
Haptic Noise Cancellation: Restoring Force 
Perception in Robotically-Assisted Beating Heart 
Surgery

Citation
Yuen, Shelten G., Karl-Alexander Dubec, Robert D. Howe. 2010. Haptic noise cancellation: 
Restoring force perception in robotically-assisted beating heart surgery. Paper presented at the 
IEEE Haptics Symposium, Waltham, MA, March 25-26, 2010.

Published Version
http://www.hapticssymposium.org/next_conference.html

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:4481410

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available 
under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you.  Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:4481410
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Haptic%20Noise%20Cancellation:%20Restoring%20Force%20Perception%20in%0D%0ARobotically-Assisted%20Beating%20Heart%20Surgery&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=9fff67bbebc1b03e87c3eae9080aff0a&departmentEngineering%20and%20Applied%20Sciences
https://dash.harvard.edu/pages/accessibility


Haptic Noise Cancellation: Restoring Force Perception in
Robotically-Assisted Beating Heart Surgery

Shelten G. Yuen∗ Karl-Alexander Dubec Robert D. Howe†

Harvard School of Engineering and Applied Sciences, Cambridge, MA, USA

ABSTRACT

Beating heart surgical methods have the potential to removethe
need for the heart-lung machine and its attendant side effects, but
must contend with the motion of the heart. Recent research in
robotically-assisted surgery has produced a handheld, actuated in-
strument that can track and compensate for heart motion; however,
the reaction forces caused by the actuation mechanism make it dif-
ficult for the surgeon to feel the heart during the operation,which
can lead to unsafe tissue manipulation. This paper investigates an
instrument design that negates reaction forces to the user by moving
a counterweight out of phase with the moving mass of the actuator.
The resulting instrument retains the tracking and motion compensa-
tion abilities of the current instrument, but reduces reaction forces
felt by the user by over 80%. Subjects used the new instrument
in an in vitro beating heart surgical contact task and performance
was compared to the previously existing instrument. The newin-
strument provided a 28% increase in user force sensitivity and im-
proved user reaction times by 51%, indicating that the new instru-
ment greatly enhances force perception in beating heart tasks.

Keywords: Beating heart surgery, motion compensation, surgical
robotics, force perception

1 INTRODUCTION

Nearly 700,000 open-heart procedures are performed annually in
the United States. These procedures involve stopping the heart
and using the heart-lung machine, a pump that circulates andoxy-
genates the blood. There are a number of serious side effectsasso-
ciated with the use of the heart-lung machine, such as an increased
risk of stroke [6] and long-term neurological dysfunction [17],
which has spurred interest in procedures performed on the heart
while it is still beating – so-calledbeating heart surgery. However,
these procedures are difficult to perform because cardiac motions
are too fast for humans to track by hand [2, 4].

For some procedures, beating heart surgery could be aided by
a small robotic system. One such procedure is mitral valve annu-
loplasty, where the anatomical structures of interest largely move
along a single axis. This permits the use of a robot with a single
degree of freedom [13]. Recent research has developed a handheld,
robotic tool to assist the surgeon in performing beating heart mitral
valve annuloplasty (Figure 1) [12, 13]; the surgeon can thenrepair
the valve despite its rapid motion. The instrument, called the mo-
tion compensation instrument (MCI), tracks the fast motionof the
heart tissue and allows the surgeon to operate on the beatingheart as
if it were motionless.In vivo tests confirm its ability to successfully
compensate for mitral annulus motion [14, 15].

While this instrument enables a new class of beating heart repair
procedures, the current device is hampered by a design in which
the surgeon using the device cannot easily feel the heart during the
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operation because of inertial forces generated by motion ofthe ac-
tuator (Figure 2A). This masks force sensations that revealthe state
of contact between the instrument and the cardiac structures, as well
as tissue properties at the instrument tip. This makes it difficult for
the surgeon to manipulate moving heart tissue in a safe manner.

One method for rectifying the deficit in haptic perception ofthe
current MCI device would be the use of a teleoperated surgical
robotic system. In this scenario, the surgeon would interact with
a master controller that would relay motion commands to a slave
robot that compensates for the heart tissue motion. A force sensor
in the instrument would provide a signal for feedback to the sur-
geon. While this teleoperated approach has been clinicallysuccess-
ful in a number of surgical procedures [3, 1], current systems do not
have the necessary instrument speed or force feedback capabilities,
and systems with the requisite capabilities would be expensive to
develop and use.

