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Abstract

This study explores the effects of haptic feedback on
performance and learning by human subjects
executing a dynamic task. We present the results of
experiments involving the control of a ball and
beam. Human subjects perform position targeting
of the ball through hand operation of the beam
angle. Inour dynamic analysis we discuss how this
prototype task may be used to test the efficacy of
various haptic feedback conditions. We obtain
results for two conditions of haptic feedback,
produced using two ball sizes, and apply various
metricsto analyze performance. We also examine
ordering effects that occur in the presentation of
these haptic conditions. Our analysis and
experimental findings indicate that the performance
of a dynamic task is governed by the complexity of
system dynamics and the magnitude of haptic
feedback. Our results provide modest support to
recommend exposure to a more complex, higher
force-feedback task prior to the execution of a
simpler lower feedback task.

1. Introduction

The addition of force feedback has been
shown to increase the efficacy of certain virtual
environments for training cognitive (Brooks, 1990)
and manual (Hasser, 1998) skill. Certainly one's
sense of presence and immersion is enhanced when
force feedback isincluded, since one' s basisfor
comparison is experiencein the physical world,
where reaction forces are generally available.
Experience within the prosthetics community has
also shown that force feedback is critical for
promoting impressions that the object in one’s grasp
isan extension of one's own body (Childress, 1986).
Likewise, the success of skill transfer from a virtual
to aphysical environment might be expected to rely
on the availahility of haptic feedback in the virtual
environment. Adams, Klowden and Hannaford
explored the efficacy of force feedback in the
training of assembly tasks. Thisstudy involved a
complex manipulation task that engaged multiple
manual skills. Their results were inconclusive asto
whether force feedback resulted in performance
gains (Adams, 2001). Repperger examined the

performance of humansin adiscrete aiming task in
terms of information processing rate (Repperger,
1995). More accurate aiming was achieved under
the influence of non-linear spring forcesfrom a
haptic interface. Mussalvaldi showed that the
application of ‘forcefields’, through a haptic
interface, caused humans to adapt to the novel
conditions and perform desired motions given
sufficient practice. Such atraining regimen was
shown to have some lasting effects even after the
field was removed, suggesting that humans were
making use of internal models of the force fields
devel oped during training (Mussa-lvadi, 2000).
The above experiments, however, describe tasksin
which the haptic feedback was a simple function of
the human’ s hand position or velocity.

Human operation of dynamic systems,
however, requires more complex interaction than in
static ones. Schaal studied human performancein a
dynamic task involving rhythmic juggling with a
ball and paddle. He showed that in the chosen
dynamical task, humans exploit stable solutions
inherent to the system by selecting anegative
impact acceleration between ball and paddle
(Schaal, 1996). Yamshitaet. a. studied learning
of manual control of acrane mechanism. His
analysis suggested that the solutions produced by
human operators were heuristically developed and
eventually equivalent to certain optimal control
solutions (Y amashita. 1983). Hisresults also
demonstrated that the degree of difficulty of atask
affects the ability of the human in acquiring
proficiency.

These studies of dynamic systems show the
importance of the system characteristics for manual
control. Inthe current study, we will address what
characteristics set dynamic systems apart from static
systems, and what factorsin adynamic system
contribute to task difficulty. In particular, we are
interested in quantifying the value of force feedback
in manual control of dynamical systems. We
investigate how performance in adynamic manual
task is affected by various task conditions, including
the magnitude of force feedback and task
complexity.

Unlike static systems, adynami c system
effectively has memory: its current state is not only
afunction of current input, but also past input.



Therefore, ahuman operator wishing to drive a
dynamic system to adesired state ideally should
command input to the system in away that respects
its history and its dynamical response, rather thanin
an ad hoc, spontaneous way. Thus he standsto
achieve amore optimal control of the dynamic
system in terms of applied effort or efficiency, to
reaching the desired system state.

Although for many common tasksthe
primary mode of sensing may be visual, the haptic
mode may be important in the control of dynamic
systems. Humans possess the ability, through haptic
interaction alone, to identify mechanical properties
of physical objects. In principle, mechanical
properties of a system such asthe inertia, damping,
and stiffness may be ascertained visually, by
observing how an object responds to a known force
over time. These properties, however, are more
readily identified when the human probes
mechanically with afinger, sensing both force and
motion in a collocated fashion.

