
1 

Haptic Feedback and Human Performance in a Dynamic Task 
  

Felix Huang R. Brent Gillespie Art Kuo 
Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109 

fhuang@umich.edu; brentg@umich.edu; artkuo@umich.edu 
 
 

Abstract 
  
This study explores the effects of haptic feedback on 
performance and learning by human subjects 
executing a dynamic task.  We present the results of 
experiments involving the control of a ball and 
beam.  Human subjects perform position targeting 
of the ball through hand operation of the beam 
angle.  In our dynamic analysis we discuss how this 
prototype task may be used to test the efficacy of 
various haptic feedback conditions.  We obtain 
results for two conditions of haptic feedback, 
produced using two ball sizes, and apply various 
metrics to analyze performance.  We also examine 
ordering effects that occur in the presentation of 
these haptic conditions.  Our analysis and 
experimental findings indicate that the performance 
of a dynamic task is governed by the complexity of 
system dynamics and the magnitude of haptic 
feedback. Our results provide modest support to 
recommend exposure to a more complex, higher 
force-feedback task prior to the execution of a 
simpler lower feedback task. 
  
1. Introduction 
  

The addition of force feedback has been 
shown to increase the efficacy of certain virtual 
environments for training cognitive (Brooks, 1990) 
and manual (Hasser, 1998) skill.  Certainly one’s 
sense of presence and immersion is enhanced when 
force feedback is included, since one’s basis for 
comparison is experience in the physical world, 
where reaction forces are generally available.  
Experience within the prosthetics community has 
also shown that force feedback is critical for 
promoting impressions that the object in one’s grasp 
is an extension of one’s own body (Childress, 1986).    
Likewise, the success of skill transfer from a virtual 
to a physical environment might be expected to rely 
on the availability of haptic feedback in the virtual 
environment.  Adams, Klowden and Hannaford 
explored the efficacy of force feedback in the 
training of assembly tasks.  This study involved a 
complex manipulation task that engaged multiple 
manual skills. Their results were inconclusive as to 
whether force feedback resulted in performance 
gains (Adams, 2001).  Repperger examined the 

performance of humans in a discrete aiming task in 
terms of information processing rate (Repperger, 
1995).  More accurate aiming was achieved under 
the influence of non-linear spring forces from a 
haptic interface.  Mussa-Ivaldi showed that the 
application of ‘force fields’, through a haptic 
interface, caused humans to adapt to the novel 
conditions and perform desired motions given 
sufficient practice.  Such a training regimen was 
shown to have some lasting effects even after the 
field was removed, suggesting that humans were 
making use of internal models of the force fields 
developed during training (Mussa-Ivaldi, 2000).  
The above experiments, however, describe tasks in 
which the haptic feedback was a simple function of 
the human’s hand position or velocity. 

Human operation of dynamic systems, 
however, requires more complex interaction than in 
static ones.  Schaal studied human performance in a 
dynamic task involving rhythmic juggling with a 
ball and paddle.  He showed that in the chosen 
dynamical task, humans exploit stable solutions 
inherent to the system by selecting a negative 
impact acceleration between ball and paddle 
(Schaal, 1996).     Yamshita et. al. studied learning 
of manual control of a crane mechanism. His 
analysis suggested that the solutions produced by 
human operators were heuristically developed and 
eventually equivalent to certain optimal control 
solutions (Yamashita. 1983).  His results also 
demonstrated that the degree of difficulty of a task 
affects the ability of the human in acquiring 
proficiency.   

These studies of dynamic systems show the 
importance of the system characteristics for manual 
control.  In the current study, we will address what 
characteristics set dynamic systems apart from static 
systems, and what factors in a dynamic system 
contribute to task difficulty. In particular, we are 
interested in quantifying the value of force feedback 
in manual control of dynamical systems.   We 
investigate how performance in a dynamic manual 
task is affected by various task conditions, including 
the magnitude of force feedback and task 
complexity. 

Unlike static systems, a dynamic system 
effectively has memory: its current state is not only 
a function of current input, but also past input.  
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Therefore, a human operator wishing to drive a 
dynamic system to a desired state ideally should 
command input to the system in a way that respects 
its history and its dynamical response, rather than in 
an ad hoc, spontaneous way.  Thus he stands to 
achieve a more optimal control of the dynamic 
system in terms of applied effort or efficiency, to 
reaching the desired system state.  

