
Porting incompressible flow matrix assembly to
FPGAs for accelerating HPC engineering

simulations
Nick Brown

EPCC, University of Edinburgh
Edinburgh, UK

n.brown@epcc.ed.ac.uk

Abstract—Engineering is an important domain for supercom-
puting, with the Alya model being a popular code for undertaking
such simulations. With ever increasing demand from users to
model larger, more complex systems at reduced time to solution it
is important to explore the role that novel hardware technologies,
such as FPGAs, can play in accelerating these workloads on
future exascale systems.

In this paper we explore the porting of Alya’s incompressible
flow matrix assembly kernel, which accounts for a large propor-
tion of the model runtime, onto FPGAs. After describing in detail
successful strategies for optimisation at the kernel level, we then
explore sharing the workload between the FPGA and host CPU,
mapping most appropriate parts of the kernel between these
technologies, enabling us to more effectively exploit the FPGA.
We then compare the performance of our approach on a Xilinx
Alveo U280 against a 24-core Xeon Platinum CPU and Nvidia
V100 GPU, with the FPGA significantly out-performing the CPU
and performing comparably against the GPU, whilst drawing
substantially less power. The result of this work is both an
experience report describing appropriate dataflow optimisations
which we believe can be applied more widely as a case-study
across HPC codes, and a performance comparison for this
specific workload that demonstrates the potential for FPGAs in
accelerating HPC engineering simulations.

Index Terms—FPGA, Xilinx Alveo U280, High Level Synthesis,
Alya, engineering simulations, incompressible flow

I. INTRODUCTION

Designing safer cars, more energy efficient aircraft, and
improved turbines are examples of the benefits that engi-
neers and society gains from computer simulation. Due to
the computational requirements involved in such simulations,
these workloads have exploited HPC for many years. However,
driven by ever increasing user ambition, in part accelerated
by the push to de-carbonise and produce more efficient engi-
neering solutions, engineers require the ability to model much
larger, more complex systems on future supercomputers.

Alya [1] is a multi-physics simulation code developed at
Barcelona Supercomputing Centre (BSC) which, since its
inception in 2004, has proven popular for use in studying a
wide variety of engineering systems. Alya follows a plugin
architecture, where a series of modules are provided, each
representing a single set of Partial Differential Equations
(PDE) for a given physical model. The developers of Alya are
interested in exploring the potential role of novel hardware
architectures to help understand the most appropriate future

HPC technologies required to meet the next generation of
engineering challenges. One such technology, popular in other
fields but yet to gain widespread acceptance in HPC, is that
of Field Programmable Gate Arrays (FPGAs) which provide
a large number of re-configurable logic blocks sitting within
a sea of configurable interconnect. Recent years have seen
significant advances made by FPGA vendors which aim to
address the limited hardware capabilities and esoteric pro-
gramming environments that historically limited uptake of
this technology for HPC workloads [2]. For instance FPGAs
now also contain, as standard, very fast on-chip memory,
DSP slices for accelerating floating point arithmetic, and high
bandwidth external connections. Consequently FPGAs are
more accessible for HPC workloads and developers than ever
before, and a key question is whether they can compliment
existing CPU and GPU hardware in future exascale machines.

There have been numerous efforts porting incompressible
flow calculations to FPGAs. The Himeno benchmark has been
used to demonstrate the suitability of FPGAs for this workload
[3], and other studies exploring methods for solving equations
arising from these systems [4] [5]. By contrast in this work
we focus top down on one specific real-world HPC simulation
application, namely Alya, and are driven from the perspective
of the application developer by the bottlenecks in that code.
As described in Section II-A, we focus on building the matrix
for the incompressible flow solver as it is this kernel that is
responsible for significant amount of application level runtime
and our hypothesis that the dataflow architecture can help
ameliorate the memory bound nature of the code. The specifics
of the calculations and code structure are unique to Alya and
hence this is an interesting case-study around optimising such
structures on FPGAs and benefiting Alya.

In this paper we explore the acceleration of Alya’s in-
compressible flow matrix assembly kernel [6], which is a
foundational component of many run configurations and ac-
counts for a significant fraction of the overall model runtime.
Aimed in part as an experience report, we explore the actions
undertaken to optimise the kernel for FPGAs and achieve good
performance for this specific workload, with a view that these
can then apply more widely when accelerating HPC kernels
on FPGAs. The rest of this paper is structured as follows, in
Section II we explore the background to this work, describing

ar
X

iv
:2

11
1.

05
65

1v
1 

 [
cs

.D
C

] 
 1

0 
N

ov
 2

02
1



the current state of the art FPGA tool chains that are used in
this work, and related work in the field of HPC. This is then
followed by a detailed description of the Alya model, and
the specific kernel of interest, and lastly a description of the
hardware configurations used in this work is presented. Section
III focuses on the development and optimisation of our FPGA
kernel for matrix assembly, exploring the steps required to
achieve good performance before describing sharing parts of
the workload between the FPGA and CPU to make best use of
each’s capabilities. Section IV then explores performance and
power characteristics of our FPGA approach against a 24-core
Xeon Platinum CPU and Nvidia V100 GPU, before we draw
conclusions and discuss further work in Section V

II. BACKGROUND

High Level Synthesis (HLS) has empowered programmers
to write C or C++ code for FPGAs and for this to be
translated into the underlying Hardware Description Language
(HDL). As a key component of Xilinx’s Vitis toolchain [7],
HLS avoids the need to write code at the HDL level for
FPGAs, significantly improving productivity, opening up the
programming of FPGAs to a much wider community, and
enabling us to focus more at the algorithmic dataflow level.
Furthermore, Vitis also automates the process of integration
with the wider on-chip infrastructure such as memory con-
trollers and interconnects, as well as making emulation and
performance profiling more convenient. In this approach the
programmer decorates their C++ device code with Xilinx’s
bespoke pragma style hints to drive the tooling, and host code
is written in OpenCL.

However, HLS is not a silver bullet and whilst it has made
the physical act of programming FPGAs much easier, one
must still target the most appropriate kernels for acceleration
on FPGAs [8] and recast their Von-Neumann style algorithms
into a dataflow style [9] to obtain best performance. Whilst
there have been numerous activities exploring the role of
FPGAs for HPC workloads [10], [8], [11], and a number of
successes, many struggle in-terms of performance against the
latest CPUs and GPUs especially if the HLS code has not been
fully optimised for the dataflow architecture. Whilst tuning
application codes to suit target hardware is not new for HPC
programmers, for instance it is well accepted that moving from
CPU to GPU architectures requires code level changes, the
dataflow rather than Von-Neumann nature of FPGAs means
that typically far more substantial changes are required which
can involve a fundamental recast of the algorithm. Combined
with the long build time for FPGAs this can be a time-
consuming process, and-so application level studies for high
performance codes such as the one contained in this paper
are worthwhile for exploring and disseminating appropriate
techniques and code structures.

