
the figure, makespan of co-allocating W3 and W4 is (W3 +
O3) that is greater than (W3 + W4). In other words, running
W3 and W4 one after another is better than consolidating
them!

The following equation mathematically formulates such
situations and defines Di, total degradation on workload i,
variables to detect such situations.

 ii

i
i

OAR

O
D

Using Di‟s, this criterion implied to consolidate only
when:

" Oi, Wi Di =
Oi

ARi +Oi()
< 0.5

or

 Di = Di, j < 0.5
j=1, j¹i

N

å

For the scenarios in Figure 5, D1<0.5 and D2<0.5, while
D3>0.5 and D4<0.5. Note that the aforementioned criterion
can be useful only when consolidated workloads have
identical run-times; i.e., AR1=AR2=…=ARN for all
workloads.

O1W1 AR1

O2AR2

O3AR3

O4AR4

AR3 AR4

D1<0.5 & D2<0.5

W2

W3

W4

D3>0.5 & D4<0.5

Co-Run Scenario (1)

Co-Run Scenario (2)

Sequential

Figure 5. Constraint on the number of concurrent workloads.

The second criterion is to adjust the number of
consolidated workloads so that their total cached requests do
not exceed LLC‟s capacity. We already show in Figure (3
and 4)a that throughput degradation as a result of losing
cache is noticeable. Here, we experimentally show, Figure
6(a and b), that this throughput degradation is always more
than 50%. In the figures, curves on top refer to workloads
that could efficiently access LLC; the ones at the bottom
represent those that have lost such competition to constantly
access LLC in their favor. The figures reveal that for
RSs>8KB, throughput degradation is always more than 50%.
Therefore, we design our second criterion to check/estimate
throughput degradation before consolidation as: consolidate
workloads only when

 CacheSizeFSiCS

CacheSizeFSRS

i

N

CSii

i

N

i

i

&11

α manifests a threshold level in which a system cache can
be overloaded. For example, α=1.2 for cache size of 12MB
means the cache can tolerate concurrent accesses of multiple
workloads with total data of 14.4MB without significant
throughput degradation. α can be emperically found through
comparing the actual TDPs of a system versus its calculated
ones. In our case, for example, in Figure (3 and 4)b actual
TPDs are around 7.76MB, whereas the calculated TDPs are
6MB. Thus, for our system α should be about 7.76/6≈1.3.

Figure 6. The effect of losing last level cache on throughput degradation

VI. CONSOLIDATION PROBLEM: MULTIPLE

WORKLOADS ON MULTIPLE SERVERS

In this section, we formulate consolidation problem as
a two-dimensional bin packing problem –based on the
direct observations from the previous sections– so that
throughput of no workload in degraded for more than
50%. To this end, physical servers are modeled as 2D-bins
to adjust the number of consolidated workloads on a
physical server. The first dimension is inspired by our first
criterion to check/estimate that throughput of individual
workloads never falls below 50%; the second dimension is
inspired by the second criterions to check/estimate that the
total amount of competing data for LLC is always
bounded by α.CacheSize. Figure 7 shows a graphical
representation of such dimensions. Here, each workload is
defined as an object to be packed into one of the server
bins; the first and second dimension for each workload is
defined as its „FS and RS‟ and „mutual throughput
degradation on other workloads‟, respectively. It is worth
noting that our formulated problem is much harder than
the original multi-dimensional bin packing problem as

objects are independent in the original case, whereas
mutually affecting each other on our formulation.