Although for many common tasks the 
primary mode of sensing may be visual, the haptic 
mode may be important in the control of dynamic 
systems.  Humans possess the ability, through haptic 
interaction alone, to identify mechanical properties 
of physical objects.  In principle, mechanical 
properties of a system such as the inertia, damping, 
and stiffness may be ascertained visually, by 
observing how an object responds to a known force 
over time. These properties, however, are more 
readily identified when the human probes 
mechanically with a finger, sensing both force and 
motion in a collocated fashion.    

Consider a simple dynamic system: a block 
of mass M sliding without friction with velocity V 
under the action of a force F applied by a human, as 
shown in Figure 1: 
 

 
Figure  1. A Simple Haptic Interaction 
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A human operator must apply a force trajectory that, 
if integrated, will produce the desired velocity 
trajectory.  To accomplish this action, he must either 
plan ahead using recall of past information, or 
somehow use a real-time process akin to 
differentiation of the desired velocity (assuming 
open loop control) to accomplish his goal.  Through 
interaction with the block, the human operator may 
obtain useful information about its characteristics, in 
particular its mass.  Such information, along with 
previous experience, enables planning and precludes 
the need for closed loop control of the system 
involving real-time differentiation of sensed 
velocity.    

In this example, the use of a larger mass 
may actually produce deteriorated performance for 
the control of motion, because of the greater 
required effort.  But the utility of a larger mass may 
lie in its ability to present a greater challenge to the 

human and thereby create an opportunity for 
accelerated learning.  Additionally, experience with 
similar dynamical systems (inertias or other 
integrators), along with force feedback might 
provide assistance for planning appropriate input 
force time-histories for a novel task.  Therefore, for 
dynamic systems in general, we must ask what type 
of haptic conditions provides the optimal 
environment for not just achieving performance 
goals, but for improving human skill.  Equation (1) 
illustrates a relationship between the human and the 
manipulandum that, though simple, still requires 
identification of the system characteristics, i.e. the 
mass, for proper control.  For more complex 
dynamic systems, the human would be even more 
reliant on knowledge of the system.  

Certainly haptic feedback can be 
considered another information channel to augment 
vision or sound.  But given the inevitable pairing of 
force and motion at the “driving point” where 
information transmission occurs, haptic information 
is always accompanied by power transfer.  
Inevitably, a mechanical contact also supports 
dynamical coupling between the communicating 
systems. The coupled dynamical system formed by 
the introduction of mechanical communication can 
in fact display altogether different behaviors than 
the two systems are capable of displaying 
separately.   These two distinct modes of 
communication, information and power transfer, 
may have implications that are variously positive or 
negative when taken in the context of a particular 
task.  Quite possibly the information is useful, but 
the power transfer only serves to drive the coupled 
system away from the task goal.  More simply, 
increased force feedback may require an increased 
amount of work to accomplish the same goal.   

Another important axis on which to 
consider the role of force feedback is in motor 
control programs that may be first developed using 
closed loop control but then proceed to open loop, 
or automatic control.  The value of force feedback 
may diminish as motor learning takes place.  The 
existence of a deleterious effect of force feedback 
such as undesirable dynamical coupling or increased 
manual workload then constitutes a tradeoff that 
must be balanced.   

To explore the various roles of force 
feedback and to begin to assign quantitative value to 
them in the context of a dynamical task, we have 
developed a computer-controlled ball and beam 
device, in which a subject balances a ball on a 
rotating see-saw.  This task can be performed on the 
actual device, or in a virtual environment where the 
subject sees a ball and beam on a computer screen, 
but feels suppressed or enhanced force feedback.  
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We have chosen as our focus of study a system that 
displays continuous second-order system dynamics 
and that does not feature changing contact 
conditions.  We define a quantitative performance 
measure together with a task involving manual 
control of the beam.  We suspect that force feedback 
plays an important role in learning to stabilize the 
ball and beam system, and in this paper we present 
an experiment designed to either confirm or deny 
that suspicion.  We also explore the effects of 
ordering, that is, of presenting one of two force-
feedback conditions prior to the other.   

