

Edinburgh Research Explorer

Exploring the acceleration of Nekbone on reconfigurable
architectures

Citation for published version:
Brown, N 2020, Exploring the acceleration of Nekbone on reconfigurable architectures. in 2020 IEEE/ACM
International Workshop on Heterogeneous High-performance Reconfigurable Computing (H2RC). Institute
of Electrical and Electronics Engineers (IEEE), pp. 19 - 28, Sixth International Workshop on Heterogeneous
High-performance Reconfigurable Computing, 13/11/20. https://doi.org/10.1109/H2RC51942.2020.00008

Digital Object Identifier (DOI):
10.1109/H2RC51942.2020.00008

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
2020 IEEE/ACM International Workshop on Heterogeneous High-performance Reconfigurable Computing
(H2RC)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 27. Apr. 2024

https://doi.org/10.1109/H2RC51942.2020.00008
https://doi.org/10.1109/H2RC51942.2020.00008
https://www.research.ed.ac.uk/en/publications/d0a85fee-d5c5-479a-ab07-f9e378721af0

Exploring the acceleration of Nekbone on
reconfigurable architectures

Nick Brown
EPCC at the University of Edinburgh

The Bayes Centre, 47 Potterrow, Edinburgh
n.brown@epcc.ed.ac.uk

Abstract—Hardware technological advances are struggling to
match scientific ambition, and a key question is how we can
use the transistors that we already have more effectively. This
is especially true for HPC, where the tendency is often to
throw computation at a problem whereas codes themselves are
commonly bound, at-least to some extent, by other factors. By
redesigning an algorithm and moving from a Von Neumann
to dataflow style, then potentially there is more opportunity
to address these bottlenecks on reconfigurable architectures,
compared to more general-purpose architectures.

In this paper we explore the porting of Nekbone’s AX
kernel, a widely popular HPC mini-app, to FPGAs using High
Level Synthesis via Vitis. Whilst computation is an important
part of this code, it is also memory bound on CPUs, and a
key question is whether one can ameliorate this by leveraging
FPGAs. We first explore optimisation strategies for obtaining
good performance, with over a 4000 times runtime difference
between the first and final version of our kernel on FPGAs.
Subsequently, performance and power efficiency of our approach
on an Alveo U280 are compared against a 24 core Xeon Platinum
CPU and NVIDIA V100 GPU, with the FPGA outperforming the
CPU by around four times, achieving almost three quarters the
GPU performance, and significantly more power efficient than
both. The result of this work is a comparison and set of techniques
that both apply to Nekbone on FPGAs specifically and are also of
interest more widely in accelerating HPC codes on reconfigurable
architectures.

Index Terms—Nekbone, FPGAs, Xilinx Vitis, High Level Syn-
thesis, Alveo U280

I. INTRODUCTION

Scientists are placing unprecedented demands upon super-
computers, requiring the ability to address larger problems at
reduced time to solution. Whilst for a number of years there
has been a trend to adopt technologies that provide increased
raw computational power, for instance GPUs or CPUs with
more advanced vector units such as SVE, many HPC codes
are not fully bound by computation. Therefore, a key question
is whether there is benefit in leveraging an architecture that
enables us to directly address some of the other performance
bottlenecks in High Performance Computing (HPC) codes.
One potential advantage of reconfigurable architectures is that,
by specialising the electronics to a specific application, then
key details, such as how memory is accessed, can be tuned on
a code by code basis, rather than relying upon architectural
decisions which are more general purpose.

Field Programmable Gate Arrays (FPGAs) are a form of
reconfigurable architecture which provide a large number of

configurable logic blocks sitting within a sea of configurable
interconnect. With the addition of other facets on the chip,
such as fast memory which includes block RAM (BRAM) and
UltraRAM (URAM), Digital Signal Processing (DSP) slices,
and high bandwidth connections off-chip, FPGAs are hugely
versatile. The adoption of this technology in scientific com-
puting has, until now, been rather limited, but the significant
investment made by vendors in the recent years around the
software ecosystem for programming FPGAs, along with the
availability of more capable hardware, has the potential to
drive increased ubiquity.

Whilst even the most powerful FPGAs struggle to compete
with latest CPUs or GPUs when it comes to raw floating
point capability, for codes which are not fully computationally
bound then potentially other factors are more crucial in dictat-
ing performance. A key question is whether, by reformulating
algorithms in dataflow form, and running on reconfigurable
architectures, one can offset other bottlenecks such as memory
overheads. By doing so one is then keeping the FPGA’s DSP
slices continually busy performing floating point operations,
and without stalling this makes more effective use of the
transistors that we already have. Put simply, our general
hypothesis is that the ability to specialise reconfigurable ar-
chitectures at the electronics level with dataflow algorithms
will enable the hardware to be kept busy in situations where
other more general purpose Von Neumann based architectures
would stall. Furthermore, FPGAs promise significant power
efficiency benefits, and a secondary question is whether such
architectures can provide improved performance per Watt over
technologies more commonly found in HPC machines.

In November 2019, Xilinx released their Vitis platform
which aims to make the programming of FPGAs more a ques-
tion of software development rather than hardware design. In
this paper we use Vitis to accelerate Nekbone, a popular HPC
mini-app, which captures the basic structure of the Nek5000
application, on a Xilinx Alveo U280 FPGA. Specifically, we
focus on the AX kernel, which accounts for over 75% of the
runtime, and this paper is structured as follows; in Section
II we explore the background to this work, describing the
FPGA technologies we are using, the Nekbone mini-app in
more detail, and the hardware itself. Section III then describes
optimisation at the single FPGA kernel level, transforming
the algorithm from a Von Neumann based CPU version to
the dataflow style. We then focus on scaling up the number

of FPGA kernels in Section IV, comparing runs on a Xilinx
Alveo U280 against the performance and power efficiency of
an Intel Xeon Platinum CPU and a NVIDIA Tesla V100 GPU,
before concluding and discussing further work in Section V.