An alternative is the development of methods for cancelling
within the instrument itself the inertial reaction forces that mask
the desired haptic perception. This approach is analogous to noise
cancellation in audio systems [5]. This approach presents adiffer-
ent set of challenges than conventional haptic interface design in
that the goal is to accurately sense and reproduce not the intended
haptic stimulus but rather an interfering haptic signal – inthis case,
the inertial reaction forces from the motion compensation actuator.
Previous work toward tremor compensation for microsurgeryalso
attempts to cancel unwanted motions, but in this case the motions
are due to the surgeon’s hands and the goal is improved position
accuracy, not enhanced haptic perception [9, 8].

In this work, we investigate the challenges of this haptic noise
cancellation approach through the development of a new device
called the motion compensation instrument II (MCII). This instru-
ment incorporates a counterweight to cancel inertial forces so that
they are not transmitted to the user. With this new instrument,
the surgeon is able to operate on the beating heart while retain-
ing force perception; that is, the surgeon is able to performbeating
heart surgery with nearly the same force information that would be
present if the heart and instrument were stationary. In the following,
we first describe the design and characteristics of the MCII.Two
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Figure 1: The original motion compensation instrument (MCI) tracks
heart structures that move along one axis to assist the surgeon in
beating heart surgery [12]. Inertial forces caused by actuation of the
motor obscure force perception to the surgeon.
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Figure 2: Top view of the MCI actuation mechanism (A) and a coun-
terbalanced actuation mechansim (B). Actuation of the MCI gener-
ates inertial forces and torques to the user. In the counterbalanced
design (B), reaction forces from the actuator and other moving com-
ponents (top and bottom arrows) are cancelled by a counterweight
moving in the opposite direction (middle arrow). The masses and lo-
cations of the moving components are chosen to ensure torque-free
actuation.

subsequent user studies comparing the previous MCI with thenew
MCII in an in vitro beating heart task demonstrate that the counter-
weight design increases force sensitivity and reduces response time
for the user.

2 COUNTERBALANCED MOTION COMPENSATION
INSTRUMENT

2.1 Design and Motion Tracking Performance

Like its predecessor, the MCII is intended to compensate forthe
primarily uniaxial motion of the mitral valve annulus. A successful
design must be able to physically track this motion. Adult human
mitral annulus motion has been characterized with a maximumve-
locity of 210 mm s−1, maximum acceleration of 3.8 m s−2, 18 mm
range of motion, and significant spectral components up to atleast
10 Hz [13]. The MCII should exceed these specifications using
an actuation scheme in which inertial forces are cancelled and no
torques about the handle are generated.

These requirements lead to the counterbalanced linear motor de-
sign shown schematically in Figure 2B. The actuator mass andother
moving components are split into two halves on either side ofa
counterweight. The counterweight moves 180 degrees out of phase
with the actuator to cancel its inertia. The masses and locations of
the split components are selected so that torques are not generated
when the system moves. The use of a linear motor enables high
speed actuation with relatively low moving mass and friction.

The overall design of the MCII is depicted in Figure 3. Actuation
of the counterweight is achieved with a capstan that connects the
motor slide to the counterweight slide (Figure 4). A capstanis cho-
sen to avoid backlash. The MCII uses a voice coil motor (NCC10-
15-023-1X, H2W Technologies, Inc., Valencia, CA, USA) and a
high linearity potentiometer (CLP13-15, P3 America, San Diego,
CA, USA) for position sensing. These components are mountedon
a linear ball-bearing stage (BX4-3, Tusk Direct, Inc., Bethel, CT,
USA). The MCII prototype has a 2.54 cm range of motion and is
powered by BOP36-1.5 M linear power amplifier (Kepco, Flushing,
NY, USA). PID servo control is implemented in a 1 kHz servo loop
on a personal computer under Windows XP.

The resulting system has the characteristics required to track the
mitral valve annulus. The MCII can attain velocities and accelera-
tions up to 1.4 m s−1 and 18.5 m s−2, respectively. Controller gains
were tuned to achieve good stiffness and response. The system is
overdamped to avoid dangerous overshoot and instability. The sys-
tem has a -3 dB point of 18 Hz and roll off rate of 40 dB per decade,
which is sufficient to track the mitral valve annulus. The tracking
abilities of the MCII were demonstrated by commanding the sys-
tem to follow human mitral valve annulus motion at 60 beats per
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Figure 3: 3D model of MCII retracted (A) and at full extension (B). A
handle is mounted to the base (below the middle of the counterweight
slide).