To most effectively exploit FPGAs it is also important
to select a kernel which will benefit from execution on a
dataflow architecture. Due to the high level of raw floating
point performance provided by GPUs and to a lesser extent
the latest generation of CPUs, if a kernel is compute bound

then realistically the FPGA will likely struggle to compete.
However if kernel is bound by other factors, such as being
memory bound or bound by micro-architecture issues, then
potentially moving to the dataflow model of the FPGA will
be beneficial. This is because, without a black-box microar-
chitecture imposed by other technologies, the programmer has
more opportunity to tailor their kernel and data accesses to
completely suit the application in question and ameliorate
issues found on other more general purpose architectures.

A. Alya
Alya [1] is a high performance computational mechanics

code used to solve complex coupled multi-physics, multi-scale,
and multi-domain problems. Written in Fortran and aimed at
engineering, Alya handles many physical systems including
incompressible and compressible flows, non-linear solid me-
chanics, chemistry, particle transport, multiphase problems,
heat transfer, turbulence modelling, and electrical propagation
[12]. Furthermore, Alya is one of two CFD codes of the
Unified European Applications Benchmark Suite (UEBAS)
[13] as well as the PRACE Accelerator benchmark suite [14].

A run configuration is made up of modules, each of which
implements specific functionality representing a single set
of Partial Differential Equations (PDE) for a given physical
model. In this work we are focusing on the nastin module
which models incompressible flow and is a key component
of many run configurations. In this module the building of
the matrix, which is used to solve Navier-Stokes equations,
is a costly operation, representing 64% of the overall model
runtime for the Sphere 16M benchmark (see Table II). When
profiling with Intel VTune we found that the kernel was
stalling 32% of the time due to memory accesses and 11%
due to other microarchitecture core-bound issues. Therefore
an important question is whether on the FPGA, by designing
memory access in a bespoke manner, we can ameliorate such
issues imposed by the general purpose CPU architecture.

Listing 1 sketches the matrix assembly code in the sub-
routine matrix assembly, where veloc and coord are real
number inputs, with lnods providing a mapping between the
data required each element and the indexes in these arrays
where it is located. Each subroutine called by the code of
Listing 1 builds intermediate values which are made available
to subsequent calculations for the current element. These
temporaries are mainly a mix of 1D and 2D arrays, although
there are some exceptions where they are scalar real numbers.

The structure of the calculate cartesian derivatives subrou-
tine of Listing 1 is typical of the computational routines, where
typically there is an overarching loop over PGAUS SIZE,
which is the number of Gauss points, and then nested loops
on a mixture of PNODE SIZE (the number of nodes) and/or
NUM DIMS (the number of dimensions). All calculations are
double precision floating point.

1 subroutine matrix assembly(...)
2 do e=1, number elements
3 call calculate transients(veloc, coord, lnods, elvel,

elcod)



4 call calculate cartesian derivatives(..., elcod, gpcar,
gpvol)

5 call calculate gauss point values(..., elvel, gpcar,
gpvel, gpadv, gprhs, gpgve)

6 call calculate tau and tim(..., gpvol, ..., eldtrho,
elmurho)

7 call calculate element matricies(..., gpcar, gpadv,
agrau, wgrgr, ...)

8 call calculate convective term and RHS(agrau, gpcar
, gpvol, gpvel, gprhs, gpgve, ..., elauu, elrbu)

9 call calculate viscous term(wgrgr, gpvol, elvel, gpcar
, elauu, elrbu, ..., elrbu)

10 call perform assembly in global system(elrbu,
eldtrho, elmurho, lnods, rhsid, dt rho nsi,
mass rho nsi)

11 end do
12 end subroutine matrix assembly
13
14 subroutine calculate cartesian derivatives(...)
15 do igaus=1, PGAUS SIZE
16 do k=1, PNODE SIZE
17 ...
18 do i=1, NUM DIMS
19 ...
20 end do
21 end do
22 ...
23 do j=1, PNODE SIZE
24 ...
25 end do
26 end do
27 end subroutine calculate cartesian derivatives

Listing 1: Sketch of matrix assembly code and illustrates the
loop structure of computational routines

Data input is handled by the calculate transients subroutine
of Listing 2, which illustrates the loading of data from the
veloc and coord arrays into internal elvel and elcod 2D arrays
for a specific element, unpacking each node of an element
(there are 4 nodes per elements in the benchmarks used in
this work), and then each dimension of a node (there are three)
with the mappings directed by the lnods index array.

The variables rhsid, dt rho nsi, and mass rho nsi are
outputs of the matrix assembly kernel, where the per-
form assembly in global system subroutine of Listing 2 un-
packs internal temporary calculated values and accumulates
these into output arrays. Similarly to the input values, the
mapping between the array location for results is determined
by the lnods mapping array.

1 subroutine calculate transients(veloc, coord, lnods,
elvel, elcod)

2 real(rp), intent(in) :: veloc(:,:), coord(:,:)
3 integer, intent(in) :: lnods(:,:)
4 real(rp), intent(out) :: elvel(:,:), elcod(:,:)
5

6 integer :: ipoin
7 do i=1, PNODE SIZE
8 ipoin=lnods(e, i)
9 do j=1, NUM DIMS

10 elvel(j,i) = veloc(j,ipoin)
11 elcod(j,i) = coord(j,ipoin)
12 end do
13 end do
14 end subroutine calculate transients
15
16 subroutine perform assembly in global system(elrbu,

eldtrho, elmurho, lnods, rhsid, dt rho nsi,
mass rho nsi)

17 real(rp), intent(in) :: elrbu(:,:), eldtrho(:), elmurho(:)
18 integer, intent(in) :: lnods(:,:)
19 real(rp), intent(inout) :: rhsid(:,:), dt rho nsi(:),

mass rho nsi(:)
20
21 integer :: ipoin
22 do i = 1, PNODE SIZE
23 ipoin=lnods(e, i)
24 do j=1, NUM DIMS
25 rhsid(idime, ipoin) = rhsid(idime, ipoin) + elrbu(j,i)
26 end do
27 dt rho nsi(ipoin) = dt rho nsi(ipoin) + eldtrho(j)
28 mass rho nsi(ipoin) = mass rho nsi(ipoin) +

elmurho(j)
29 end do
30 end subroutine perform assembly in global system

Listing 2: Sketch of input and output subroutines for matrix
assembly calculation

Table I details the percentage time of each matrix assembly
subroutine in the Sphere 100K benchmark (see Table II), along
with the number of double precision floating point operations
required. In total there are 7052 double precision floating point
operations required per element, with the most substantial
routines being that of calculate convective term and RHS
and calculate viscous term which also account for the largest
percentages of overall contribution time.