II. BACKGROUND

In recent years there has been much development in pro-
gramming tools for FPGAs, and the use of higher level
programming abstractions such as High Level Synthesis (HLS)
is amongst the most prevalent of these. When using HLS, a
kernel is written in C, C++ or System C and then translated
by the tooling into the underlying Hardware Description
Language (HDL). Freeing programmers from having to work
at the HDL level directly increases productivity and opens the
technology up to more of the software community. Within their
high level code, programmers are able to direct the tooling via
pragma style hints, however, HLS is not a silver bullet and
whilst it has made the physical act of programming FPGAs
much easier, one must still think dataflow to obtain good
performance [1].

There have been a number of previous activities investigat-
ing the role that FPGAs can play in accelerating HPC codes,
such as [2] and [3], and it is fair to say that whilst some
kernels are suited for this type architecture, many struggle to
perform well against the latest CPUs and GPUs. Nevertheless,
it our belief that exploring the acceleration of popular HPC
applications and mini-apps via reconfigurable architectures is
an important activity. Not only does this aid in understand-
ing the suitability of the technology for different codes and
disseminate techniques for obtaining good performance on
FPGAs, but furthermore it also enables hardware vendors to
understand the mind-set of HPC software developers and their
requirements.

A. Vitis

The Vitis Platform [4] is an FPGA programming eco-system
developed by Xilinx. First released in late 2019, this replaces
Xilinx’s SDAccel platform [5] and promises to deliver an
environment which lowers the barrier to entry in programming
FPGAs and therefore their use in accelerating high performing
codes, which is our interest here.

For the work undertaken in this paper we use Vitis 2020.1,
which at the time of writing is the latest version of the tool
chain. As described above, the technology relies on HLS,
where the programmer’s C or C++ code is synthesised into the
target RTL. Once the HLS code is written, the programmer
then builds this via executing the v++ command in the
terminal, which can be called by makefiles. Depending upon
the flags provided, this command both synthesises HLS code
and performs a linking stage. The later involves assembling
the block design (shell) around the HLS kernel’s IP block,
and then executing Vivado which builds the bitstream in the
normal manner.

Host side code uses OpenCL, which manages the transfer of
data, launching of kernels, and marshalling of control. This is
a convenient, standard, way of interacting with the FPGA and

much more accessible than having to rely on vendor specific
APIs. Furthermore, Vitis provides both software and cycle-
accurate hardware emulation, which is driven by the provision
of a single flag to the v++ tool and an environment variable. In
this manner, it is convenient to develop and test functionality
using emulation, relying predominantly on hardware runs and
their long associated build time for performance measurements
only. In addition to the building of code, Vitis also provides
profiling support via Vitis Analyser, and a rich set of open
source HLS libraries in the Xilinx Github repository.

B. Nekbone

Nekbone [6] is a mini-app that captures the basic struc-
ture of the Nek5000 application [7], which is a high order,
incompressible Navier Stokes solver based on the spectral
element method. A Gordon Bell prize winner, Nek5000 and
its associated Nekbone mini-app are widely popular in the
HPC community. Nekbone itself solves a standard Poisson
equation using a Conjugate Gradient (CG) iterative method
with a simple preconditioner on a block or linear geometry.
This represents the principal computational kernel of Nek5000,
and is a very useful tool for exploring the essential algorithmic
elements that are pertinent to Nek5000, and many other
HPC codes. Therefore, lessons learnt from the acceleration
of Nekbone on FPGAs not only feed back to Nek5000, but
are also of benefit to a wide variety of HPC codes that adopt
a similar computational approach.

The solution phase in Nekbone consists of CG iterations,
where each iteration involves vector operations, matrix-matrix
multiply operations, nearest-neighbour communication, and
MPI Allreduce operations. Of all of this functionality, the
most expensive kernel is AX, which applies the Poisson
operator and accounts for approximately 75% of the overall
Nekbone code runtime. It is this kernel that we focus on in
this work, and all calculations are performed on an element
by element basis, with each element consisting of a specific
polynomial order configuration. For the runs conducted in this
paper we use 800 elements, a polynomial order of 16 and
three dimensions (this based upon a standard Nekbone test-
case), which results in 163 = 4096 grid points per element.
In-fact, the AX kernel of Nekbone represents a challenging
computational pattern, as each element requires a number of
relatively small BLAS operations (in our configuration 16 x
16), resulting in, overall, very many small operations which
tend to perform worse than a single, much larger BLAS
operation [8].

Listing 1 illustrates a sketch of the code for this AX kernel,
which is written in Fortran 77. The top level subroutine, ax,
accepts two integers, n which is the polynomial order, and
nelt which is the number of elements. Four double precision
floating point input arrays are also provided (the code is
compiled with double precision, 64 bit, reals) and these are
u, g, dxm1, and dxtm1. Lastly the w argument is an output
double precision floating point array which holds the results of
the kernel. This subroutine loops over each element, explicitly
calling the ax e procedure for each at line 7.

The ax e subroutine itself is made up of three distinct
parts, firstly a call to local grad3 at line 19, which performs
matrix multiplications for the element in question, a local
accumulations of values at lines 21 to 28, and finally a call to
local grad3 t at line 30 which again performs matrix multi-
plications. Listing 1 also illustrates the local grad3 procedure,
where there are two matrix multiplications of n2 by n (lines
38 and 42), along with n matrix multiplications of n by n at
line 40. The local grad3 t procedure is omitted for brevity
with the only difference being it contains two accumulations,
before and after the final matrix multiplication.