D2

D1

D3 0.
5 Throughput Degradation

Ca
ch

e
Si

ze

α . CacheSize

To
ta

l d
at

a
us

in
g

LL
C

M
ax

 D
eg

ra
da

tio
n

Bounds

56%

78%

Figure 7. A typical physical server, bin, after allocation

VII. CONSOLIDATION ALGORITHM

This section presents a greedy algorithm (Figure 8) to
solve the consolidation problem formulated in the previous
section. The aim of our greedy algorithm is to minimize
throughput degradation of consolidated workloads when

distributing them among a given number of physical
servers. The greedy minimizes the sum of the average
loads on both dimensions on all physical servers after
allocation. The load on one dimension is the total amount
of competing data for LLC and the load on the other
dimension is the maximum of throughput degradations. To
better explain the loads consider the three consolidated
workloads in Figure 7 again. In this example, D3 has the
maximum throughput degradation of 56% which is
representative of the load in second dimension and the
total amount of competing data if 78% of α×CacheSize
denoting the load in the first dimension of the respective
bin.

Figure 8. The proposed greedy algorithm

To better explain our greedy algorithm in Figure 8,

assume two physical servers, A and B, have loads

according to Table II. For servers A/B, workloads occupy

30%/40% of α×CacheSize with maximum throughput

degradation of 40%/45%. Now assume a new workload,

W, is arrived. If W is allocated to A/B, then, the total

amount of data will be 35%/42% of α×CacheSize with

maximum throughput degradation of 45%/48%. In this

case Avg(A before)+Avg(B after) will be

(30+40)/2+(42+48)/2=80, whereas Avg(A before)+Avg(B

after)=82.5. Therefore, W will be consolidated with the

current load in B assigned to it. As can be seen, our

greedy algorithm tries to consolidate workloads so that

summation of all servers‟ degradation is minimized. It is

also worth noting that such allocation greatly depends on

the sequence of arriving workloads. However, finding the

optimal solution through brute-force search can heavily

overload schedulers and thus almost impossible to

implement.

TABLE II. AN EXAMPLE FOR THE GREEDY ALGORITHM

VIII. EXPERIMENTAL EVALUATION

To evaluate the performance of the proposed greedy
algorithm, we implement the algorithm on a cluster of four
servers: 2xM1s and 2xM2s from Table I. Hadoop nodes are
running Ubuntu 11.10 as detailed in section III/B. We also
developed a light-weight program to monitor maximum
throughput degradation on each server with sampling time
interval of 1s. Our workload generator is inspired by
Iometer [18], IOzone [19], TestDFSIO [20], and Bonnie++
[21]; and, we used TestDFSIO benchmark –comes with
Hadoop– to validate our throughput results on a single
server for read/write operations on HDFS.

As explained, the first input of our greedy algorithm is
mutual throughput degradations (Di,js) that we collected by
profiling data on each physical server for all combination
of ten RSs (1KB-512KB) and 23 FSs (1KB-1GB) for each
server; i.e., (10×23)× (10×23)=52900 individual runs in
total.

TABLE III. DIFFERENT SCENARIOS CONSIDRED FOR THE PROPOSED

ALGORITHM IMPLEMENT ON CLOUD PROTOTYPE

We also implemented the brute-force technique to
gauge performance of our greedy algorithm in this work.
Tables III explains our test cases in which our servers were
initialized –with random combination of workloads. After
that, a sequence of workloads is gradually injected into the
system and allocated by our greedy algorithm. Figure 9
shows results of these experimental for three different
values of α. In this figure, each bar represents the average
minimum throughput of all servers. This figure shows that
correct setting of α can have a great impact in minimizing
the average throughput degradation of consolidated
workloads in a system. For example, in this figure, α=1
and α=1.5 represent two cases in which one is too
conservative (α=1), while the other is too aggressive to
efficiently share LLC among concurrent workloads. The
case for α=1.3, however, shows a balanced level of
throughput degradation for all three sequences. We also
like to highlight that, the aforementioned scenarios in
Table III are not the only cases we used to evaluate the

Servers

%Total Data
of Cache

%Maximum
Degradation

Average

Initial

States

A (before) 30 40 35

B (before) 40 45 42.5

After

Allocating

A (after) 35 45 40

B (after) 42 48 45

 Avg A (before) + Avg B (after) Avg B (before) + Avg A (after)

80 82.5

Initial State

Server1 (M1) Server2 (M1) Server3 (M2) Server4 (M2)