In the following sections, we present the 
mechanics of the ball and beam, including an 
expression for force-feedback as a function of state 
variables and system parameters, we present our 
experimental methods and results, and finally we 
discuss our findings before briefly outlining future 
work.   
 

2. Theoretical Development  
  

In the following section we provide an 
analysis of how the dynamics of our prototype task 
allows for an appropriate test of the influence of 
haptic feedback.  We develop the equations of 
motion that govern the dynamics of the ball, and the 
equations of haptic interaction that describe the 
feedback to the human operator. 
  
2.1 Ball and Beam Equations of Motion 
  

Consider the dynamic system depicted in 
Figure 2 below.  A ball of radius R rolls without 
slipping on a beam, whose angular displacement 
relative to the ground is è.  The beam is configured 
such that when the ball position r=0, the ball center 
is coincident with the beam pivot.  The angular 
displacement â of the ball relative to the beam is 
related to the displacement r of the ball center to the 
beam pivot by the rolling constraint: 
 

βRr =     (2)    
 

 
Figure 2. Schematic of Ball and Beam System 

 
 
For this analysis, we will consider the human 
operator to be a flow source, capable of producing 

any desired time history è(t) and its time derivatives.   
The rolling constraint (Eq. 2) can be used to 
eliminate the dependent generalized coordinate β, 
leaving the single independent generalized 
coordinate r.  A rolling object has a mass moment of 
inertia  

22 mRmkI α== ,  (3) 

 
where m is the mass of the ball or other rolling 
object, k  is the radius of gyration, and á is a 
dimensionless factor (2/5 for a sphere) dependent on 
geometry.  The kinetic energy T and potential 
energy V of the system are 
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Using Lagrangian methods, the following equation 
of motion is formed: 
 

( )θθθλ &&& Rrgr −+= 2sin  (6) 

( )
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1 1 =+= −αλ  for a sphere. 

 
It is apparent from the above relations that any two 
balls with the same outer radius R and radius of 
gyration k  will behave alike, regardless of their 
mass.   

As can be seen in the equation of motion, 
the ball radius R scales the contribution of the beam 
angular acceleration θ&&  to ball acceleration.  For 
small ball radii, motion is dominated by the gravity 
term. However for larger ball radii, more complex 
dynamics are manifested as the ball acceleration r&&  
becomes dependent on the beam angular 
acceleration θ&& .  After linearization of the equation 
of motion, we see that as the ball radius R 
approaches zero, the acceleration r&&  becomes 
proportional to the angle θ(t): 

  

( ) )(tgr θλ≈&&    (7) 

 
The above equation shows that a small ball behaves 
like a free falling object in a gravity field modulated 
by θ(t).  Thus, this portion of the equation of motion 
describes the gross motion of the ball across the 
beam.  As the ball increases in size, however, the 
ball acceleration r&&  becomes increasingly coupled to 
the beam acceleration )(tθ&&  as shown in Equation 6.    

As the ball radius R further increases, the equation 
reduces to a simple kinematic system )(tRr θλ &&&& = .  
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It is the contribution of both terms that occur for 
intermediate ball diameters that will increase the 
complexity of haptic interaction and prove a greater 
challenge to the human operator. 
 
2.2 Equations of Haptic Interaction 
 
For the human operator, the ability to control the 
ball dynamics may depend on his ability to 
haptically sense the state of the system.  Using 
Lagrangian methods, and expanding on the analysis 
of our dynamic system with the use of an 
undetermined multiplier, we develop the following 
equation describing the torque that the human feels 
in response to the angle inputs applied: 
 









−++






 ++= )(cos)(2)()()()( 22 tgrtrrtr

R
r

tRmtIt B θθθθαθτ &&&&&&&&&&

  (8) 
The mass of the ball acts as a multiplier on all terms 
except on the first, the inertia torque of the beam.  
Thus, the information about the state of the system, 
including the ball position r and its time derivatives 
is available to the human through the haptic 
feedback of the beam torque.  Note that the inertia 
of the beam effectively can mask the torque 
produced from the ball motion if the mass of the ball 
is too low.  
 
