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Abstract— Telemanipulation of deformable objects requires 
high precision and dexterity from the users, which can be in- 
creased by kinesthetic and tactile feedback. However, the object 
shape can change dynamically, causing ambiguous perception 
of its alignment and hence errors in the robot positioning. 
Therefore, the tilt angle and position classification problem has 
to be solved to present a clear tactile pattern to the user. This 
work presents a telemanipulation system for plastic pipettes 
consisting of a multi-contact haptic device LinkGlide to deliver 
haptic feedback at the users’ palm and two tactile sensors array 
embedded in the 2-finger Robotiq gripper. We propose a novel 
approach based on Convolutional Neural Networks (CNN) to 
detect the tilt and position while grasping deformable objects. 
The CNN generates a mask based on recognized tilt and position 
data to render further multi-contact tactile stimuli provided to 
the user during the telemanipulation. The study has shown that 
using the CNN algorithm and the preset mask, tilt, and position 
recognition by users is increased from 9.67% using the direct 
data to 82.5%. 

 

I. INTRODUCTION 

The increasing number of teleoperation and telexistence 

systems in recent years has opened a demand for reliable 

feedback on the position and orientation of manipulated 

objects to achieve dexterous interaction with them. 

Many studies have started implementing tactile displays 

to provide high-fidelity feedback. Tachi et al. [1] introduced 

the concept of a highly immersive and mobile telexistence 

system TELESAR, which includes an autostereoscopic 3D 

display for visual feedback, wearable tactile and thermal 

display. Several wearable haptic devices were suggested to 

achieve a highly immersive VR experience, with a significant 

focus on the human fingertips due to the high density of 

Rapidly Adapting (RA) tactile receptors in this area. For 

example, in the works of Mengoni et al. [2], and Peruzzini et 

al. [3] electro-stimulation was applied to deliver the sensation 

of roughness, slickness, and texture coarseness of materials 

(e.g., wood, paper, fabric) to the fingertip. Pacchierotti et 

al. [4] developed the teleoperation system that performs 

both kinesthetic and vibrotactile feedback at the pen-shaped 

handle to decrease the targeting error of the robot and the 

orientation error of its tool. A wearable 3-DoF fingertip 

haptic displays was suggested by Gabardi et al. [5] for shape 

rendering in virtual reality. The multimodal stimulation was 
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Fig. 1. Tilt angle recognition by the DeepXPalm system with high density 
tactile sensor array. 

 

 
further explored by Yem et al. [6] with FinGAR, a wearable 

tactile device using mechanical and electrical stimulation 

for fingertip interaction with the virtual world. Tirado et al. 

[7] proposed a tactile sharing system ElectroAR for remote 

training of human hand skill, with a tactile sensing glove 

on the follower’s side that records the pressure data about 

grasped objects and an electro-tactile stimulation glove on 

the remote side. 

However, while the density of the receptors in the human 

fingertips of 141 units/cm2 is higher than their density in 

the palm of 25 units/cm2, the overall number of receptors 

on the palm is compensated by its larger area, having a total 

of 30% of all the RA receptors of the glabrous skin of the 

hand [8]. The investigation on the user’s palm sensitivity, 

performed by Altamirano et al. [9], revealed distinguishable 

active areas at the palm during the interaction with surfaces at 

different forces and a high recognition rate of tactile patterns 

representing these applied forces. 

While the palm area can potentially be utilized for the 

high-fidelity haptic feedback, few haptic devices were aimed 

at this area of the human hand. Mart´ınez et al. [10] developed 

a vibrotactile glove for virtual reality with twelve vibrotactile 

actuators on the fingertips and palm of the user. Altamirano 

et al. [11] developed a multi-contact wearable haptic display 

with inverted five-bar linkages. The linkage structure was 

also utilized by Son et al. [12] in combination with an 

exoskeleton glove for the tactile perception of large objects. 
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Fedoseev et al. [13] proposed a linkage array for tactile 

rendering with an encountered-type haptic display. Fani et al. 