Routine Time FLOPs per element
calculate transients 3.2% 0

calculate cartesian derivatives 5.4% 664
calculate gauss point values 8.9% 400

calculate tau and tim 2.1% 76
calculate element matricies 11% 416

calculate convective term and RHS 40% 3936
calculate viscous term 26% 1540

perform assembly in global system 3.4% 20

TABLE I: Performance details of each component making up
matrix assembly kernel

Table II provides an overview of the benchmarks used
throughout this work, detailing their element sizes, number of
nodal points (this determines the size of the input and output
arrays, with corresponding nodal point entries for each element
determined by the lnods mapping), and associated input and



output data sizes (which for the FPGA must be transferred
over PCIe). The two benchmarks which are stared, Sphere
100K and Sphere 32M are, unlike the other four benchmarks,
not part of the Alya standard benchmark suite but instead
developed from the Sphere benchmark. This is because there is
a large element size difference in the suite between small and
large benchmarks. Therefore, these additional two benchmark
configurations help provide a more complete picture in our
performance evaluations across a wider range of element sizes.

Benchmark Number
of elements

Number of
nodal points

Input
data size

Output
data size

Cylinder 2D 1200 1280 0.16MB 0.06MB
Venturi 2D 4200 4371 0.56MB 0.20MB

Elbow 26410 5682 1.05MB 0.26MB
Sphere 100K* 100000 15768 3.33MB 0.72MB
Sphere 16M 16677400 2876880 584MB 132MB
Sphere 32M* 32677400 5753760 1157MB 263MB

TABLE II: Details of Alya benchmark suite configurations
selected as a basis of evaluating this work (see footnote for
stared configurations)

B. Hardware setup

For the runs contained in this paper we use a Xilinx Alveo
U280 which contains an FPGA chip with 1.08 million LUTs,
4.5MB of on-chip BRAM, 30MB of on-chip URAM, and
9024 DSP slices. This PCIe card also contains 8GB of High
Bandwidth Memory (HBM2) and 32GB of DDR DRAM
on the board, although for this work we use the HBM2
exclusively. The FPGA card is hosted in a system with a 26-
core Xeon Platinum (Skylake) 8170 CPU. Codes for the Alveo
are built with Xilinx Vitis framework version 2021.1.

We also compare against the code running on a 24-core
Xeon Platinum (Cascade Lake) 8260M CPU, and Nvidia Tesla
V100 GPU. On the CPU the code has been parallelised via
OpenMP (using GCC 8.3) and on the GPU it uses OpenACC
(using Nvidia compiler version 20.9). All reported numbers
are averaged over three runs. More details are in Appendix A.

III. FPGA KERNEL DEVELOPMENT AND OPTIMISATION

From the sketch of the matrix assembly code in Listing
1 it can be seen that the constituent calculations generate
intermediate data for a specific element, which is then used
as an input to subsequent calculations for this same element.
We believed that such an approach would suit the approach
of a dataflow design, where each part is running concurrently
and streaming these intermediate values from the producer to
the consumer. Rewriting the kernel in C++ for the device,
and writing OpenCL on the host to interface with the exist-
ing Alya code-base, our initial dataflow design is illustrated
in Figure 1, where the blocks represent functions running
concurrently for an element with data streaming between
them. Numerous streams have multiple consumers, for in-
stance elvel is produced by calculate cartesian derivatives,

*This size is not an official benchmark and was created based on the Sphere
benchmark to increase the range of element sizes being evaluated

and consumed by both calculate gauss point values and cal-
culate viscous term. In these instances, whilst it is not shown
in Figure 1 due to brevity, we have an additional data replica-
tion dataflow stage which accepts the stream to be replicated
as an input and produces an array of streams as an output,
each of which is consumed by a different dataflow stage and
each cycle the replication utility functionality will read from
the source stream and write to each target stream.

Fig. 1: Initial dataflow design of Alya incompressible flow
matrix assembly engine on the FPGA.

A. Optimizing the computational engine

Table III illustrates performance, for the Sphere 100K
benchmark, for different versions of our FPGA kernel as we
optimised it. We include the kernel only execution time, time
taken for data transfers between the host and FPGA, and
total execution time which is a combination of these first two
measures. For reference the table also includes performance of
the code running on a single core of the CPU and the Xeon’s
entire 24 cores. For each FPGA configuration in Table III we
provide the percentage of DSP and LUT resources required on
a Super Logic Region (SLR) basis, with three SLRs present on
the U280. All FPGA versions are running at a clock frequency
of 300MHz, the U280 default. Details of our initial design are
reported in Table III as Initial FPGA dataflow design, and
achieving only 0.39% the performance of the 24-core CPU it
can be seen that significant optimisations were required! We
have focused on using the Sphere 100K benchmark, a medium
problem size, as a vehicle for driving optimisations due to the
excessive initial execution time on the FPGA, with the wider
range of benchmarks considered in Section IV. Optimising for
this medium sized benchmark also directly translates into the
other problem sizes.

One of the major reasons for this initial poor performance
was that our dataflow design was susceptible to deadlock,



Description Total execution
time (ms)

Kernel execution
time (ms)

Host-FPGA data
transfer time (ms)

% CPU
performance

% SLR DSP
usage

%SLR LUT
usage

1 core of Xeon CPU 351.05 351.05 - - - -
24 cores Xeon CPU 61.72 61.72 - - - -

Initial FPGA dataflow design 15714.99 15701.78 13.21 0.39% 15% 13%
Optimised II of loops 1508.60 1495.62 12.98 4.09% 91% 40%

Brought elements loop into DF functions 293.21 279.79 13.42 21.05% 91% 44%
Refactored code into engine 284.04 270.71 13.33 21.73% 97% 48%

TABLE III: Performance of FPGA matrix assembly engine with Sphere 100K benchmark running on a Xilinx Alveo U280
as kernel level optimisations were applied. Also included is performance of code running on a Xeon Platinum (Cascade Lake)
8260M CPU for comparison.

where if streams were written to in a different order than they
were consumed from then the FPGA could hang. Furthermore,
HLS automatically reorders stream writes and reads based
upon dependencies in the code, so carefully laying out and
manually ordering the stream accesses in code does not nec-
essarily solve the problem. Therefore, whilst we had pipelined
as many loops as we could, there were a number where it was
not possible to pipeline due to this deadlocking and instead
sub-loops were pipelined. This meant that the functions in our
dataflow machine were rather asymmetrical in their pipelined
behaviour, where some were pipelined on the outer PGAUS
loop, whereas others only pipelined on inner nested loops.
As such it meant that, from a performance perspective, some
stages had a tendency to stall preceding or subsequent stages,
effectively reducing the amount of concurrency present in the
design.

Whilst one approach would be to leverage HLS’s protocol
pragma, which enforces HLS not reordering contained code,
this would still require careful manual ordering of accesses
in code by the programmer. Instead, we increasing the stream
FIFO depth in the HLS STREAM pragma, and also disallowed
streams jumping ahead of subsequent stages. This involved
routing streams through subsequent dataflow functions, irre-
spective of whether they utilised that streaming data or not
in their calculations, and this approach follows Xilinx best
practice [15].