1 subroutine ax(n, nelt, w, u, g, dxm1, dxtm1)
2 integer, intent(in) :: n, nelt
3 real(n,n,n,nelt), intent(in) :: u, g, dxm1, dxtm1
4 real(n,n,n,nelt), intent(out) :: w
5
6 do e=1, nelt
7 ax e(n, nelt, w(:,:,:,e), u(:,:,:,e), ...)
8 enddo
9 end subroutine ax

10
11 subroutine ax e(n, w, u, g, dxm1, dxtm1)
12 integer, intent(in) :: n
13 real(n,n,n), intent(in) :: u, g, dxm1, dxtm1
14 real(n,n,n), intent(out) :: w
15
16 real(n*n*n) :: ur, us, ut
17 real :: wr, ws, wt
18
19 call local grad3(ur, us, ut, u, n, dxm1, dxtm1)
20
21 do i=1,n*n*n
22 wr = g(1,i)*ur(i) + g(2,i)*us(i) + g(3,i)*ut(i)
23 ws = g(2,i)*ur(i) + g(4,i)*us(i) + g(5,i)*ut(i)
24 wt = g(3,i)*ur(i) + g(5,i)*us(i) + g(6,i)*ut(i)
25 ur(i) = wr
26 us(i) = ws
27 ut(i) = wt
28 enddo
29
30 call local grad3 t(w, ur, us, ut, n, dxm1, dxtm1)
31 end subroutine ax e
32
33 subroutine local grad3(ur, us, ut, u, n, dxm1, dxm2)
34 integer, intent(in) :: n
35 real(n,n,n), intent(in) :: u, dxm1, dxm2
36 real(n,n,n), intent(out) ::ur, us, ut
37
38 call mxm(dxm1, n, u, n, ur, n*n)
39 do k=0,n
40 call mxm(u(:,:,k), n, dxtm1, n, us(:,:,k), n)
41 enddo
42 call mxm(u, n*n, dxtm1, n, ut, n)
43 end subroutine local grad3

Listing 1. Sketch of AX kernel CPU code, applying the Poisson operator

For the configuration we use in this paper (a polynomial
order of 16), there are 831488 double precision floating
point operations per element. Furthermore, different parts of
the kernel are bound by different limits, with some aspects
memory bound, and others compute bound. For instance, it can
be seen in Listing 1 that the data ordering consumption of array
u in local grad3 varies significantly between each of the three
matrix multiplications, and with only one of the mxm routines
consuming the data consecutively. Based upon profiling on an
Intel Xeon Platinum Cascade Lake (8260M) CPU, we found
that 35% of L1, and 10% of L2, cache reads missed for the ax
kernel. When scaling the number of cores, we found that with
a weak scaling experiment over all 24 CPU cores, whilst the
full memory bandwidth was being used, memory throughput
only increased 12 times compared to a single core.

C. Hardware setup

For the runs contained in this paper we use an Alveo
U280 card, which contains an FPGA chip with 1.08 million
LUTs, 4.5MB of on-chip BRAM, 30MB of on-chip URAM,
and 9024 DSP slices. This PCIe card also contains 8GB of
High Bandwidth Memory (HBM) and 32GB of DRAM on
the board. For the experiments contained in this paper we
exclusively use the HBM as our external memory store. All
code is compiling at optimisation level three for both the host
and device code, and GCC version 7.4. More details around
the hardware setup can be found in the Artefact Description
(Appendix A).

III. HLS KERNEL OPTIMISATION

Our first step was to convert the Fortran 77 ax kernel into
C++, and apply the appropriate HLS pragmas to decorate
arguments and set the AXI4 protocol on ports appropriately.
We are maintaining double precision floating point in this
work, and the code was synthesised by HLS, with the tooling
generated correct target code for the FPGA, where results
from runs on the Alveo U280 matched those on the CPU
within error limits. Table I illustrates the performance for
different versions of this kernel, executed with a polynomial
order of 16, and 800 elements. All results are averaged over
three runs on the Alveo U280, and the Initial FPGA version
represents the performance obtained from this first attempt.
The top line of Table I, 24 core Xeon Platinum CPU is the
performance of the kernel running over 24 cores of an Intel
Xeon Platinum Cascade Lake (8260M). This is included to
provide a comparison of FPGA performance, and at 0.03% of
the CPU performance, it can be seen that our initial FPGA
kernel was very significantly slower than when running the
existing, parallelised Nekbone, over all cores of the CPU.

For all FPGA versions we also include a % theoretical
performance entry in Table I. This is the theoretical best per-
formance of the HLS algorithm at a specific clock frequency,
assuming that the pipeline is fully filled. There are 203 double
precision floating point operations required for each grid point
of each element, and up to and including the optimise memory
access version of our kernel in Table I, not all operations could

run concurrently. Therefore, the percentages in the first three
rows are calculated against a theoretical performance of only
6.9 GFLOPS. Starting at our fourth version, optimise matrix
multiplications, all operations could run concurrently and-so
the theoretical performance increased 61 GFLOPS at 300MHz,
which is the figure that the next three rows calculate against.
At 400 Mhz this theoretical performance increased to 81.2
GFLOPS, which is the value used by the last row.

The first version of our kernel was still very much based
on the CPU code, and this illustrates that, whilst the HLS
tooling is mature enough to accept C++ CPU-based code and
synthesise this into something that will execute correctly, it
will seldom provide good performance. Via the analysis pane,
Vitis HLS provides detailed feedback around the potential
performance of HLS codes, and we could see that the Initiation
Interval (II), which is the number of cycles between each
iteration entering a pipelined loop, was rather large. Ideally
this number would be one, where every cycle a new iteration
starts to progress, and in such a case once the pipeline is
filled then an iteration completes every cycle. However, due to
spatial dependencies this was 102 in the matrix multiplications,
and therefore a significant performance limitation. We refac-
tored the code, not only modifying the matrix multiplication
algorithm itself, but also splitting the code up into separate
HLS dataflow regions that could run concurrently.

Figure 1 illustrates this new dataflow architecture, where
each box corresponds to an HLS dataflow region, which are
connected together via HLS streams (configured as FIFOs of
depth 16) and all running concurrently. External data is read
from HBM via an explicit dataflow region, for instance Read U
in Figure 1 is a dataflow stage that reads in u and then streams
this to the three connected matrix multiplication dataflow
regions. These, combined with the dataflow regions for reading
in dxm1 and dxtm1 correspond to local grad3 in Listing 1.
Result data from these first three matrix multiplications, ur, us,
and ut, is streamed to the local accumulation dataflow region
(corresponding to lines 21-28 of Listing 1), and results from
this step are streamed to the next three matrix multiplications
which then feed their results into subsequent addition stages.
Lastly, the result for each grid cell (with a polynomial order
of 16 there are 4096 grid cells per element) is fed into the
write w stage, which writes the result back to HBM.