Figure 4: A capstan with two cables. When the top slide moves to the
right, the top cable pulls the capstan clockwise. This, in turn, pulls
the lower cable toward the left and moves the lower slide to the left.
In the MCII, one cable joins the capstan to the motor slide and the
other ties the counterweight slide to the capstan.
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Figure 5: The MCII tracking a prerecorded mitral valve annulus tra-
jectory. Trajectory obtained from [13].
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Figure 7: Example force measurements for the MCI (left column) and MCII (right column). Large reaction forces from the moving mass of the
MCI are present on all axes. Counterbalancing in the MCII significantly reduces reaction forces. Fx, the x-axis force, is in line with the linear
actuator for both devices.

Figure 6: Force-torque characterization setup. The y-axis of the sen-
sor points outward from the page. Both the MCI and MCII were tested
in this manner.

minute (bpm) (Figure 5).
Slip is an important consideration in this design. Should the ca-

bles slip around the capstan, the backlash-free advantage of this de-
sign would be lost. The governing equation for how much tension
is required to make a cable slip around a capstan is

Tload = Tholdexp(µθ ), (1)

whereTload is the maximum tension that can be sustained on the
other side of the capstan before the cable slips,Thold is the tension
in the cable on one side of the capstan,µ is the coefficient of friction
between the cable and the capstan, andθ is the angle around which
the cable is wound. Assuming that the cable is wrapped around
the capstan twice (θ = 4π rad) and both the cable and capstan are
made of steel (µ = 0.7), the cable would only slip if the tension on
one side of the cable was approximately 6,600 times higher than the
other. Thus, with a small amount of tension in the cables, theslip
in the system while moving is negligible.

2.2 Force-Torque Characterization
A six-axis force-torque analysis was performed to measure the iner-
tial force cancellation properties of the MCII. The handle of the in-
strument was removed, and a six-axis force-torque sensor (Mini40,
ATI Industrial Automation, Apex, NC, USA) was attached to its
base, as depicted in Figure 6. The MCII was then controlled to
follow a prerecorded trajectory of a human mitral valve annulus,
and the resulting forces and torques at the handle were recorded.
The MCI was tested similarly to provide a baseline measurement
of forces and torques against which to compare the MCII. Thiswas
performed three times on both devices for 25 s per trial.

Representative force results for this test are shown in Figure 7,
which plots the three axis force data for the MCI and MCII. Figure 8

shows the torques for both devices. The figures indicate thatthe
counterweight in the MCII greatly reduces the forces and torques
that result from actuator motion. Figure 9 summarizes the RMS
forces and torques across all trials. The RMS forces and torques
on most of the axes were reduced by 84% in the MCII. The z-axis
torque showed a smaller reduction of 42%. One possible reason
for this is that the drive yoke flexes slightly when the motor applies
a force on one end. Friction from motion on the slide end of the
drive yoke could make the yoke act like a cantilever, and a force
on the motor end of this beam cound bend it, resulting in a small
torque. However, the magnitude of this torque is small (approxi-
mately 0.08 Nm peak-to-peak) and may be resolved with a gusset
or similar reinforcement between the drive yoke and slide track.

The main observation from this test is that Fx, the force compo-
nent along the axis of the instrument and the primary axis of inter-
est to the surgeon during a beating heart operation, was reduced by
84% from 0.58 N (MCI) to 0.09 N (MCII) RMS.

3 PERFORMANCE EVALUATION IN A BEATING HEART TASK

Experiments were performed to determine if force perception was
actually restored to the user inin vitro beating heart tasks. Two
studies were conducted in which users were asked to tap a mitral
valve annulus motion simulator [13] following a typical annulus
trajectory (Figure 5) using both motion compensation devices (Fig-
ure 10). The contact surface was a compliant target (133 N m−1).
The first study measured the contact force detection threshold for
subjects using the devices. The second study measured the time for
subjects to realize and physically respond to making contact with
the target when using the devices. In both studies, vision and hear-
ing were obscured so that contact could only be determined bythe
forces imparted to the user through the hand gripping the instrument
handle.