However it was not just the issue of deadlocking that was
limiting the pipelining of loops. In HLS when a loop is
pipelined then all contained inner loops must be completely
unrolled. In our code there are numerous nested loops and
unrolling all these could result in significant DSP usage on
the FPGA. Under certain conditions, for instance if there are
no statements between outer and inner loops, then HLS can
merge these automatically when the pipeline pragma is applied
to the inner loop. In this manner, for some functions in our
matrix assembly engine, we were able to limit the amount of
unrolling required whilst still achieving a pipelined outer loop.
However for others this was not possible and the increased
DSP usage had to be accepted.

Furthermore, the calculate convective term and RHS and
calculate viscous term functions contained a spatial depen-
dency which was critical to fix because, as illustrated in Table
I, these account for a large portion of the overall matrix assem-
bly runtime. A spatial dependency is where the calculations

involved at one cycle depend on previous calculations which
might not yet have completed. In our specific case there were
accumulations on data, and these double precision additions
required seven cycles to complete. Therefore the pipelined
loop is limited to an Initiation Interval (II), the number of
cycles before the next value can start to be processed, of seven
because this number of cycles must elapse before the next
value can start to be processed due to the dependence on the
previously accumulated value.

Listing 3 illustrates a sketch of the algorithm that was caus-
ing these issues, where these two functions are different from
the others because they only generate a single, accumulated,
value per element, rather than a value for each loop iteration
over PGAUS. This property provided us with some flexibility
when it came to refactoring the code to remove the spatial
dependency. The code builds the elauu internal 2D array (each
dimension of size PNODE SIZE * NUM DIMS), which is
streamed out to the next dataflow stage at the end. There are
in-fact two spatial dependencies, firstly between outer loop
iterations of the PGAUS loop, where the same elements of the
elauu variable are accumulated from one outer iteration to the
next, and secondly between line 10 and the loop of lines 12
to 15.

1 for (int igaus=0;igaus<PGAUS SIZE;igaus++) {
2 ...
3 for (int inode=0;inode<PNODE SIZE;inode++) {
4 ...
5 for (int idime=0;idime<NUM DIMS;idime++) {
6 int idofv = inode * NUM DIMS + idime;
7
8 for (int jnode=0;jnode<PNODE SIZE;jnode++) {
9 int jdofv = jnode * NUM DIMS + idime;

10 elauu[jdofv][idofv] = elauu[jdofv][idofv] + ...;
11
12 for (int jdime=0;jdime<NUM DIMS;jdime++) {
13 int jdofv = jnode*NUM DIM+jdime;
14 elauu[jdofv][idofv] = elauu[jdofv][idofv] ...;
15 }
16 }
17 ...
18 }
19 ...
20 }
21 }



22 elauu stream.write(elauu);

Listing 3: Sketch of algorithmic structure which resulted in a
spatial dependency

It is possible to address the first spatial dependency via the
dependence HLS pragma, because whilst the HLS compiler
can not guarantee there are enough cycles between one outer
loop iteration and the next due to the dynamic indexes being
calculated, this is obvious to the programmer. The second
spatial dependency between line 10 and the loop of lines 12 to
15 is more difficult to remove. In its current form the algorithm
will not provide the required number of cycles between sub-
sequent accumulations and-so had to be refactored to remove
this dependency and enable pipelining with initiation interval
of one.

Listing 4 sketches the refactored algorithm, where the base
calculation is performed into variable c0 at line 13 and the
special jdofv selects those subset of elements which require
additional calculations beyond those in c0. In this manner the
accesses for each element of the array elauu at line 15 or
17, depending if it is a special jdofv index or not, represent
the entire calculation required for this value for the PGAUS
outer loop, rather than requiring accumulation in the algorithm.
Instead of accumulating over PGAUS and generating one
single value per element, the algorithm streams out each value
generated for the PGAUS loop, and a subsequent dataflow
stage is added to accumulate these.

These optimisations enabled data to flow more effectively
between the dataflow stages, improving the overall concur-
rency of our design and the performance benefits are illustrated
by the entry Optimised II of loops in Table III. It can be seen
that this significantly improves the performance of our kernel,
with it running over 10 times faster, but at a higher resource
usage cost, where DSP usage has increased from 15% of an
SLR in the previous version to 91% now, and LUT usage has
also increased, albeit at a lower rate. However the kernel was
still only achieving around 4% of the CPU’s performance, so
clearly there were still further optimisation opportunities.

1 for (int igaus=0;igaus<PGAUS SIZE;igaus++) {
2 #pragma HLS PIPELINE II=1
3 ...
4 for (int inode=0;inode<PNODE SIZE;inode++) {
5 ...
6 for (int idime = 0; idime<NUM DIMS;idime++) {
7 int idofv = inode * NUM DIMS + idime;
8 for (int jnode = 0; jnode<PNODE SIZE;jnode++) {
9 int special jdofv = jnode * NUM DIMS + idime;

10
11 for (int jdime = 0; jdime<NUM DIMS;jdime++) {
12 int jdofv = jnode*NUM DIMS+jdime;
13 REAL TYPE c0=...
14 if (jdofv == special jdofv) {
15 elauu[jdofv][idofv] = c0 + ...
16 } else {
17 elauu[jdofv][idofv] = c0;

18 }
19 }
20 }
21 }
22 }
23 elauu stream.write(elauu);
24 }

Listing 4: Sketch of refactored algorithm to address spatial
dependency and deliver an initiation interval of 1

At this point the loop over the number of elements was
outside the dataflow pragma, meaning that between each
element the dataflow stages had to shut down and restart
which resulted in overhead. To address this we brought the
elements loop inside each of the dataflow stages, ensuring that
each dataflow stage could run continually from one element
to the next. Using the same technique as described above,
whilst only the PGAUS loops were pipelined, as we did not
have enough DSP slices to fully unroll each PGAUS loop, we
ensured that the loop over the number of elements was fused
by HLS with this PGAUS loop, effectively meaning that both
were pipelined. Moving the elements loop inside each dataflow
region and ensuring that this loop fusion occurred sped the
kernel up over five times, as reported by Brought elements
loop into DF functions in Table III, although the FPGA was
still only achieving around 21% of the CPU’s performance.

Fig. 2: Illustration of splitting out the Alya incompressible
flow matrix assembly engine from the external data processing,
such that the loading of input data and accumulation and
storing of results are external with HLS streams between these
components.

In preparation for the optimisations that are discussed next
in Section III-B, as well as improving the code generally, we
decided that it would be best to split out the reading and
writing of input and output data, the calculate transients and
perform assembly in global system functions from the rest
of the matrix assembly computational engine. Effectively this
meant that the engine would continually accept streams of
element input data, process these, and then stream out resulting
data. This produced two dataflow regions, one for the matrix
assembly engine and the other for the reading and writing of
input and output data.