2.3 Summary of Haptic Conditions  

 
The choice of ball mass and choice of ball 

size both change the conditions of haptic feedback 
that the human will experience.  We associate ball 
mass with level of force feedback (see Eq 8) and 
associate ball size with the level of dynamical 
complexity (see Eq. 6, 7) and lay out these two 
influences in a table as shown in Table 1.  
 

 Low 
Dynamical 
Complexity 

High 
Dynamical 
Complexity 

Low Force 
Feedback 
   II    I 
High Force 
Feedback 
 

 

  III 
 

  IV 
Table 1. Matrix of Haptic Conditions and Testing 

Sequences 
 
Table 1 presents a two-by-two experiment design to 
test the influences of force feedback and dynamical 
complexity.  We have labeled the quadrants I, II, II, 
and IV as shown.  For the ball and beam system, 

mass scales the force feedback, as described in 
Equation 8, and thus determines the rows of Table 1, 
either of high or low force feedback.  On the other 
hand, the ball radius R scales the contribution of 

)(tθ&& to r&& , relative to the contributions of the other 

terms in Equation 6, and thus determines columns of 
the table, either of low or high dynamical 
complexity. 

We see that the extreme cases are for low 
force feedback and dynamical complexity (II) and 
high force feedback and dynamical complexity (IV).  
We can realize these haptic conditions with the 
simple choice of two uniform, solid spheres of 
different diameters.   A small diameter ball should 
correspond to the case of low magnitude of force 
feedback and should approximate the dynamic 
behavior of Equation 7.  A larger diameter ball 
should correspond to the case of high magnitude of 
force feedback and should behave according to the 
dynamic behavior of Equation 6. 

Also in Table 1, we indicate with arrows 
the possible sequences of any two combinations of 
haptic condition.  Each sequence, along with its 
reverse direction, could be used to design an 
experiment to demonstrate which haptic condition 
produces better performance. In the experiment 
presented in this paper, we are testing the ‘II’ and 
‘IV’ conditions in both orders. 

 
3. Experimental Methods  
 
3.1 Description of Apparatus  
 
Our experimental apparatus consists of an aluminum 
L-channel beam, 0.8 meter in length, pivoted about 
its center to a cable drive system and support tower.  
A motor, not used in this experiment, is connected 
to the cable drive system.  The motor is envisioned 
for the use in future experiments involving virtual 
balls, presented with or without force feedback and 
governed by fully programmable laws of physics. 
The figure below shows the apparatus and typical 
operation.    

 
Figure 3. Ball and Beam Apparatus 
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For the rolling ball, we used two chrome-steel ball 
bearings, masses 230 g and 15 grams, with radii 
15.9 mm and 6.3 mm, respectively.  An encoder on 
the motor shaft measures the angle of the beam.  To 
measure the position of the ball, a linear 
potentiometer is utilized.  A powered conductive 
strip on an inside edge of the beam serves as the 
resistive element; the opposite edge of the beam 
serves as the output lead; and the rolling ball serves 
as the wiper.  The sampling rate of the sensors is 1 
kHz. 
 
3.2 Experimental Protocol 
 

This experiment consisted of two sessions 
for each participant, 15 step response trials of 
Condition-II, and 15 trials of Condition-IV, 
corresponding to the small and large ball sizes.   The 
sequence of haptic conditions was selected 
randomly for each participant, and 10 subjects 
participated in the study.  Two subject groups were 
formed corresponding to the session order, the ‘IV-
II group’ and the ‘II-IV group’.  The randomization 
of the haptic condition sequence was used to address 
the effects of ordering so that a fair comparison can 
be made between the merits of the II and IV 
conditions.   

Each participant was given the same 
instructions for body stance and hand positioning on 
the beam and the criteria for performance was 
explained.  There was no prompting of strategy to 
the participants, and no demonstration of the control 
action was performed.  In the experiment task, the 
goal was to control the motion of a beam so that a 
rolling ball moves from a resting position at the 
center of the beam to a target position located 20 cm 
to the right of center along the beam, and then 
remains at rest.   Each subject was informed that 
performance would be judged primarily on 
accuracy, and secondarily on speed of response, 
where ‘Accuracy’ is defined as the ball proximity to 
the target position.  ‘Speed’ is defined as the time 
required to achieve good accuracy.  Each trial lasted 
approximately 30 seconds.  There was no rest period 
between trials, nor between each session testing a 
certain condition.  The ball position and beam angle 
histories were recorded, and error analyses were 
conducted as described in section 4. 
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Figure 4. Human Control Typical Ball Response: 