In addition to each HLS dataflow region of Figure 1 running
concurrently, reading in data via streams and streaming result
data to the next stage, the matrix multiplication algorithm
itself was refactored. This was modified to follow the style
adopted by Xilinx in their open source Vitis BLAS library
[9]. Compared with the initial version, this work improved
performance by over 10 times (optimised for dataflow in Table
I), but whilst that in itself sounds impressive, the kernel was
still over 200 times slower than the CPU version and achieving
less than 5% of the theoretical performance.

Vitis Analyser provides profiling capabilities, and one met-
ric reported was how efficiently the global memory and ker-
nel(s) are interacting. From this profiling information it could
be observed that we were achieving an aggregate bandwidth

Fig. 1. Illustration of the dataflow architecture of our HLS kernel

of only 952 MB/s (the HBM specification quotes 460 GB/s
as the maximum bandwidth) and as such a tiny percentage of
utilisation across our kernel ports.

There were two reasons for this poor performance, firstly
that kernel arguments shared one single port to one bank of the
HBM. In-fact the HBM on the Alveo U280 is split up into 32
banks, each of 256MB, and fronted by 16 memory controllers,
each with channels connected to two banks. Therefore, to
obtain optimal performance one should utilise the entire HBM,
rather than just one bank which is the default [10]. To address
this we configured each kernel argument as a separate port and
connected these to different HBM banks that were at-least
a distance of two away from any others (to utilise separate
memory controllers too). The second reason for the poor
memory bandwidth was that the data-width of our ports was
64 bit (double precision floating point), and by increasing this
to 512-bit, effectively fetching 8 double precision values per
access, we drastically reduced the number of memory accesses
required. The result was that Vitis Analyser now reported
an average bandwidth of 95% for memory accesses, which
increased the performance of our kernel by approximately a
third (optimised memory access in Table I).

However, at this point we were only achieving 0.6% of
the performance of the CPU, and so clearly there were still
significant bottlenecks limiting performance. A sketch of our
matrix multiplication code, based upon Xilinx’s Vitis BLAS
library, is illustrated in Listing 2. However it can be seen that
this does not start streaming out result values at line 11, until
the last iteration of the outer loop k. Therefore subsequent
stages, such as the local accumulation and subsequent matrix
multiplications are sitting idle until result data is streamed,
which causes excessive wait times for each element.

1 double a temp[NX], c temp[NX*NX][NX];
2 #pragma HLS array partition variable=a temp complete
3
4 for (int k = 0; k < NX; k++) {
5 for (int j=0;j<NX*NX;j++) {

Description Performance (GFLOPS) % performance of CPU % theoretical performance
24 core Xeon Platinum CPU 65.74 - -

Initial FGPA version 0.020 0.03% 0.29%
Optimised for dataflow 0.28 0.43% 4.06%

Optimised memory access 0.42 0.63% 6.09%
Optimise matrix multiplications 12.72 19.35% 20.85%

Ping-Pong buffering 27.78 42.26% 45.54%
Remove pipeline stalls 59.14 89.96% 96.95%
Increase to 400 Mhz 77.73 118% 95.73%

TABLE I
PERFORMANCE OF THE FPGA AX KERNEL AS DIFFERENT HLS OPTIMISATIONS WERE APPLIED, FOR A POLYNOMIAL ORDER OF 16 AND 800 ELEMENTS.

COMPARISON TO PERFORMANCE OBTAINED BY 24 CORES OF A XEON PLATINUM (CASCADE LAKE) 8260M CPU IS INCLUDED FOR REFERENCE

6 double b val=b.read();
7 for (int i=0;i<NX;i++) {
8 if (k==0) c temp[j][i]=0.0;
9 if (j==0) a temp[i]=a.read();

10 c temp[j][i]+=a temp[i] * b val;
11 if (k==NX−1) c.write(c temp[j][i]);
12 }
13 }
14 }

Listing 2. Sketch of the matrix multiplication in our HLS kernel, which was
based on the implementation in Xilinx’s BLAS Vitis Library

Fundamentally, the issue was that whilst we had split our
code into HLS dataflow regions, algorithmic issues where
still limiting what parts could run concurrently. Listing 3
illustrates a refactored version, where we brought the outer
loop inside the inner, i, loop and manually unrolled it. We
have to load all b values for the inner loop, which are the
statements at lines 5 to 9, between the two for loops (the
packaged double structure packs eight double precision reals,
therefore lines 6 and 8 are loading 8 values with a single read
which are then unpacked into the b temp array.) This new
version provides two advantages, firstly there is no longer
the delay in streaming results, as once the pipeline is filled
then a result is generated every cycle, significantly increasing
the occupancy of subsequent stages. Secondly, as we have
manually unrolled the loop over k, there are also many more
floating point operations running concurrently. Compared to
Listing 2, which operates on one floating point operation per
cycle, the algorithm in Listing 3 performs 31 floating point
operations per cycle. Bearing in mind that there are six matrix
multiplication dataflow regions, this concurrency of arithmetic
operations is significant and resulted in a performance im-
provement of over 30 times, boosting performance to 12.72
GFLOPS (optimise matrix multiplications in Table I). Due to
this additional vectorisation, where it was now possible to run
all 203 floating point operations concurrently for the first time,
the kernel’s theoretical performance also increased, from 6.9
to 61 GFLOPS.