The top level dataflow region is illustrated in Figure 2, with
Figure 3 illustrating the matrix assembly computational engine



dataflow machine design which is nested. The engine of Figure
3 incorporates the improvements previously discussed in this
section where, for instance, it can be seen that streams no long
skip stages, instead being routed through subsequent steps to
avoid deadlock, and also additional add stages towards the
end as part of the refactoring of the convective and viscous
calculations. At the same time, again following best practice
[15], we modified external HBM2 memory accesses so that
these were 512-bits wide by packing and unpacking data. This
refactoring slightly improved performance, as represented by
the Refactored code into engine entry of Table III, with the
main objective being to improve the structure of the code for
the next set of optimisations.

Fig. 3: Revised matrix assembly engine dataflow design
based on optimisations discussed in this section, most notably
streams are always routed through subsequent stages regard-
less of the consumption of data from them.

B. Reducing external data access overhead
At this point, whilst we had spent considerable time op-

timising the computational engine of our design to ensure
that it could continually stream data, performance was still
falling significantly short of that delivered by the 24-core Xeon
Platinum CPU. An important question was whether the design
was being most efficiently fed with input data from, and results
being delivered to, the HBM2 external memory. Put simply,
whether the engine was stalling due to a lack of input data
or stalling because it was unable to stream out results due to
overhead on writing. From Listing 2 it can be seen that the
external memory access pattern is irregular, where there is an
index held in the lnods array which determines the locations to
read from for the veloc and coord arrays, and write to for the
rhsid, dt rho nsi, and mass rho nsi arrays. This resulted in
two major disadvantages for performance, firstly there was a
spatial dependency for result data, as the accumulation of array
elements could be followed by an accumulation into that same

element for the next node, resulting in an initiation interval of
7 imposed by the tooling, and secondly accesses to external
memory were not contiguous.

For each separate external memory access the HLS tool-
ing has to add an explicit read request for input data and
write response for output data, both costing 69 cycles. For
contiguous external memory accesses the compiler can fuse
accesses together, effectively meaning that there is one of these
expensive operations for many individual accesses. However,
due to the irregular access pattern this was not possible,
making the pipelines very deep. This is one of the reasons why
bringing the loop over the number of elements in Section III
was so beneficial, as it enabled these pipelines to be filled for
longer. However, such non-contiguous memory access patterns
can significantly reduce external memory access performance
[16] regardless, and-so this was important to address.

Fig. 4: Architectural view of how the host, HBM2, and IP
blocks interact with the streaming design, where chunks of
data in the format required for the Alya incompressible flow
matrix assembly engine are streamed onto the FPGA and
results streamed back, with the host undertaking the in-direct
memory accesses and result accumulations.

On the other hand, whilst the FPGA is actively computing
the host CPU is idle. Therefore a question was whether it
would be beneficial to exploit this fact by moving these
irregular memory access and result accumulations onto the
CPU. This would enable the CPU to stream required data
to the matrix assembly engine for each element and for the
engine’s results to be streamed back and processed, keeping
the FPGA design continually busy with the CPU concurrently
undertaking those aspects less suited to the FPGA. Whilst this
might sound like an obvious use of a streaming interface, such
as AXIS, between the host and kernel, the Alveo U280 shell
only supports DMA [17]. Therefore in order to achieve this
streaming approach we needed to implement it using AXI4
data transfers via the external HBM2. Figure 4 illustrates
an architectural view of this approach, where we have an
additional HLS-based IP block which read data from the on-
board but off-chip HBM2 memory and then streams this via
AXIS to the matrix assembly engine. There are two output
HLS-based IP blocks which receive results streamed from the



engine and store these in the HBM2.
Our approach operates with dynamically sized chunks,

where the host CPU executes the calculate transients proce-
dure from Listing 2, extracting data from veloc and coord
input arrays for each of the chunk’s elements into elvel and
elcod respectively. When a chunk of data, containing elvel
and elcod, is ready it is then transferred to the FPGA via
PCIe and the Stream elvel and elcod in kernel started. This
kernel retrieves the elvel and elcod values for each element
from HBM2 and streams these to the matrix assembly engine.
Handling results data is the opposite, where the stream elrbu
out and stream eldtrho and elmurho out kernels are scheduled
for each chunk, and as this data arrives it is stored in HBM2
and then transferred from the FPGA to the host via PCIe and
processed. We marshal these activities via OpenCL events,
where not only is the data transfer from the FPGA to the host
scheduled a priori and then dependent on the streaming output
IP blocks completing for a specific chunk, but furthermore
the OpenCL setCallback function is used to schedule the
execution of a result unpacking function. This is effectively the
perform assembly in global system function and runs on the
CPU when data migration of results to the host has completed,
accumulating the elrbu, eldtrho, and elmurho values into rhsid,
dt rho nsi, and mass rho nsi arrays respectively.

The idea is that, as the entire data-set has been split into
chunks, then the host will be busy loading the next chunk,
whilst the FPGA is running with the current chunk, and the
host also processing result data from the previous chunk.
Furthermore, to maximise performance, following guidance in
[18], our input and output streaming HLS-based IP blocks use
the ap ctrl chain interface pragma to apply back-pressure and
enable multiple kernel executions to be overlapped and run in
a pipelined fashion.

The performance of this approach is illustrated in Table IV,
which details the total execution time only, as data transfers
to and from the FPGA via PCIe and kernel execution are
overlapped so it no longer makes sense to include these
two individual metrics. The entry Initial streaming approach
illustrates the performance benefits, resulting in around a three
times increase in performance on the FPGA which was now
achieving around 63% the CPU performance. However, at
this point, we realised that the matrix assembly engine was
still being starved of work as it needed 12 double precision
numbers from elvel and elcod per element, but the streaming
IP block was only reading data from HBM2 memory in widths
of 512 bit effectively meaning that there were only 8 values
available per cycle. To enable the streaming of a complete
elvel and elcod set of values per cycle, we reorganised the data
such that each variable was split across two HBM2 memory
banks* and AXI4 kernel ports. Hence there are four AXI4
connections between the Stream elvel and elcod in IP block
of Figure 4 and the HBM2, two for each input variable. An
element’s input of each variable is therefore split across these

*On the Alveo U280 HBM2 is split into thirty two memory banks each
of size 256MB. There are sixteen memory controllers, each with a dedicated
channel to both banks it controls.

two AXI4 ports and bank of HBM2, with the lower 6 double
precision numbers in the first part and higher 6 numbers in
the second part. To keep the code simple we pad the rest of
the 512 bit chunk, so there is 64 bit of data padded per bank
per element, whilst this does result in some wasted memory
it makes the device code significantly simpler.

This optimisation enabled the Alya engine to be fed with
data each cycle, and the performance is reported in Table IV
by the Data streamed each cycle entry. It can be seen that this
double the performance on the FPGA, and for the first time
we were out-performing the 24-core Xeon Platinum CPU.