plot of position as a Function of Time  
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Figure 5. Human Control Typical Ball Response:  

plot of beam angle as a Function of Time  
 
4.0 Results  

 
4.1 Development of Performance Metrics  
 

In Figure 4, we present a typical plot of 
ball position r and beam angle è under human 
operation for a single trial.  Note that there are 
multiple oscillations in r, and that the oscillations 
are not exponentially decaying.  Also note that è 
continues to move with appreciable magnitude, even 
after the ball begins to settle around its goal.  
Because a typical human control action does not 
conform well to characteristics of a linear controller, 
especially for the case of an operator in a novel task, 
we employ more general methods of error 
assessment as measures of performance.  We apply 
metrics based on the normalized RMS error of the 
ball position, as well as the overshoot error (defined 
below), throughout various time intervals of the 
position response.  For each step response, the RMS 
error is calculated as: 
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where k  is a time step, and kw is the limit of the 
chosen window of analysis.  Each time step 
corresponds to a measurement at the system 
sampling frequency.  We can now form 
performance measures for any time window of 
interest.  The choice of a small window of time at 
the outset of control is a measure of the speed of 
response.  A larger window of time, though still 
affected by the speed of response, will have greater 
weighting towards the settling behavior of the 
response.   We chose three time windows of tw=1, 3, 
and 10 seconds, which roughly correspond, 
respectively to rise, intermediate, and settling 
behavior.  To further analyze differences in 
oscillatory responses, we examine the overshoot 
error, calculated as absolute difference between the 
first peak of oscillation and the target position.   
 
4.2 Analysis of Experimental Data 
 
We present a comparison of performance results of 
Condition-IV and Condition-II from averaged data 
combined from both subject groups.  The results are 
shown for the first three-second time window of 
RMS error in Figure 5 and for the first overshoot 
error in Figure 6.   The trends found for these 
metrics were consistent over the other intervals of 
analysis (tw=1, 10). 
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Figure 6.  Average of RMS Error for  

Haptic Conditions A and D (3 Second Time Window) with 
standard errors of means shown.  
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Figure 7. Average Percent First Overshoot Error 

Comparison of Conditions A and D with standard 
errors of means shown. 

 
The overshoot data is presented in percentage of the 
target position, and the norms of error are presented 
as fractions of unity.  In Figures 6 and 7, there are 
some indications that Condition-II produced less 
error compared with Condition-IV for overshoot and 
RMS error.  However, in both metrics, the standard 
deviation of the results are large, and a Student’s t-
test does not reveal a significant difference under 
the assumption of equal variance between subjects 
groups. 

To examine the effects of ordering, we 
present the results for first overshoot error and RMS 
error for each subject from the first to second 
session.  In Figure 8 and Figure 9, the sequence of 
presentation of haptic condition is shown, read left 
to right, and the respective error results are shown 
for each subject group.   
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Conditions on Overshoot Error 

 
This data represents the performance change in the 
initial rise period of the response; the same trends 
were found to continue throughout the settling of the 
response.  Consistent with the conclusion that the 
larger ball poses a greater challenge, Figures 8 and 9 
show general trends of increased RMS error for the 
II-IV-group, and decreased overshoot error for the 
IV-II group.  Paired t-tests reveals significant 
differences (t=2.07, df=6, p=.042, one-tailed) for 
group IV-II in overshoot, but less certain differences 
for group II-IV in RMS error (t=2.05, df=4, p=.054, 
one-tailed). No strong trends can be observed for the 
RMS error for the IV-II group, nor for the overshoot 
error for the II-IV group. 
 
5. Discussion 
 

Our analysis first compares the merits of 
the two haptic conditions.  The results of overshoot 
error show that condition-II did not suffer from the 
lack of haptic feedback as might be expected.  
Conditions II and IV produced equivocal results in 
RMS error suggesting that the presence of more 
information from force feedback in condition-IV did 
not in general compensate for the difficulty of the 
more complex task.  On the other hand, as 
mentioned in Section-1, we may interpret the poor 
results of the larger mass as being due to a more 
basic cause, the increased workload of interacting 
with larger forces.  Thus, in terms of utility for 
closed loop control, higher haptic feedback cannot 
be assigned merit from these results.  