1 double a temp[NX][NX], b temp[NX];
2 #pragma HLS array partition variable=a temp dim=1

complete
3
4 for (int j=0;j<NX*NX;j++) {

5 // Load b values that are needed by the inner loop
6 struct packaged double in data=b.read();
7 for (int q=0;q<8;q++) b temp[q]=in data.data[q];
8 in data=b.read();
9 for (int q=0;q<8;q++) b temp[q+8]=in data.data[q];

10
11 for (int i=0;i<NX;i++) {
12 if (j==0) a temp[0][i]=a[0].read();
13 double temp 0=a temp[0][i] * b temp[0];
14
15 if (j==0) a temp[1][i]=a[1].read();
16 double temp 1=a temp[1][i] * b temp[1];
17
18
19 c.write(C temp 0 + C temp 1);
20 }
21 }

Listing 3. Sketch of the refactored matrix multiplication, which generates
results every cycle once filled

However, at this point the HLS kernel was still around five
time slower than the AX kernel running over 24 cores of the
CPU. To understand why we need to explore the HLS kernel
in more depth, as it is slightly more complex than previously
described. The groups of three matrix multiplications consume
their input data (either u for the first group, or wr, ws, and
wt for the second group) in different orders to each other.
For performance, we read each grid point of u only once,
and do so contiguously to ensure that HLS imposes only one
(expensive) read request for each element. However, different
matrix multiplications require consumption of this data in a
different order. The same issue exists for the second group of
matrix multiplications, where these kernels require their input
data in a different order than wr, ws, and wt are generated.
As such, each matrix multiplication kernel is associated with
a buffer which holds the all grid points for an element (in
our configuration 4096 double precision floating point values).
These are filled up and, once full, data is then served from the
buffers into their respective matrix multiplication kernels in
the specific order required.

Therefore, whilst the previous optimisation step had signifi-
cantly increased the performance of our matrix multiplication
kernel itself, due to this buffering, there were still overheads.
Effectively, the code was working implicitly in three phases

for each element. The first phase was where data was read
into the buffers of the first matrix multiplications, with no
calculations active, which for our problem size resulted in 512
cycles of inactivity whilst the buffers were filled (due to the
512 bit width of data ports, we filled eight values per cycle).
In the second phase the first bank of matrix multiplications
and the local accumulation were active for the element, with
intermediate result data streaming into the buffers of the last
three matrix multiplications, and the third where the last three
matrix multiplications and two addition dataflow regions were
active. Therefore there was still a significant amount of wasted
concurrency due to this buffering.

Fig. 2. Illustration of dataflow architecture running concurrently, by each of
the three phases operating on different elements to avoid dependency issues

The challenge is that there is a dependency, where all data
must be read in before the first group of matrix multiplications
can operate for an element, and all intermediate results from
the local accumulation must be present before the second
group of matrix multiplication can run for the element. To
address this we can run these three phases concurrently, but
for different elements, which is illustrated in Figure 2. The first
group of three matrix multiplications and local accumulation,
is running for the current element, e, the initial reading of data
is occurring for the next element, e+1, and the second group
of three multiplications and two additions for the previous
element, e-1. In this manner, we can ensure that all three
phases are running concurrently, thus making more effective
use of the hardware.

Figure 3 illustrates the change that was required to the
buffering itself in order to support this concurrency. Previously
the buffering had worked in two steps, first reading in the data
contiguously (512 cycles for a polynomial order of 16) and
then once completed, serving the data out in the order required
by the specific matrix multiplication. The code was modified
to follow what software developers term a double buffering
approach, where there are two buffers working cyclically. The
first buffer is filled up with data for the next element, whilst the
second buffer concurrently serves data for the current element.
Once this is completed, the buffers swap and the process

continues for the next element, hence data can be both read
in contiguously, and delivered out of order, concurrently.

An important aspect to highlight is that, coming from a soft-
ware development rather than hardware design background,
there was some tension here initially. We first developed this
double buffering approach manually in HLS, which resulted in
significant resource usage. Fundamentally, we did not realise
that the use of ping-pong buffers between dataflow regions
in HLS is effectively the same as what we were trying to
implement manually via double buffering. By adopting HLS’s
native approach with two separate dataflow regions connected
via PIPO buffers, rather than our own, we obtained a much
more effective implementation, both in terms of resource usage
and performance.

Fig. 3. Illustration of change to the data buffering and reordering code

The impact of this optimisation is illustrated in Table I by
the row ping-pong buffering, which more than doubled perfor-
mance to 27.78 GFLOPS. However, we were still achieving
less than half the performance of the CPU and just less than
half of our kernel’s theoretical performance. Via the analysis
pane of Vitis HLS, we discovered that there was a further issue
around how HLS was synthesising the matrix multiplication
algorithm. The way in which the code of Listing 3 was
structured meant that there was a dependency between loading
the b values into b temp at lines 5 to 9, and then consuming
them in the inner loop. This caused HLS to drain the pipeline
of the inner loop for every iteration of j. The pipeline depth
was 45, and the inner loop was only iterating to 16, hence this
continued draining and filling was very expensive, and at no
point was the pipeline of the inner loop fully filled.

We modified this problematic code by moving the reading of
b into the inner loop and on an element by element basis. By
doing so, this removed the inter-loop dependency, and HLS
was able to keep the pipeline of the inner loop filled. For
our problem size this meant going from 204800 batches of
16 cycles (having to drain between each batch), to 1 batch
of 3276800 cycles, with the pipeline filled for over 99.9%
of the time. This provided a further significant increase in
performance to 59 GFLOPS.

At this point we were achieving around 90% the per-
formance of the 24 core Xeon Platinum CPU. One should
consider that the theoretical performance of our HLS kernel
was 61 GFLOPS, of which we were achieving almost 97%.
Therefore, based upon the current configuration, it was never
going to be possible for our HLS kernel to match or exceed the
CPU’s performance. As such, we had to explore options which
would increase the kernel’s theoretical performance itself.

On the Alveo U280 the default clock frequency is 300Mhz,
which to change in Vitis involves only a configuration option.
However, this should not be seen as a silver bullet because,
without a well performing kernel in the first place, then a
clock frequency increase might improve performance slightly,
but won’t address any underlying issues. Furthermore, an in-
creased clock frequency impacts the overall complexity of the
kernel, and by increasing to 400Mhz the depth of our matrix
multiplication increased to 61 cycles. We found empirically
that 400Mhz was the optimal clock frequency, and beyond
this the complexity of the matrix multiplications increased
very significantly, with the pipeline II increased to two. It
was possible to reduce this back down to one by using the
BIND OP HLS pragma to increase the latency of the double
precision floating point cores, but the performance we obtained
by doing so never matched that of 400Mhz.