(32KB, 64KB) (32KB, 64MB) (256KB, 1MB) (2KB, 32KB)

(4KB, 16KB) (512KB, 2MB) (4KB, 2MB) (512KB, 64MB)

(16KB, 32MB) (128KB, 512KB) (32KB, 8MB) (8KB, 4MB)

Sequences

1 (16KB, 64KB), (32KB, 1M), (64KB, 64MB), (32KB, 2MB), (8KB, 64MB)

2 (4KB, 16KB), (2KB, 16M), (2KB, 8KB), (32KB, 256KB), (16KB, 64MB)

3 (256KB, 2MB), (8KB, 3M), (32KB, 64MB), (4KB, 256MB), (8KB, 32MB)

Greedy Algorithm
comments:
 m: number of physical servers
 Si: physical server i
 Dx,y: throughput degradation of workload x on y
Input: Wj

0. minimum = 100%
1. for i := 1 to m do

 begin
 2. Assign Wj to Si
 3. CacheInUsei =

 (total amount of competing data on Si)
/

 (αi * CacheSizei)
 Comment: maximum throughput degradation

 on Si, Max(Dy) is calculated based on
 Previously collected Dx,ys on the server
 Calculate Max(Dy)

4. Comment: check if the allocation does not
 violate 50% degradation rule
 If Max(Dy) > 50% or CacheInUsei > 100% then

 Go to 1.
5. Avgi = Avg(CacheInUsei, Max(Dy))
6. If Avgi < minimum then

 begin
 minimum := Avgi
 Si is the candidate of allocation

 end
 end

7. Allocate Wj → Si

quality of our greedy algorithm. Other cases are however
not reflected here as they are produced similar results to
the ones we present here. In all cases, our greedy
algorithm manages to find a relatively close suboptimal

solution to the optimal one found by the brute-force
algorithm. Also, the overhead of our developed monitoring
program was always negligible compared with the CPU
share of actual workloads in a system.

Figure 9. Comparison of optimal scheme and greedy algorithm for α=1, 1.3, and 1.5

IX. CONCLUSION AND DISCUSSION

We investigated several challenges of efficient
workload consolidation for data-intensive applications
employing Hadoop distributed file system. Here, we first
examined the inter-relationship between workload
consolidation, resource contention, and throughput
degradation on a physical server. Such examinations
revealed how throughput degradation of data-intensive
workloads is a function of LLC contention and mutual
throughput degradation of workloads on one another. We
then used the observed results and proposed two criteria to
check/estimate throughput degradation of multiple
workloads before consolidating them on a physical server.
These criteria were then used to formulate the problem of
consolidating multiple workloads on multiple servers as
two-dimensional bin packing problem and also to propose
our greedy approach in allocating workloads upon their
arrival on systems that are already under load. Results
were very promising showing that our greedy approach

manages to find a relatively close suboptimal solution to
the optimal one.

REFERENCES

[1] T. White, Hadoop: The Definitive Guide, O'Reilly Media, 2009.
[2] J. Dean and S. Ghemawat, “MapReduce: Simplfied Data

Processing on Large Clusters” Communications of the ACM vol.
51, 2008, pp. 1-13.

[3] Apache Hadoop. http://hadoop.apache.org.
[4] S. Konstantin, H. Kuang, S. Radia, and R. Chansler, “The hadoop

distributed file system” Symposium on Massive Storage Systems
and Technologies, 2010.

[5] J. Polo, et al., “Performance-Driven Task Co-Scheduling for
MapReduce Environments” IEEE/IFIP Network Operations and
Management Symposium, 2010, pp. 373-380

[6] Y. Chen et al., “The Case for Evaluating MapReduce Performance
Using Workload Suites” Technical Report, Electrical Engineering
and Computer Sciences University of California at Berkeley, 2011

[7] J. Schad, J. Dittrich, and J. Quiane-Ruiz, “Runtime measurements
in the cloud: Observing, analyzing, and reducing variance,” Proc.
VLDB, vol. 3, Sep. 2010, pp. 460–471.