In examining the trends due to ordering 
effects, we would expect that if there is a positive 
training effect from the first session, the human 

might be able to transfer skill from the first session 
and maintain performance while transitioning to the 
second. In addition, humans would acquire 
knowledge about the system and achieve better 
control through the general experience.   It appears, 
however, that only in the case of group IV-II 
(transitioning from large to small ball) was there an 
indication of clear improvement in overshoot error.  
We can conclude the following: either condition-II 
was much easier than IV-- a supposition not 
supported by the other transitions shown in Figures 
8 and 9, or there was a positive training effect of 
having the large ball precede the small ball for 
overshoot error.  We do not, however, observe a 
similar trend in RMS error, which suggests that the 
human’s ability to correct error during the control of 
the ball was not aided by haptic feedback of the 
large ball.   

As discussed in Section 2.1, the choice of 
haptic condition places a weighting on different 
aspects of the dynamic behavior of the system.  The 
ordering results for overshoot may indicate that the 
effect of an initial training period with a large ball 
may better train subjects for a small ball because of 
the higher difficulty or the increased intensity of 
haptic information.  The greater workload of 
interaction with higher forces may even constitute a 
greater challenge that further prepares subjects in 
group IV-II to apply high skill to a subsequent easier 
task.  Thus, in terms of overshoot error the utility of 
practice with the large ball may be in providing 
system information to the human that is then 
applicable to the small ball. These results indicate 
that the prior practice with more difficult haptic 
conditions could have lasting training effects.     

In section 2, our assumption of the human 
as a flow source that makes use of haptic 
information must be underscored with the notion 
that the haptic information arises coupled with 
power transfer.  The merits of more information 
from larger force feedback may be compromised 
with greater physical effort requirements.  The cost 
and benefits of more complex dynamics is a factor 
that may also contribute to the training effect.  The 
results of our current experiment design suggest the 
need to further isolate the task conditions to 
determine how the individual factors affect human 
performance and learning.  Referring to Table-1, we 
may design additional experiments to isolate 
variation in magnitude and complexity.  For 
example, for a high complexity of interaction, we 
might test high and low magnitudes of force 
feedback.   
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6. Conclusions 
 

For humans, although the primary mode of 
sensing in common tasks is visual, the haptic mode 
may be especially important in the control of 
dynamic tasks.  In this paper, we have shown for a 
simple targeting task using our ball and beam 
apparatus, human performance is affected by such 
factors as the magnitude of force feedback and the 
complexity of the system dynamics.  We showed 
modest evidence that prior exposure to more 
complex and high feedback conditions improves 
performance on the simple tasks when performed 
subsequently.   
 In future work, we propose to synthesize 
and haptically render virtual objects whose 
dynamical behaviors are specifically designed to 
function as training and rehabilitation therapies.  To 
direct their design, we plan to perform further 
human subject studies such as the work reported 
herein and develop an underlying theory of human 
motor control of dynamical systems.  These studies 
will incorporate learning of novel dynamical tasks 
with skill acquisition and retention tested through 
probe-like perturbations to the coupled dynamics.  

We aim to present motor tasks in a virtual 
environment whose dynamics are sufficiently 
similar to tasks in the physical environment to 
assure skill transfer, yet might serve as superior skill 
training and rehabilitation therapies because we can 
assign a graded difficulty level that can be tailored 
to the individual’s abilities.  If we can discover the 
various roles of force feedback in manipulation, we 
could differentially promote its learning-supportive 
roles to create novel robotic training paradigms.  We 
are pursuing various types of assistance, including 
virtual fixtures (constraints that prevent incorrect 
motions) virtual agents (coaches that can guide 
movement, demonstrate strategies, or simply 
provide additional feedback) and alterations to the 
apparent laws of physics (changing time constants, 
for example.   
 Our current study highlights the complex 
role of haptic feedback in human motor control 
performance and motivates a more critical treatment 
of the various positive and negative effects of force 
feedback.  Through this study, we hope to achieve a 
formalized understanding of the role of haptic 
feedback in human-machine interactions that will 
allow us to design virtual environments for optimal 
human training. 
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