By increasing the clock frequency to 400Mhz, we achieved
performance of over 77 GFLOPS, which is faster than Nek-
bone running on the 24-core CPU. This also achieved around
96% of the theoretical performance of the kernel, which
demonstrates that once filled, the dataflow stages and pipelines
within, are staying well utilised. Therefore, with data continu-
ally feeding into our HLS kernel and results streaming out, by
moving to a dataflow approach we have an algorithm which
is fully utilising the hardware and no longer memory bound.

IV. MULTIPLE KERNEL PERFORMANCE

In Section III we explored the optimisation of our AX HLS
kernel, ultimately resulting in a code running at 400MHz that
outperforms a 24 core Cascade Lake Xeon Platinum CPU
by around 18%. However, our focus thus far has been on
optimising a single kernel on the U280, and this only utilises
a fraction of the overall FPGA’s resources. Therefore, there
was further opportunity to increase performance by leveraging
multiple kernels and as each element is independent from any
other element, these can be distributed across the kernels.

The resource usage of our initial single kernel version was
rather unbalanced. At the Super Logic Region (SLR) level
Vitis HLS estimated it required 115% of the SLR’s on-chip
BRAM, but only 34 % of the DSP slices, 24 % of the Flip
Flops, 28% of the LUTs and none of the on-chip UltraRAM
(URAM). The U280 has three SLRs, but as we aimed to
scale up to multiple kernels then clearly the amount of BRAM
consumed would be a major limitation.

Therefore to address this we used the BIND STORAGE
HLS pragma of Vitis HLS (which replaces the RESOURCE
pragma of Vivado HLS) to direct what hardware components
should be used to implement which areas of memory. We
allocated the FIFO queues associated with the HLS streams,
and arrays associated with the data-reordering ping pong
buffers into LUTRAM, and placed the data storage associated
with each matrix multiplication dataflow region into the on-
chip URAM. This resulted in a more balanced resource usage,
with the number of DSP slices unchanged, the SLR BRAM
usage reduced down to 32%, the FF usage increased to 29
%, LUT usage to 36%, and URAM to 30%. We observed a

negligible impact in performance by making this change, but
crucially were now in a position to scale up the number of
kernels.

However there was a further issue because, when we in-
creased the number of HLS kernels, also known as Compute
Units (CUs), to two, initial performance was very poor.
From studying the logs of Vivado implementation, it was
observed that the tooling was dynamically down clocking the
kernels from 400MHz to less than 200MHz in order to meet
timing. After some experimentation it was found that this
could be fixed by splitting each HLS kernel up into three
separate CUs, connected by AXI4 streams. This is illustrated
in Figure 4, where the first CU contains the first three matrix
multiplications of Figure 1, the second CU performs the local
accumulation of values, and the third CU contains the last
three matrix multiplications and two additions.

Fig. 4. Illustration of splitting apart of kernel into three separate Compute
Units (CUs)

This updated version initially resulted in routing errors due
to congestion in the matrix multiplication of the first CU.
We had not encountered this before, and whilst instructing
Vitis to use the Congestion SpreadLogic high implementation
strategy fixed the issue, it too resulted in poor performance.
After some investigation it was found that there were naming
conflicts between the first and third CUs. Specifically, that
the names of the matrix multiplication functions were the
same in each CU, and clearly the place and route step was
attempting to perform some optimisation by consolidating
these already complex components together, which resulted
in significant congestion. The fix was to uniquely name the
functions. The bit-stream generation time (synthesis, place,
and route) depended heavily on the number of kernels. One
kernel took around six hours to build, however this increased
sharply to around thirty hours for four kernels.

Table II contains a performance and power efficiency com-
parison of multiple kernels (each comprised of the three CUs)
against other technologies. To obtain the power draw figures,
Xilinx’s xbutil was used for the FPGA which returns the

total power being consumed by the card, Intel’s Running
Average Power Limit (RAPL) for the CPU, and nvidia-smi
for the GPU. The CPU is the same 24 core Xeon Platinum
Cascade Lake (8260M) compared against in Section III, and
running over all 24 cores resulted in an power efficiency of
0.37 GFLOPS/Watt. For comparison we also include a single
core CPU run, which resulted in 5.38 GFLOPS and power
efficiency of 0.08 GFLOPS/Watt.

Description Performance
(GFLOPS)

Power usage
(Watts)

Power Efficiency
(GFLOPS/Watt)

1 core of CPU 5.38 65.16 0.08
24 cores of CPU 65.74 176.65 0.37

V100 GPU 407.62 173.63 2.34
1 kernel 74.29 45.61 1.63
2 kernels 146.94 52.47 2.80
4 kernels 289.02 71.98 4.02

TABLE II
PERFORMANCE AND POWER COMPARISON BETWEEN DIFFERENT

NUMBERS OF FPGA KERNELS ON THE ALVEO U280, AND RUNS ON THE
CPU AND GPU

Nekbone has mature support for GPU acceleration of the ax
kernel via CUDA [11]. We ran an experiment on a NVIDIA
Tesla V100 GPU, compiling with the Portland Group Com-
piler version 20.5-0, and CUDA 10.2 . This resulted in 407
GFLOPS and, due to the high performance, a power efficiency
of 2.34 GFLOPS/Watt. The GPU’s performance is impressive,
although it should be noted that the bespoke GPU acceleration
in Nekbone has been developed and tuned over many years
and GPU generations.

In Table II we report the performance for different numbers
of our ax kernels on the Alveo U280 FPGA. It should be
noted that the performance for one kernel is slightly lower
than that described in Section III, which is due to the splitting
apart of the kernel as discussed earlier in this section and
the associated overhead of streaming data via AXI4 streams
between CUs. One kernel draws 45.61 Watts (the FPGA idle
with the bitstream loaded draws 39 Watts), and whilst the
power efficiency of 1.63 GFLOPS/Watt of a single kernel is
significantly higher than the CPU, it is somewhat disappointing
when compared against the GPU.