As described above, we were using the OpenCL setCallback
API call to execute our results handling function which accu-
mulates results from the FPGA to their appropriate locations
in the data arrays. However these functions were executing
sequentially on a single CPU core, potentially resulting in a
bottleneck. Therefore we parallelised these using threading,
with a thread issued for each result accumulation function
execution. This meant that result accumulations could occur
for multiple data chunks concurrently, and whilst it is fairly
simplistic, for instance a new thread is created each time and
there is no guard against oversubscribing threads to cores for
large number of chunks, it almost doubled the performance
of matrix assembly on the FPGA. This is reported by the
entry Threaded result handling in Table IV, and now we were
outperforming the 24-core CPU by over two times.

Description Execution
time (ms) % CPU performance

24 cores Xeon CPU 61.72 -
Previous non-streaming FPGA 284.04 21.73%

Initial streaming approach 97.91 63.04%
Data streamed each cycle 48.19 128.08%
Threaded result handling 26.67 231.42%

TABLE IV: FPGA matrix assembly performance for Sphere
100K benchmark on Alveo U280 for our data streaming
approach. Compares against the previous non-data streaming
FPGA design and 24-core Xeon Platinum CPU

By moving those aspects less suited to the FPGA, namely
the indirect memory accesses and results accumulations, onto
the CPU cores we obtained a speed up of around 11 times on
the FPGA compared with our previous non-streaming FPGA
design. Therefore clearly it was beneficial to take advantage
of the idle CPU cores and, whilst the Alveo U280 did not
explicitly support a host-FPGA AXIS streaming interface, it
was possible to develop an approach which successfully fol-
lowed the general idea. Moreover, the optimisations described
in this section have resulted in an FPGA matrix assembly
engine which is over 600 times faster than the initial dataflow
design detailed in Table III.

C. Scaling to multiple FPGA engines

Performance described thus far has focused on running a
single Alya incompressible flow matrix assembly engine, and
it is possible to scale this up to multiple engines. A challenge
was that the current engine was using 97% of an SLR’s DSP



slices (there are three SLRs on the U280). With this utilisation
it was only possible to fit two engines on the FPGA, as any
more would result in routing errors. However, it was observed
that the calculate cartesian derivatives function, which only
accounts for around 5% of the overall matrix assembly runtime
required 33% of the DSP slices. Therefore we moved this
function off the FPGA onto the CPU, with results from this
calculation streamed in to the rest of the engine. This follows
the same idea adopted for streaming data described in Section
III-B, where we are exploiting the otherwise under utilised
CPU to share the workload and make better use of the FPGA.

We adopted a similar streaming approach to that of Figure 4,
still with a single input and two output HLS-based streaming
IP blocks, but these serviced multiple matrix assembly en-
gines. Each engine runs concurrently and processes different
elements. The streaming IP blocks where modified slightly
to maximise performance, where there are two AXI4 links
into the input block per variable, for each engine. The idea
was that these can all be read concurrently and therefore all
engines continually fed with data. The output blocks read
from all engines concurrently per cycle and pack the data into
512 bit wide writes, but still with a single AXI4 channel per
variable. Initially, running calculations of cartesian derivatives
on the host increased the runtime by around 30%, and we then
threaded the processing of each chunk to run concurrently.
The threading is different to that of threading the handling of
results, because there is no benefit in running the handling of
each input chunk in parallel as it does not reduce the time for
the first to be ready, instead with them simply queuing up.

Instead we applied threading via OpenMP inside the pro-
cessing of each chunk, performing the cartesian derivative
calculations for a specific chunk in parallel across the CPU
cores. This sped up the calculations involved for each chunk,
meaning they were ready sooner and improved performance,
resulting in a negligible overhead compared with undertaking
the calculate cartesian derivatives function on the FPGA.

IV. PERFORMANCE AND POWER COMPARISON

We undertook performance and power consumption ex-
periments of our approach against the 24-core Xeon Plat-
inum (Cascade Lake) 8260M CPU (threaded via OpenMP)
and Nvidia V100 GPU (using the existing Alya Ope-
nACC implementation [19]). We explored two FPGA con-
figurations, the two engine approach where the calcu-
late cartesian derivatives function is resident on the FPGA,
and the three engine approach where that function is running
on the host CPU instead. All FPGA experiments are running
at a clock frequency of 300MHz. In this section we report
performance in GFLOPS across the benchmarks described in
Table II, and this is illustrated by Figure 5. It can be seen
that CPU performance is consistently the lowest performing
of three technologies, delivering especially poor performance
for the smaller benchmarks. Whilst the CPU’s performance
improves for two larger benchmarks, it still falls considerably
short of both the GPU and FPGA. The GPU outperforms
the FPGA until the larger two benchmark sizes, where the

three engine FPGA design performs comparably and even
slightly out performs the GPU for the Sphere 32M benchmark.
As would be expected, the three engine FPGA approach
outperforms the two engine approach consistently.

Fig. 5: Performance comparison between CPU, GPU, three
kernels on the FPGA (with cartesian derivatives calculation
on CPU) and two kernels on the FPGA (all calculations on
the FPGA). Higher is better.

Figure 6 illustrates power usage in Watts between different
hardware technologies running our matrix assembly kernel.
Power was captured on the CPU using RAPL, NVIDIA-
SMI for the GPU, and XRT for the FPGA, with the average
power draw reported in Figure 6. Due to the very short
runtimes of smaller benchmarks, we only report power for
larger benchmarks where the runtime was sufficient to gather
a reliable measurement. For the FPGA the combined FPGA
and CPU power draw is reported because activities are shared.

Fig. 6: Power draw comparison between CPU, GPU, three
kernels on the FPGA (with cartesian derivatives calculation
on CPU) and two kernels on the FPGA (all calculations on
the FPGA). Lower is better.

It can be seen from Figure 6 that the CPU draws the most
power, with the GPU drawing slightly less but still greater
than 160 Watts for the largest benchmark. The FPGA power



draw is significantly less than the other technologies, with
three engines drawing 100 Watts for the largest benchmark
and two engines 70 Watts. The majority of this difference
in FPGA power draw comes from the CPU, which draws
more power for the three engine approach as the cartesian
derivative calculations are on the CPU. By contrast, even
though the two engine approach still processes input, and
result data accesses and accumulations on the CPU, this is
significantly less workload than the threading floating point
operations required by the cartesian derivatives calculations,
and-so power draw is much less. It is interesting that, for
the three engine approach, the power does not increase for
larger benchmarks. As the CPU will be undertaking more
computation one would assume it would draw more power
as it is below the TDP. The fact that it does not indicates that
this workload on the CPU is trivial, which corresponds with
details in Table I, and likely stop and start.

Figure 7 illustrates the power efficiency, in GFLOPS/Watt,
for each of the three largest benchmarks. It can be seen that
the CPU is significantly worse than the other two technologies
with the GPU falling short of the FPGA. Interestingly both
FPGA configurations are fairly comparable, with the increased
performance of the three engine design offsetting the reduced
power draw of the two engine approach.