Consider asimple dynamic system: ablock
of massM dliding without friction with velocity V
under the action of aforce F applied by ahuman, as
shown in Figure 1:
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Figure 1. A Simple Haptic I nteraction
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A human operator must apply aforce trajectory that,
if integrated, will produce the desired velocity
trajectory. To accomplish thisaction, he must either
plan ahead using recall of past information, or
somehow use a real-time process akin to
differentiation of the desired velocity (assuming
open loop control) to accomplish hisgoal. Through
interaction with the block, the human operator may
obtain useful information about its characteristics, in
particular its mass. Such information, along with
previous experience, enables planning and precludes
the need for closed |oop control of the system
involving real-time differentiation of sensed
velocity.

In this example, the use of alarger mass
may actually produce deteriorated performance for
the control of motion, because of the greater
required effort. But the utility of alarger mass may
lieinitsability to present agreater challengeto the

human and thereby create an opportunity for
accelerated learning. Additionally, experience with
similar dynamical systems (inertias or other
integrators), along with force feedback might
provide assistance for planning appropriate input
forcetime-historiesfor anovel task. Therefore, for
dynamic systemsin general, we must ask what type
of haptic conditions provides the optimal
environment for not just achieving performance
goals, but for improving human skill. Equation (1)
illustrates arelationship between the human and the
mani pulandum that, though simple, still requires
identification of the system characteristics, i.e. the
mass, for proper control. For more complex
dynamic systems, the human would be even more
reliant on knowledge of the system.

Certainly haptic feedback can be
considered another information channel to augment
vision or sound. But given the inevitable pairing of
force and motion at the “driving point” where
information transmission occurs, haptic information
isaways accompanied by power transfer.
Inevitably, amechanical contact also supports
dynamical coupling between the communicating
systems. The coupled dynamical system formed by
the introduction of mechanical communication can
in fact display altogether different behaviors than
the two systems are capable of displaying
separately. These two distinct modes of
communication, information and power transfer,
may have implications that are variously positive or
negative when taken in the context of aparticular
task. Quite possibly the information is useful, but
the power transfer only servesto drive the coupled
system away from the task goal. More simply,
increased force feedback may require an increased
amount of work to accomplish the same goal.

Another important axis on which to
consider therole of force feedback isin motor
control programs that may be first developed using
closed loop control but then proceed to open loop,
or automatic control. The value of force feedback
may diminish as motor learning takes place. The
existence of adeleterious effect of force feedback
such as undesirable dynamical coupling or increased
manual workload then constitutes a tradeoff that
must be balanced.

To explorethe variousroles of force
feedback and to begin to assign quantitative value to
them in the context of adynamical task, we have
developed a computer-controlled ball and beam
device, in which a subject balancesaball on a
rotating see-saw. Thistask can be performed onthe
actual device, or inavirtual environment where the
subject sees aball and beam on a computer screen,
but feels suppressed or enhanced force feedback.



We have chosen as our focus of study a system that
displays continuous second-order system dynamics
and that does not feature changing contact
conditions. We define a quantitative performance
messure together with atask involving manual
control of the beam. We suspect that force feedback
plays an important role in learning to stabilize the
ball and beam system, and in this paper we present
an experiment designed to either confirm or deny
that suspicion. We also explore the effects of
ordering, that is, of presenting one of two force-
feedback conditions prior to the other.

In the following sections, we present the
mechanics of the ball and beam, including an
expression for force-feedback as afunction of state
variables and system parameters, we present our
experimental methods and results, and finally we
discuss our findings before briefly outlining future
work.

2. Theoretical Development

In the following section we provide an
analysis of how the dynamics of our prototype task
allowsfor an appropriate test of the influence of
haptic feedback. We devel op the equations of
motion that govern the dynamics of the ball, and the
equations of haptic interaction that describe the
feedback to the human operator.

2.1 Ball and Beam Equations of M otion

Consider the dynamic system depicted in
Figure 2 below. A ball of radiusR rolls without
slipping on a beam, whose angular displacement
relativeto the ground isé. The beam is configured
such that when the ball positionr=0, the ball center
is coincident with the beam pivot. The angular
displacement & of the ball relative to the beam is
related to the displacement r of the ball center to the
beam pivot by the rolling constraint:

r=Rb 2

Figure 2. Schematic of Ball and Beam System

For thisanalysis, we will consider the human
operator to be aflow source, capable of producing

any desired time history é(t) and itstime derivatives.
Therolling constraint (Eq. 2) canbe used to
eliminate the dependent generalized coordinate b,
leaving the single independent generalized
coordinater. A rolling object has amass moment of
inertia

l =mk 2 =amR ?, @)

where misthe mass of the ball or other rolling
object, k isthe radius of gyration, and disa
dimensionless factor (2/5 for a sphere) dependent on
geometry. Thekinetic energy T and potential

energy V of the system are

V =-mgrsing(t) @
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(5)

Using Lagrangian methods, the following equation
of motion isformed:

r=I (gs'nq +rq?- Rc'{) ®)

| = (1+a)-1 — E for asphere.
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It is apparent from the above relations that any two
balls with the same outer radiusR and radius of
gyration k will behave alike, regardless of their
mass.