However, the advantages of FPGAs starts to become more
apparent as we scale the number of kernels. We can fit up to
four of our kernels on the U280, and at this configuration we
achieve 289 GFLOPS. This over four times the performance
of the 24 core CPU, and 71% of the performance of the
V100 GPU. The power consumption of four kernels is 72
Watts and it can be observed that, on average, adding an extra
kernel requires approximately an additional 7 Watts, with a
performance increase close to 74 GFLOPS per kernel. With
four kernels, the power efficiency is over 4 GFLOPS/Watt,
which is significantly higher than that of the GPU.

We were pleasantly surprised with how well FPGA perfor-
mance scaled as we added kernels. In part this is because the
ports of each kernel connect to different HBM banks, so there
is no contention. We found that if HBM banks were shared
between kernels then it resulted in hold conflicts, excessive
time in the additional hold fix phase of routing (over 12 hours)

and reduced performance. Effectively, by keeping the kernels
separate they can then run independently and scale better.

V. CONCLUSIONS AND FURTHER WORK

In this paper we have explored the porting of Nekbone’s AX
kernel to FPGAs using Vitis. Nekbone is a popular mini-app in
the HPC community, and we have described the steps required
to transform the algorithm which accounts for over 75% of the
runtime, from a CPU-based Von Neumann style to dataflow
form. It is stark that on the FPGA, the performance difference
by doing so is approximately 4000 times. Furthermore, we
found that calculating theoretical performance was a useful
metric as it enabled us to gauge how much more opportunity
there was to optimise the kernel, and provide additional
context to the comparison against the CPU performance.

We compared the performance and power efficiency of up to
four of our HLS kernels on an Alveo U280 against that of a 24
core Intel Xeon Platinum Cascade Lake CPU, and a NVIDIA
Tesla V100 GPU. In comparison to the CPU, four HLS kernels
provides over four times the performance, at around two and
a half times less power consumption. By contrast, the GPU is
more challenging to match, and the performance of Nekbone
on the V100 GPU is impressive, which is a result of both
the many years of effort developing the Nekbone GPU kernel,
and furthermore significant effort expended by NVIDIA in
their tooling and V100 hardware. Therefore, we consider the
results obtained optimistic for the future of FPGAs in HPC, as
not only is the power efficiency of the FPGA version almost
double what the GPU can provide, but given a slightly larger
FPGA that could fit an extra kernel then the performance gap
would be much narrower, and two extra FPGA kernels would
outperform the GPU.

In terms of further work, exploring the role of reduced
precision would be interesting. All reals are double precision
thus far, but by moving to single, half or fixed point, then
this will not only reduce the number of DSP slices required
for matrix multiplication calculations, but will also reduce the
memory and potentially LUT requirements too. By doing so
it is likely that we will be able to increase the number of
kernels, and it will be very interesting to explore how this
either closes or widens the performance gap against GPUs
(which themselves are also optimised for reduced precision.)
Furthermore, we have not focused on the overhead of data
transfer to or from the FPGA, or GPU, card in this paper.
This is because one data transfer tends to occur for around
200 invocations of the kernel, so the cost of the transfer is
negligible and ameliorated by the repeated executions on the
accelerator. However, communication is required between the
invocations of the kernel when run on multiple nodes. In
this paper we focused on the kernel itself, which does not
involve communication, and on a single node. But it would be
very interesting to extend and explore running across multiple
nodes, and the FPGA to FPGA communication that would
be required between invocations, especially compared against
GPU to GPU communications.

We conclude that there are some very exciting developments
in the FPGA community at the moment. Even a few years
ago, the ability to develop an HLS kernel and scale it up, that
could convincingly outperform a modern Xeon CPU would
be unrealistic. We believe that with a slightly larger FPGA,
such as the future Versal architecture, then performance will
be more competitive against next generation GPUs and the
already demonstrable power efficiency advantages of current
generation technologies are noteworthy. Given the trajectory
of FPGA vendors, such improvements in the coming years is a
realistic proposition, and this demonstrates that in the medium
term reconfigurable architectures could become much more
mainstream in next generation supercomputers.

VI. ACKNOWLEDGEMENTS

The authors would like to thank Xilinx for the donation
of the Alveo U280 card used throughout the experiments of
work. This work was funded under the EU EXCELLERAT
CoE, grant agreement number 823691.

REFERENCES

[1] Y. Ma, Y. Cao, S. Vrudhula, and J.-s. Seo, “Optimizing loop oper-
ation and dataflow in fpga acceleration of deep convolutional neural
networks,” in Proceedings of the 2017 ACM/SIGDA International Sym-
posium on Field-Programmable Gate Arrays. ACM, 2017, pp. 45–54.

[2] N. Brown and D. Dolman, “It’s all about data movement: Optimising
fpga data access to boost performance,” in 2019 IEEE/ACM Interna-
tional Workshop on Heterogeneous High-performance Reconfigurable
Computing (H2RC). IEEE, 2019, pp. 1–10.

[3] M. Ashworth, G. D. Riley, A. Attwood, and J. Mawer, “First steps in
porting the lfric weather and climate model to the fpgas of the euroexa
architecture,” Scientific Programming, vol. 2019, 2019.

[4] Xilinx. (2019, Nov.) Vitis unified software
platform documentation. [Online]. Available:
https://www.xilinx.com/support/documentation/sw manuals/
xilinx2019 2/ug1393-vitis-application-acceleration.pdf

[5] L. Kalms and D. Göhringer, “Exploration of opencl for fpgas using
sdaccel and comparison to gpus and multicore cpus,” in 2017 27th In-
ternational Conference on Field Programmable Logic and Applications
(FPL). IEEE, 2017, pp. 1–4.