A total of 11 test subjects (ten male and one female, aged 22
to 60; six subjects for the contact force study and five subjects for
the contact time study) participated in the studies. Two cardiac sur-
geons experienced in beating heart surgery and the use of theMCI
participated in the contact time study. All subjects participated vol-
untarily following informed consent under a protocol approved by
the University Institutional Review Board.

3.1 Contact Force Study
In this study, users were asked to touch the instrument to thesimula-
tor while trying to minimize contact forces. Forces were measured
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Figure 8: Example torque measurements for the MCI (left column) and MCII (right column). Large torques from the moving mass of the MCI are
present on all axes. Counterbalancing in the MCII significantly reduces torques.
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Figure 9: RMS force and torque measurements for the MCII and MCI
across three trials. Error bars show standard error. Asterisks indicate
statistical significance (p < 0.05) between conditions in a two-sided t-
test.

with a custom, tip-mounted optical force sensor (0.17 N RMS ac-
curacy) [16] and recorded.

Users performed the task under six conditions. In the ‘station-
ary’ condition, the heart motion simulator did not move and the
MCII was commanded to a fixed position. This provided a baseline
for comparison against trials with a moving target and a motion
compensation device. In the ‘MCII’ condition, the heart motion
simulator moved at 60 bpm and the MCII tracked its motion. The
‘MCI’ condition did likewise but using the MCI rather than the new
MCII device. The remaining three conditions investigated the effect
of imperfect instrument balancing by placing incorrect amounts of
counterweight on the MCII corresponding to 0.64, 1.59, and 2.12
times the correct mass (208 g).

Linear

Actuator

Figure 10: User experiment setup.

3.2 Contact Time Study

In this study, users were asked to slowly bring the instrument into
contact with the simulator then pull back as soon as contact was
felt. Contact was measured electrically using a low voltagecircuit
that closed when the instrument and simulator touched. Users were
asked to perform this tapping task in the same stationary, MCII, and
MCI conditions of the contact force study.

The principle behind this experiment was that longer contact
times would be indicative of less force perception. For example,
contact times should be short when the instrument and the simulator
are stationary because users do not have to contend with the motion
of the instrument. Contact times with the MCI should be longer
than the stationary case because the reaction forces confuse users
and make them less able to feel when contact had been achieved.
Low contact times with the MCII would indicate that force percep-
tion has been restored.

3.3 Testing Protocol

Each subject test consisted of a practice period followed bythe tri-
als corresponding to their study. Practice familiarized the test sub-
jects with the motion compensation devices and the evaluation task
in order to bring the subjects to a uniform level of ability and to
limit learning effects during the trials. Practice was divided into
three three-minute segments during which the subject was free to
experiment with using the MCII to tap the heart motion simulator.
During the first segment of training, the target and instrument were
stationary. The second segment of training involved a moving tar-
get and a stationary instrument. In the third training segment, the
target was moving and the MCII tracked its motion.

Following the completion of training, the subjects performed the



trials corresponding to the conditions of their study. In the contact
force study, the order of conditions was determined using a bal-
anced Latin square to minimize the effects of between-trialcarry-
over and learning on collected data. In the contact time study, each
user performed the trials in order of the stationary case, the MCI
case, and the MCII case. Five trials were performed per condition
in both studies, for a total of 30 trials in the contact force study
and 15 trials in the contact time study. The means of peak con-
tact forces and contact times were compared for statistically sig-
nificant differences using Matlab (Version 7.6.0, The MathWorks,
Inc., Natick, MA, USA). Comparisons were done by analysis of
variance (ANOVA) and planned comparisons between conditions
using two-sidedt-tests. In all cases, significance corresponds to
p < 0.05.
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Figure 11: Peak contact forces for the stationary case and over five
different counterbalance ratios. A ratio of 0 (no counterweight) corre-
sponds to the MCI. A ratio of 1.0 (perfectly balanced) corresponds to
the MCII. All other ratios are the result of mounting the MCII with ei-
ther less or more weight than required to cancel the actuator inertial
forces. Error bars show standard error. Asterisks indicate statistical
significance (p < 0.05).
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Figure 12: Contact time for the stationary, MCI, and MCII cases. Er-
ror bars show standard error. Asterisks indicate statistical signifi-
cance (p < 0.05).