Fig. 7: Power efficiency comparison between CPU, GPU,
three kernels on the FPGA (with cartesian derivatives calcula-
tion on CPU) and two kernels on the FPGA (all calculations
on the FPGA). Higher is better.

V. CONCLUSIONS AND FURTHER WORK

In this paper we have explored the porting of Alya’s in-
compressible flow matrix assembly kernel onto a Xilinx Alveo
U280 FPGA. Starting with a naive dataflow design, it required
multiple optimisation steps to fully suit the FPGA, with our
final single engine achieving over double the performance
of the CPU. This was delivered by ensuring that data could
continually flow through the dataflow engine, keeping all parts
running concurrently and included a mixture of improvements
to the structure of the algorithms and also mapping the most
appropriate parts of the workload between the CPU and FPGA.

We went further to explore mixing calculations on the CPU
and FPGA to enable us to reduce the per-engine DSP usage,
and enable an increase in the number of engines on the
FPGA. This is an interesting example of the FPGA and CPU
working to compliment each other, and is likely to become
more important as Xilinx’s next generation Versal cards are
released which combine the reconfigurable fabric with a multi-
core CPU and simple vector-style AI engines on-chip.

We compared the performance, power draw, and power
efficiency against a 24-core Xeon Platinum (Cascade Lake)
8260M CPU and Nvidia V100 GPU. Our FPGA approach
considerably out-performed the CPU and our three-engine
version performed comparably against the GPU, especially for
larger benchmarks. The benefit of the FPGA is stark when one
considers power, where the FPGA configurations drew signifi-
cantly less power than the CPU and GPU and hence delivered
greater power efficiency especially for the Sphere 16M and
32M benchmarks. Due to the high power consumption of the
CPU, our performance comparison also illustrated a trade-off
when deciding whether to mix floating point calculations on
the CPU and FPGA. Such mixing enabled scaling to three
engines, which improved performance, however it also drew a
third more power compared to the two engine approach which
does not mix. In this case however it was observed that when
it came to power efficiency the performance and power draw
largely cancelled each other out, with the FPGA configurations
delivering very similar power efficiency characteristics.

For further work we believe that next-generation future
Versal architecture will be interesting to target, especially the
AI engines which accelerate single precision floating point and
fixed point arithmetic. This will likely substantially reduce the
DSP usage and these AI engines running at 1GHz will likely
further increase performance. Additionally there is more work
to be done in exploring the mixing of workloads across the
CPU and FPGA, potentially using CPU soft-cores such as
the MicroBlaze in the fabric to run some of these constituent
workloads which are especially suited to the CPU only.

We conclude that the use of FPGAs is beneficial for
engineering HPS simulations, Alya in particular, and is an
important future hardware technology that should be con-
sidered as part of exascale supercomputers. The fact that
our design was able to out-perform the CPU and perform
comparably against the GPU demonstrates that FPGAs play
an important part in ameliorating non-compute overheads,
where GPUs clearly have much greater raw floating-point
capability but can be limited by overheads imposed by the
general purpose architecture. Furthermore our FPGA approach
drew substantially less power than the other technologies,
resulting in much greater power efficiency. However there is
an important note of caution, even though we had adopted
what seemed like a sensible initial dataflow design, this still
required in-depth optimisation and exploration to make most
effective use of the technology, and we believe that these
dataflow algorithmic investigations are an important activity
to be undertaken by the community to fully mature FPGAs
for next-generation HPC workloads.



ACKNOWLEDGEMENT

The authors would like to thank the ExCALIBUR H&ES
FPGA testbed and Xilinx XACC program for access to com-
pute resource used in this work. This work was funded under
the EU EXCELLERAT CoE, grant agreement number 823691.

REFERENCES

[1] M. Vázquez, G. Houzeaux, S. Koric, A. Artigues, J. Aguado-Sierra,
R. Arı́s, D. Mira, H. Calmet, F. Cucchietti, H. Owen et al., “Alya:
Multiphysics engineering simulation toward exascale,” Journal of com-
putational science, vol. 14, pp. 15–27, 2016.

[2] N. Brown, “Weighing up the new kid on the block: Impressions of
using vitis for hpc software development,” in 2020 30th International
Conference on Field-Programmable Logic and Applications (FPL).
IEEE, 2020, pp. 335–340.

[3] N. Fujita, R. Kobayashi, Y. Yamaguchi, and T. Boku, “Parallel pro-
cessing on fpga combining computation and communication in opencl
programming,” in 2019 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW). IEEE, 2019, pp. 479–
488.

[4] G. Oyarzun, D. Peyrolon, C. Alvarez, and X. Martorell, “An fpga cached
sparse matrix vector product (spmv) for unstructured computational fluid
dynamics simulations,” arXiv preprint arXiv:2107.12371, 2021.

[5] M. Karp, A. Podobas, T. Kenter, N. Jansson, C. Plessl, P. Schlatter,
and S. Markidis, “A high-fidelity flow solver for unstructured meshes
on field-programmable gate arrays,” arXiv preprint arXiv:2108.12188,
2021.

[6] J. C. Cajas, G. Houzeaux, M. Vazquez, M. Garcia, E. Casoni, H. Calmet,
A. Artigues, R. Borrell, O. Lehmkuhl, D. Pastrana et al., “Fluid-
structure interaction based on hpc multicode coupling,” SIAM Journal
on Scientific Computing, vol. 40, no. 6, pp. C677–C703, 2018.

[7] Xilinx. (2021, Mar.) Vitis unified software platform documentation.
[Online]. Available: https://www.xilinx.com/html docs/xilinx2020 2/
vitis doc/index.html

[8] N. Brown, “Exploring the acceleration of nekbone on reconfigurable
architectures,” in 2020 IEEE/ACM International Workshop on Hetero-
geneous High-performance Reconfigurable Computing (H2RC). IEEE,
2020, pp. 19–28.

[9] D. Koch et al., “Fpga versus software programming: Why, when, and
how?” in FPGAs for Software Programmers. Springer, 2016, pp. 1–21.

[10] C. Yang et al., “Fully integrated fpga molecular dynamics simulations,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, 2019, pp. 1–31.

[11] M. Ashworth, G. D. Riley, A. Attwood, and J. Mawer, “First steps in
porting the lfric weather and climate model to the fpgas of the euroexa
architecture,” Scientific Programming, vol. 2019, 2019.

[12] M. Vazquez, G. Houzeaux, S. Koric, A. Artigues, J. Aguado-Sierra,
R. Aris, D. Mira, H. Calmet, F. Cucchietti, H. Owen et al., “Alya:
towards exascale for engineering simulation codes,” arXiv preprint
arXiv:1404.4881, 2014.

[13] M. Bull, “Unified european applications benchmark suite,” PRACE-2IP
Public Deliverable D, vol. 7.

[14] G. Hautreux, D. Dellis, C. Moulinec, A. Sunderland, A. Gray,
A. Proeme, V. Codreanu, A. Emerson, B. Eguzkitza, J. Strassburg et al.,
“Description of the initial accelerator benchmark suite.”