[6] I. Ivanov, J. Gong, D. Akhmetova, I. B. Peng, S. Markidis, E. Laure,
R. Machado, M. Rahn, V. Bartsch, A. Hart et al., “Evaluation of parallel
communication models in nekbone, a nek5000 mini-application,” in
2015 IEEE International Conference on Cluster Computing. IEEE,
2015, pp. 760–767.

[7] J. W. L. Paul F. Fischer and S. G. Kerkemeier, “nek5000 Web page,”
2008, http://nek5000.mcs.anl.gov.

[8] J. Dongarra, S. Hammarling, N. J. Higham, S. D. Relton, P. Valero-
Lara, and M. Zounon, “The design and performance of batched blas
on modern high-performance computing systems,” Procedia Computer
Science, vol. 108, pp. 495–504, 2017.

[9] Xilinx. (2020, Jun.) Vitis libraries. [Online]. Available:
https://github.com/Xilinx/Vitis Libraries

[10] ——. (2019, Nov.) Alveo u280 data cen-
ter accelerator card. [Online]. Available:
https://www.xilinx.com/support/documentation/boards and kits/accelerator-
cards/ug1314-u280-reconfig-accel.pdf

[11] J. Gong, S. Markidis, E. Laure, M. Otten, P. Fischer, and M. Min,
“Nekbone performance on gpus with openacc and cuda fortran imple-
mentations,” The Journal of Supercomputing, vol. 72, no. 11, pp. 4160–
4180, 2016.

APPENDIX A
ARTIFACT DESCRIPTION APPENDIX

A. Description
1) Check-list (artifact meta information):

• Program: C++ and Fortran
• Compilation: GCC version 7.4 with -O3, Vitis version 2020.1.

On the GPU we used the Portland Group Compiler version
20.5-0, and CUDA 10.2.

• Data set: Runs were based on the nek gpu1 testcase configu-
ration in the GPU branch of the Nekbone Github repository. As
described in the paper, the number of elements was increased
to 800.

• Run-time environment: A variety of machines were used
for comparison, all running Linux. For the Alveo U280 the
latest environment at the time of writing was used (XRT
202010.2.6.655, xdma and xdma-dev 201920.3)

• Hardware: We used a Xilinx Alveo U280 for the FPGA runs,
this is hosted by a system with a Xeon Platinum Skylake (8170)
and 192GB RAM. For CPU comparison runs we ran on a Xeon
Platinum Cascade Lake (8260M) processor with 192GB RAM.
For GPU runs we ran on the Cirrus tier-2 UK HPC machine,
which provides a NVIDIA Tesla V100-SXM2-16GB (Volta)
GPU, hosted by two Intel Xeon Gold Cascade Lake (6248)
CPUs and 384 GB RAM.

• Binary: Nekbone CPU versions require MPI. Xilinx Vitis
library is required to synthesise the kernel and generate the
bitstream.

• Execution: We built and executed all executables on Linux.
• Output: Nekbone provides a performance measure in GFLOPS

and we also added in additional timing and manually calculated
to ensure that the reported value was correct.

• Publicly available?: Not yet

2) Hardware dependencies: Any machine running Linux
with appropriate Alveo U280 FPGA PCIe card installed

3) Software dependencies: The latest version of Nekbone
from the Github repository, GCC version 7.4, the support
libraries installed for the board and the Vitis platform.

4) Datasets: Runs were based on the nek gpu1 testcase
configuration in the GPU branch of the Nekbone Github
repository.

B. Installation

We synthesised our kernel using Vitis HLS via the v++
command. It is also possible to synthesise directly via the HLS
IDE, and this was useful for steps which involved leveraging
the analysis pane. The v++ command was then used to
link, which assembles the shell and calls out to Vivido to
generate the bitstream. The host code was written in OpenCL
(the appropriate libraries ship with Vitis) and launching our
bitstream simply involved executing the host code, which
via the appropriate OpenCL calls programmed the device as
appropriate.

C. Experiment workflow

1) Develop the appropriate HLS kernel
2) Use Vitis HLS to synthesise this and generating corre-

sponding .xo files
3) Use Vitis HLS in linking mode to generate the bitstream

.xclbin file
4) Compile the host OpenCL code using GCC
5) Execute the host code, which will launch the bitstream
6) Optionally, enable profiling and after the run use Vitis

Analyser to explore this information.

D. Evaluation and expected result

We compared our results against the CPU and GPU version
of Nekbone. On the CPU this ran across all 24 cores of the
8260M, and whilst we did develop an OpenMP version, we in-
fact found that the existing MPI code with an MPI process per
core provided best performance (there is no communication
inside the AX kernel itself) and-so this is the code that
was used. For the GPU version, Nekbone provides both an
OpenACC and CUDA implementation of the AX kernel. We
found the performance difference between these two fairly
negligible, but the CUDA code was marginally faster and
hence this is the one used in this paper. For our HLS code, we
first converted Nekbone’s Fortran 77 into C++. However, we
found that on the CPU and GPU, the Fortan 77 gave better
performance, and hence it is this original version of the code
that was used for performance comparisons. All results have
been checked at the grid point level to ensure that they are
producing consistent results between the different versions of
the code. All results reported in this paper are averaged over
three runs.

E. Experiment customization

It is, of course, possible to experiment with the kernels and
use these to run different system sizes, for instance modifying
the polynomial order or number of elements. On an Alveo
U280 the maximum number of kernels we could fit was four,
and with a larger FPGA such as the future Versal architecture,
then this could be scaled up further.

APPENDIX B
ARTIFACT EVALUATION

A. Results Analysis Discussion

In the host code we use OpenCL’s profiling capability which
provides microsecond resolution timings for event (kernel
execution) starting and ending. We also implemented manual
timing via the gettimeofday call, to provide a second timing
comparison point and ensure what OpenCL reported was
correct (both approaches to timing matched very closely.) All
results were checked, grid point by grid point, for consistency
between the FPGA and CPU versions to ensure that they are
calculating the same quantities and we were undertaking a
fair experiment. For all experiments runtimes were averaged
over at-least three runs, and power consumption figures were
reported by XRT for the FPGA, RAPL for the CPU, and
nvidia-smi on the GPU.