4 RESULTS

Figure 11 shows the force sensitivity across users in the contact
force study as measured by peak contact forces. The average force
for the stationary case was 0.71± 0.13 N (mean± standard er-
ror). The MCI case (counterbalance ratio of zero) yielded forces
that were 63% larger (1.16±0.09 N) and this difference was statis-
tically significant (p < 0.01). In contrast, the corresponding value
for the balanced MCII case (ratio of one) was only 18% larger than
the stationary case at 0.84± 0.07 N. The difference between the
MCII and stationary case was not statistically significant for this
sample size (p = 0.36,n = 30). The MCII improved force sensitiv-
ity over the MCI by 28% (p = 0.007).

An unbalanced instrument (counterbalance ratio not equal to
one) led to larger contact forces because the user had to try to de-
tect contact while contending with the inertial forces of the device.
Partial balancing (ratio of 0.64) resulted in a 29% contact force in-
crease over the balanced case (p = 0.017). Performance was more
sensitive to over-weighting the instrument (ratios of 1.59and 2.12),
which increased contact forces by 70–89% (p < 0.01).

Figure 12 shows the response time across users in the contact
time study. The average contact time for the stationary casewas
0.51± 0.05 s. The average times for the MCI and MCII cases
were 1.29± 0.15 s and 0.63± 0.05 s (statistically significant dif-
ference,p = 1.05× 10−4). Use of the existing motion compen-
sation device (MCI, central bar) results in reaction times that are
152% longer than the stationary case, with clear statistical signifi-
cance (p = 8.69×10−6). However, with the revised MCII (right-
most bar), the mean contact time was only 23% longer. Note that
the difference between the MCII and stationary case was not sta-
tistically significant for this sample size (p = 0.10, n = 25). The
MCII reduced contact times by 51% when compared to the MCI
(p = 0.0001). No significant performance differences were ob-
served between the surgeons and nonsurgeons in this study.

5 DISCUSSION

In this paper, we investigate the feasibility of active cancellation of
“force noise” to enhance haptic perception of contact interactions.
We present and validate a counterbalanced motion compensation
instrument, the MCII, that restores the force sensation needed to
safely manipulate beating heart tissues during surgery. Our results
show that the MCII improves user force sensitivity and response
time over the existing motion compensation device by 28% and
51%, respectively.

Results from the contact force study also showed that perfor-
mance has strong dependence on the amount of counterweighting
used in the instrument. This is not surprising since the userhad
to perform the task in the presence of uncancelled inertial forces
when the instrument was not balanced. The stronger sensitivity to
overweighting that was observed (Figure 11) is probably dueto the
nonintuitiveness of performing the task when the reaction forces are
reversed from the target motion. These findings have implications
for future research in inertially-cancelled motion compensation in-
struments. For example, an alternate design for the MCII could
have employed a second motor that works in the opposite direc-
tion but receives the same motor currents as the first motor. This
approach may not be as effective because any interactions ofthe in-
strument with tissue that result in damped motion of the firstmotor
would not be mirrored by the second motor. This would act as an
effective over-weighting of the instrument.

This study demonstrated the feasibility of actively canceling hap-
tic interference in a practical application. Generalization to a wider
range of applications will bring up a number of issues. Only asingle
degree of freedom was required for the MCII, and a sensor was not
required to measure the motions to be cancelled: the cable trans-
mission directly coupled the counterweight to the instrument mo-
tion. The integration of sensing and actuation in multiple degrees



of freedom for motion cancellation may be challenging, although
the approach was successfully implemented in handheld devices for
microsurgical tremor reduction [9, 8]. In that application, however,
the motions and forces were orders of magnitude smaller thanfor
most haptic-based tasks. In general, haptic noise cancellation can
draw upon extensive results in machine design, where minimization
of vibration is frequently a goal, in part to reduce human exposure
to potentially harmful vibrations [10, 7]. The emphasis in the noise
cancellation approach, however, must be in defining those aspects
of force or motion (frequency, magnitude, direction, etc.)that in-
terfere with haptic perception and sensory-based motor control.

Future work in the development of the MCII will focus on study-
ing the benefits of motion compensation with and without force per-
ception in more complex beating heart surgical tasks such asanchor
driving [11] and suturing. Force perception may benefit these tasks
by enabling the surgeon to use the mechanical response of thetissue
to guide the anchor/needle as it is driven.
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