[15] Xilinx. (2021, Jul.) Best practices for acceleration with vitis.
[Online]. Available: https://www.xilinx.com/html docs/xilinx2020 2/
vitis doc/haf1532064985140.html

[16] N. Brown and D. Dolman, “It’s all about data movement: Optimising
fpga data access to boost performance,” in 2019 IEEE/ACM Interna-
tional Workshop on Heterogeneous High-performance Reconfigurable
Computing (H2RC). IEEE, 2019, pp. 1–10.

[17] Xilinx. (2019, Nov.) Alveo u280 data center accelerator card. [Online].
Available: https://www.xilinx.com/support/documentation/boards and
kits/accelerator-cards/ug1314-u280-reconfig-accel.pdf

[18] Xilinx. (2021, Aug.) Xrt controlled kernel execution models. [On-
line]. Available: https://xilinx.github.io/XRT/master/html/xrt kernel
executions.html

[19] G. Oyarzun, D. Mira, and G. Houzeaux, “Performance assessment of
cuda and openacc in large scale combustion simulations,” arXiv preprint
arXiv:2107.11541, 2021.

APPENDIX A
ARTIFACT DESCRIPTION APPENDIX

A. Description
1) Check-list (artifact meta information):
• Program: C++ and Fortran
• Compilation: GCC version 8.3 with -O3, Vitis version 2021.1.

On the GPU we used the Nvidia Compiler version 20.9.
• Data set: Runs were based on the Cylinder 2D, Venturi 2D,

Elbow, and Sphere 16M Alya benchmarks. As described in the
paper, we added an additional two benchmarks (Sphere 100K
and Sphere 32M) based on the Sphere benchmark to add some
additional element size variety.

• Run-time environment: A variety of machines were used
for comparison, all running Linux. For the Alveo U280 the
latest environment at the time of writing was used (XRT
202110.2.11.634, xdma and xdma-dev 201920.3 deployment
and development target platforms)

• Hardware: We used a Xilinx Alveo U280 for the FPGA runs,
this is hosted by a system with a Xeon Platinum Skylake (8170)
and 192GB RAM. For CPU comparison runs we ran on a Xeon
Platinum Cascade Lake (8260M) processor with 192GB RAM.
For GPU runs we ran on the Cirrus tier-2 UK HPC machine,
which provides a NVIDIA Tesla V100-SXM2-16GB (Volta)
GPU, hosted by two Intel Xeon Gold Cascade Lake (6248)
CPUs and 384 GB RAM.

• Binary: Alya CPU versions require MPI. Xilinx Vitis library
is required to synthesise the kernel and generate the bitstream.

• Execution: We built and executed all executables on Linux.
• Output: Alya produces detailed logs that provide performance

measurements and we also added in additional timing and
manually calculated to ensure that the reported value was
correct.

• Publicly available?: No, Alya is commercial software available
under licence

2) Hardware dependencies: Any machine running Linux
with appropriate Alveo U280 FPGA PCIe card installed

3) Software dependencies: The latest version of Alya, GCC
version 8.3, the support libraries installed for the board and
the Vitis platform.

4) Datasets: Runs were based on the Alya benchmark suite
which is also provided as part of the Alya distribution

B. Installation

We synthesised our kernel using Vitis HLS via the v++
command. It is also possible to synthesise directly via the HLS
IDE, and this was useful for steps which involved leveraging
the analysis pane. The v++ command was then used to
link, which assembles the shell and calls out to Vivido to
generate the bitstream. The host code was written in OpenCL
(the appropriate libraries ship with Vitis) and launching our
bitstream simply involved executing the host code, which
via the appropriate OpenCL calls programmed the device as
appropriate.

C. Experiment workflow

1) Develop the appropriate HLS kernel
2) Use Vitis HLS to synthesise this and generating corre-

sponding .xo files
3) Use Vitis HLS in linking mode to generate the bitstream

.xclbin file

https://www.xilinx.com/html_docs/xilinx2020_2/vitis_doc/index.html
https://www.xilinx.com/html_docs/xilinx2020_2/vitis_doc/index.html
https://www.xilinx.com/html_docs/xilinx2020_2/vitis_doc/haf1532064985140.html
https://www.xilinx.com/html_docs/xilinx2020_2/vitis_doc/haf1532064985140.html
https://www.xilinx.com/support/documentation/boards_and_kits/accelerator-cards/ug1314-u280-reconfig-accel.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/accelerator-cards/ug1314-u280-reconfig-accel.pdf
https://xilinx.github.io/XRT/master/html/xrt_kernel_executions.html
https://xilinx.github.io/XRT/master/html/xrt_kernel_executions.html


4) Compile the host OpenCL code using GCC
5) Execute the host code, which will launch the bitstream
6) Optionally, enable profiling and after the run use Vitis

Analyser to explore this information.

D. Evaluation and expected result

We compared our results against the existing CPU and GPU
version of Alya. On the CPU this ran across all 24 cores of
the 8260M and was threaded via OpenMP. On the GPU Alya
provides an OpenACC implementation of the matrix assembly
kernel which is the code that was used. All calculated values
have been checked at the element level to ensure that they are
producing consistent results, and all performance and power
results reported in this paper are averaged over three runs.

E. Experiment customization

It is, of course, possible to experiment with the benchmarks
and use these to run different system sizes, for instance
modifying the number of elements or points per kernel. On
an Alveo U280 the maximum number of kernels we could fit
was three, and with a larger FPGA such as the future Versal
architecture, then this could be scaled up further potentially.

APPENDIX B
ARTIFACT EVALUATION

A. Results Analysis Discussion

In the host code we use OpenCL’s profiling capability which
provides microsecond resolution timings for event (kernel
execution) starting and ending. We also implemented manual
timing via the gettimeofday call, to provide a second timing
comparison point and ensure what OpenCL reported was
correct (both approaches to timing matched very closely.) All
calculated values were checked for consistency between the
FPGA and CPU versions to ensure that they are calculating
the same quantities and we were undertaking a fair experiment.
For all experiments runtimes were averaged over at-least three
runs, and power consumption figures were reported by XRT
for the FPGA, RAPL for the CPU, and nvidia-smi on the GPU.


	I Introduction
	II Background
	II-A Alya
	II-B Hardware setup

	III FPGA kernel development and optimisation
	III-A Optimizing the computational engine
	III-B Reducing external data access overhead
	III-C Scaling to multiple FPGA engines

	IV Performance and power comparison
	V Conclusions and further work
	References
	Appendix A: Artifact Description Appendix
	A-A Description
	A-A1 Check-list (artifact meta information)
	A-A2 Hardware dependencies
	A-A3 Software dependencies
	A-A4 Datasets

	A-B Installation
	A-C Experiment workflow
	A-D Evaluation and expected result
	A-E Experiment customization

	Appendix B: Artifact Evaluation
	B-A Results Analysis Discussion