As can be seen in the equation of motion,
the ball radius R scal es the contribution of the beam
angular acceleration q to ball acceleration. For
small ball radii, motion is dominated by the gravity
term. However for larger ball radii, more complex
dynamics are manifested as the ball acceleration
becomes dependent on the beam angular
acceleration . After linearization of the equation
of motion, we see that asthe ball radiusR
approaches zero, the acceleration I© becomes
proportional to the angle oft):
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The above equation shows that a small ball behaves
like afreefalling object in agravity field modulated

by gt). Thus, this portion of the equation of motion
describes the gross motion of the ball acrossthe
beam. Astheball increasesin size, however, the

ball acceleration I becomes increasingly coupled to
the beam acceleration d(t) as shown in Equation 6.

Asthe ball radiusR further increases, the equation
reduces to asimplekinematic system + =1 Rq(t) -



It isthe contribution of both terms that occur for
intermediate ball diametersthat will increase the
complexity of haptic interaction and prove a greater
challenge to the human operator.

2.2 Equations of Haptic Interaction

For the human operator, the ability to control the
ball dynamics may depend on his ability to
haptically sense the state of the system. Using
Lagrangian methods, and expanding on the analysis
of our dynamic system with the use of an
undetermined multiplier, we devel op the following
equation describing the torque that the human feels
in response to the angle inputs applied:

t@)=1,9(t)+ m?@ Rzgteq'(t) L9, rag(t) + 2req (t) - greos (t)g
g e Rg a
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The mass of the ball actsasamultiplier on all termsf )
except on thefirst, the inertiatorque of the beam.
Thus, the information about the state of the system,
including the ball positionr and its time derivatives
isavailable to the human through the haptic
feedback of the beam torque. Notethat theinertia
of the beam effectively can mask the torque
produced from the ball motion if the mass of the ball
istoo low.

2.3 Summary of Haptic Conditions

The choice of ball mass and choice of ball
size both change the conditions of haptic feedback
that the human will experience. We associate ball
mass with level of force feedback (see Eq 8) and
associate ball size with thelevel of dynamical
complexity (see Eq. 6, 7) and lay out these two
influencesin atable as shownin Table 1.

Low High
Dynamical Dynamical
Complexity Complexity

Low Force

Feedback I I <t I

High Force

Feedback + +

|||¢+ |V

Table 1. Matrix of Haptic Conditionsand Testing
Sequences

Table 1 presents atwo-by-two experiment design to
test the influences of force feedback and dynamical
complexity. We have labeled the quadrantsl, 11, I,
and IV as shown. For the ball and beam system,

mass scal es the force feedback, as described in
Equation 8, and thus determines the rows of Table 1,
either of high or low force feedback. On the other
hand, the ball radius R scal es the contribution of
q(t)to I, relative to the contributions of the other

termsin Equation 6, and thus determines columns of
the table, either of low or high dynamical
complexity.

We see that the extreme cases are for low
force feedback and dynamical complexity (I1) and
high force feedback and dynamica complexity (1V).
We can realize these haptic conditions with the
simple choice of two uniform, solid spheres of
different diameters. A small diameter ball should
correspond to the case of low magnitude of force
feedback and should approximate the dynamic
behavior of Equation 7. A larger diameter ball
should correspond to the case of high magnitude of
force feedback and should behave according to the
dynamic behavior of Equation 6.

Alsoin Table 1, we indicate with arrows
the possible sequences of any two combinations of
haptic condition. Each sequence, along with its
reverse direction, could be used to design an
experiment to demonstrate which haptic condition
produces better performance. In the experiment
presented in this paper, we are testing the ‘11" and
‘IV’ conditionsin both orders.

3. Experimental Methods

3.1 Description of Apparatus

Our experimental apparatus consists of an aluminum
L-channel beam, 0.8 meter in length, pivoted about
its center to acable drive system and support tower.
A motor, not used in this experiment, is connected
to the cable drive system. The motor is envisioned
for the use in future experiments involving virtual
balls, presented with or without force feedback and
governed by fully programmable laws of physics.
The figure below shows the apparatus and typical
operation.
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Figure 3. Ball and Beam Appar atus



For therolling ball, we used two chrome-steel ball
bearings, masses 230 g and 15 grams, with radii

15.9 mm and 6.3 mm, respectively. An encoder on
the motor shaft measures the angle of the beam. To
measure the position of the ball, alinear
potentiometer is utilized. A powered conductive
strip on aninside edge of the beam serves asthe
resistive element; the opposite edge of the beam
serves as the output lead; and the rolling ball serves
asthewiper. The sampling rate of the sensorsis 1
kHz.