[8] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S.
Shenker, and I. Stoica, “Delay scheduling: A simple technique for

http://www.citeulike.org/user/verma7/author/Zaharia:M
http://www.citeulike.org/user/verma7/author/Borthakur:D
http://www.citeulike.org/user/verma7/author/Sen+Sarma:J
http://www.citeulike.org/user/verma7/author/Elmeleegy:K
http://www.citeulike.org/user/verma7/author/Shenker:S
http://www.citeulike.org/user/verma7/author/Shenker:S
http://www.citeulike.org/user/verma7/author/Stoica:I

achieving locality and fairness in cluster scheduling,” Proc.
EuroSys, 2010, pp. 265-278.

[9] N.E. Jerger, D. Vantrease, M. Lipasti, “An Evaluation of Server
Consolidation Workloads for Multi-Core Designs,”. IEEE 10th
International Symposium on Workload Characterization (IISWC),
Sep. 2007, pp. 27-29.

[10] J. Moses, R. Iyer, R. Illikkal, S. Srinivasan, and K. Aisopos,
“Shared Resource Monitoring and Throughput Optimization in
Cloud-Computing Datacenters,” Proc. IEEE International Parallel
& Distributed Processing Symposium, 2011, pp. 1024-1033.

[11] M. Isard et al., “Quincy: Fair Scheduling for Distributed
Computing Clusters” ACM Symposium on Operating Systems
Principles, 2009.

[12] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. “Dryad:
Distributed data-parallel programs from sequential building
blocks,” Proc. EuroSys, 2007, pp. 59–72.

[13] S. Srikantaiah, A. Kansal, F. Zhao, “Energy Aware Consolidation
for Cloud Computing,” Proc. HotPower '08 Workshop on Power
Aware Computing and Systems, Dec. 2008.

[14] D. Li, S. Byna, and S. Chakradhar, “Energy-Aware Workload
Consolidation on GPU,” International Conference on Parallel
Processing Workshops, 2011, pp. 389-398.

[15] A. Kansal, F. Zhao, J.Liu, N. Kothari, A. A. Bhattacharya,
“Virtual machine power metering and provisioning,” Proc. ACM
symposium on Cloud computing, 2010, pp. 39-50.

[16] C. Xu, X. Cheny, R. P. Dicky, and Z. Morley Mao, “Cache
Contention and Application Performance Prediction for Multi-Core
Systems,” Proc. IEEE International Symposium on Performance
Analysis of Systems & Software (ISPASS), 2010, pp.76-86.

[17] X. E. Chen; T. M. Aamodt, “Modeling Cache Contention and
Throughput of Multiprogrammed Manycore Processors,” IEEE
Transactions on Computers, vol. 99, 2011.

[18] Iometer Intel. http://www.iometer.org/
[19] IOzone Filesystem Benchmark. http://www.iozone.org/
[20] TestDFSIO http://javasourcecode.org/html/open-source/hadoop/hadoop-

0.20.203.0/org/apache/hadoop/fs/TestDFSIO.html
[21] Bonnie++ filesystem benchmarking tool

http://www.coker.com.au/bonnie++/
[22] N. B. Rizvandi, J. Taheri, A. Y. Zomaya, and R. Moraveji, “A

Study on Using Uncertain Time Series Matching Algorithms in
Map-Reduce Applications,” Concurrency and Computation:
Practice and Experience, 2012 (in press)

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Jerger,%20N.E..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Vantrease,%20D..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Lipasti,%20M..QT.&newsearch=partialPref
http://www.citeulike.org/user/tnhh/author/Kansal:A
http://www.citeulike.org/user/tnhh/author/Zhao:F
http://www.citeulike.org/user/_mkeller/author/Kansal:A
http://www.citeulike.org/user/_mkeller/author/Zhao:F
http://www.citeulike.org/user/_mkeller/author/Bhattacharya:AA
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5446240
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5446240
http://en.wikipedia.org/wiki/Benchmarking