3.2 Experimental Protocol

This experiment consisted of two sessions
for each participant, 15 step response trials of
Condition-II, and 15 trials of Condition-IV,
corresponding to the small and large ball sizes. The
sequence of haptic conditions was sel ected
randomly for each participant, and 10 subjects
participated in the study. Two subject groups were
formed corresponding to the session order, the ‘ V-
Il group’ and the‘11-1V group’. The randomization
of the haptic condition sequence was used to address
the effects of ordering so that afair comparison can
be made between the merits of the Il and 1V
conditions.

Each participant was given the same
instructionsfor body stance and hand positioning on
the beam and the criteriafor performance was
explained. There was no prompting of strategy to
the participants, and no demonstration of the control
action was performed. In the experiment task, the
goal wasto control the motion of abeam so that a
rolling ball moves from aresting position at the
center of the beam to atarget position located 20 cm
to the right of center along the beam, and then
remains at rest. Each subject wasinformed that
performance would be judged primarily on
accuracy, and secondarily on speed of response,
where *Accuracy’ isdefined as the ball proximity to
the target position. ‘Speed’ isdefined asthetime
required to achieve good accuracy. Eachtrial lasted
approximately 30 seconds. There was no rest period
between trials, nor between each session testing a
certain condition. The ball position and beam angle
histories were recorded, and error analyses were
conducted as described in section 4.
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4.0 Results
4.1 Development of Performance Metrics

In Figure 4, we present atypical plot of
ball position r and beam angle & under human
operation for asingletrial. Notethat there are
multiple oscillationsin r, and that the oscillations
are not exponentially decaying. Also notethat &
continues to move with appreciable magnitude, even
after the ball beginsto settle around its goal.
Because atypical human control action does not
conform well to characteristics of alinear controller,
especially for the case of an operator in anovel task,
we employ more general methods of error
assessment as measures of performance. We apply
metrics based on the normalized RM S error of the
ball position, aswell as the overshoot error (defined
below), throughout varioustime intervals of the
position response. For each step response, the RMS
error is calculated as:
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where k is atime step, and k,, isthe limit of the
chosen window of analysis. Each time step
corresponds to ameasurement at the system
sampling frequency. We can now form
performance measures for any time window of
interest. The choice of a small window of time at
the outset of control is a measure of the speed of
response. A larger window of time, though still
affected by the speed of response, will have greater
weighting towards the settling behavior of the
response. We chose three time windows of t,,=1, 3,
and 10 seconds, which roughly correspond,
respectively to rise, intermediate, and settling
behavior. To further analyze differencesin
oscillatory responses, we examine the overshoot
error, calculated as absolute difference between the
first peak of oscillation and the target position.

4.2 Analysis of Experimental Data

We present a comparison of performance results of
Condition-1V and Condition-II from averaged data
combined from both subject groups. The results are
shown for the first three-second time window of
RMS error in Figure 5 and for the first overshoot
error in Figure 6. Thetrends found for these
metrics were consistent over the other intervals of
analysis (ty=1, 10).
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The overshoot datais presented in percentage of the
target position, and the norms of error are presented
asfractions of unity. In Figures6 and 7, there are
some indications that Condition-11 produced less
error compared with Condition-1V for overshoot and
RMS error. However, in both metrics, the standard
deviation of theresults are large, and a Student’st-
test does not reveal asignificant difference under
the assumption of equal variance between subjects
groups.

To examine the effects of ordering, we
present the results for first overshoot error and RM S
error for each subject from the first to second
session. In Figure 8 and Figure 9, the sequence of
presentation of haptic condition is shown, read |eft
to right, and the respective error results are shown
for each subject group.
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Figure 9. Comparison between Ordering of Haptic
Conditions on Overshoot Error

This data represents the performance change in the
initial rise period of the response; the same trends
were found to continue throughout the settling of the
response. Consistent with the conclusion that the
larger ball poses a greater challenge, Figures8 and 9
show general trends of increased RM S error for the
I1-IV-group, and decreased overshoot error for the
IV-11 group. Paired t-tests reveals significant
differences (t=2.07, df=6, p=.042, one-tailed) for
group IV-11 in overshoot, but |ess certain differences
for group 11-1V in RMS error (t=2.05, df=4, p=.054,
one-tailed). No strong trends can be observed for the
RMS error for the IV-11 group, nor for the overshoot
error for the ll-1V group.

5. Discussion

Our analysisfirst compares the merits of
the two haptic conditions. The results of overshoot
error show that condition-I1 did not suffer from the
lack of haptic feedback as might be expected.
Conditions Il and IV produced equivocal resultsin
RMS error suggesting that the presence of more
information from force feedback in condition-1V did
not in general compensate for the difficulty of the
more complex task. On the other hand, as
mentioned in Section-1, we may interpret the poor
results of the larger mass as being due to amore
basic cause, the increased workload of interacting
with larger forces. Thus, interms of utility for
closed loop control, higher haptic feedback cannot
be assigned merit from these results.

In examining the trends due to ordering
effects, we would expect that if there isapositive
training effect from the first session, the human

might be able to transfer skill from the first session
and maintain performance while transitioning to the
second. In addition, humans would acquire
knowledge about the system and achieve better
control through the general experience. It appears,
however, that only in the case of group V-1
(transitioning from large to small ball) was there an
indication of clear improvement in overshoot error.
We can conclude the following: either condition-I1
was much easier than |V-- a supposition not
supported by the other transitions shown in Figures
8 and 9, or there was a positive training effect of
having the large ball precede the small ball for
overshoot error. We do not, however, observe a
similar trend in RM S error, which suggests that the
human’ s ability to correct error during the control of
the ball was not aided by haptic feedback of the
large ball.

Asdiscussed in Section 2.1, the choice of
haptic condition places aweighting on different
aspects of the dynamic behavior of the system. The
ordering results for overshoot may indicate that the
effect of aninitial training period with alarge ball
may better train subjects for asmall ball because of
the higher difficulty or the increased intensity of
haptic information. The greater workload of
interaction with higher forces may even constitute a
greater challenge that further prepares subjectsin
group I1V-11 to apply high skill to a subsequent easier
task. Thus, in terms of overshoot error the utility of
practice with the large ball may bein providing
system information to the human that is then
applicable to the small ball. These resultsindicate
that the prior practice with more difficult haptic
conditions could have lasting training effects.

In section 2, our assumption of the human
as aflow source that makes use of haptic
information must be underscored with the notion
that the haptic information arises coupled with
power transfer. The merits of more information
from larger force feedback may be compromised
with greater physical effort requirements. The cost
and benefits of more complex dynamicsis afactor
that may also contribute to the training effect. The
results of our current experiment design suggest the
need to further isolate the task conditions to
determine how the individual factors affect human
performance and learning. Referring to Table-1, we
may design additional experimentsto isolate
variation in magnitude and complexity. For
example, for ahigh complexity of interaction, we
might test high and low magnitudes of force
feedback.



6. Conclusions

For humans, although the primary mode of
sensing in common tasksis visual, the haptic mode
may be especially important in the control of
dynamic tasks. In this paper, we have shown for a
simpletargeting task using our ball and beam
apparatus, human performance is affected by such
factors as the magnitude of force feedback and the
complexity of the system dynamics. We showed
modest evidence that prior exposure to more
complex and high feedback conditions improves
performance on the simpl e tasks when performed
subsequently.

In future work, we propose to synthesize
and haptically render virtual objects whose
dynamical behaviors are specifically designed to
function as training and rehabilitation therapies. To
direct their design, we plan to perform further
human subject studies such as the work reported
herein and develop an underlying theory of human
motor control of dynamical systems. These studies
will incorporate learning of novel dynamical tasks
with skill acquisition and retention tested through
probe-like perturbations to the coupled dynamics.

We aim to present motor tasksin avirtual
environment whose dynamics are sufficiently
similar to tasksin the physical environment to
assure skill transfer, yet might serve as superior skill
training and rehabilitation therapies because we can
assign agraded difficulty level that can be tailored
totheindividual’s abilities. 1f we can discover the
various roles of force feedback in manipulation, we
could differentially promote its learning-supportive
rolesto create novel robotic training paradigms. We
are pursuing various types of assistance, including
virtual fixtures (constraints that prevent incorrect
motions) virtual agents (coaches that can guide
movement, demonstrate strategies, or simply
provide additional feedback) and alterationsto the
apparent laws of physics (changing time constants,
for example.

Our current study highlights the complex
role of haptic feedback in human motor control
performance and motivates amore critical treatment
of the various positive and negative effects of force
feedback. Through this study, we hopeto achieve a
formalized understanding of the role of haptic
feedback in human-machine interactions that will
allow usto design virtual environments for optimal
human training.
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