[14] implemented the system where mechanotactile feedback 

was used at several point on human arm to improve the 

telemanipulation of a robotic arm in a dexterous operation. 

In this paper, we present a novel CNN-based telemanipula- 

tion system DeepXPalm for collaborative robots that consists 

of a wearable haptic device and two tactile sensors array 

embedded in a 2-finger Robotiq gripper. We propose an 

approach based on CNN to detect deformable objects’ tilt 

and position. 

The use of pipettes is imminent in laboratories due to the 

ongoing pandemic. This work would like to contribute to the 

challenge of the fulfillment of COVID tests in remote places 

employing robotic systems increasing the medical staff’s 

safety. In this study, a Pasteur Pipette for liquid transfer (total 

length: 150 mm, total capacity: 7 ml, material: low-density 

polyethylene) was chosen because of its large deformation. 

Two experiments were carried out to assess the per- 

formance of the approach. First, we evaluated the human 

perception when downsize data is rendered by the haptic 

device to the users’ palm. Second, we evaluates the tilt and 

position recognition using the mask generated by the CNN 

algorithm. 

 

Fig. 2. The overall architecture of the telemanipulation system. Green 
arrows define a hardware integration; blue arrows define a control signal; 
yellow arrows define a feedback loop. 

II. DEEPXPALM SYSTEM OVERVIEW 

A. System Architecture 

The exterior of the system and the overall architecture are 

depicted in Fig. 1 and Fig. 2, respectively. 

A 2-finger gripper from Robotiq mounted on the end- 

effector of the UR3e robotic arm was used to grasp the 

plastic pipettes. The tactile sensing device is equipped with 

two sensor grids, one on each fingertip of the gripper, thus 

allowing measurement of the local pressure at each point on 

the gripper’s fingertip. 

The wearable palm-worn tactile display LinkGlide [11] is 

used to deliver multi-contact stimuli at the user’s palm. The 

array of inverted five-bar linkages generates three indepen- 

dent contact points to cover the whole palm area. 

The measured pressure in the gripper is then rendered 

accordingly on the user’s palm using multi-contact tactile 

stimulation by LinkGlide. 

All processes were supervised by a PC (Intel i7-7700HQ 

CPU @2.8GHz x 8, 15 GB of RAM, GeForce GTX 1070, 

running Ubuntu 18.04.5), which also executes the convolu- 

tional neural network (CNN) process and maintains commu- 

nication between the output and input systems. The sample 

time of the whole process is set at 16.67 ms (60 Hz). During 

this time, the system senses the real objects, analyzes the 

sensed data, and delivers the tactile stimuli to the user’s palm. 

The force sensor reads the values from the sensor grid 

over the USART interface and passes the measurements 

to the CNN and tactile display. The CNN recognizes the 

position and the orientation of the object and conveys the 

corresponding mask to the tactile display. Subsequently, the 

tactile display uses both actual measurements from the sensor 

and the orientation mask. The mask is used to suppress 

 

random noise coming from irrelevant pins, thus enhancing 

the overall perception and pattern recognition capabilities of 

the user. 

B. Palm Recognition Rate 

The system transmits to a user the position and the 

orientation of the object. We estimated twelve patterns for 

tactile rendering, four different angles (0, 45, 90, and 135 

degrees) in three different positions each (center, left, and 

right for 45, 90, and 135 degrees, and center, up, and down 

for 0 degrees). The study developed by Altamirano et al. [9] 

showed the human hand recognition rate of tactile patterns. 

The experiment on tactile pattern detection revealed a high 

recognition rate 84.29% of a human palm. Based on this 

research, we decided to deliver the patterns onto a human’s 

palm. 

C. High Fidelity Tactile Sensory Subsystem 

The 2-finger robotic gripper is embedded with high- 

density tactile sensor arrays [15]. One sensor array is at- 

tached to each fingertip. A single electrode array can sense 

a frame area of 5.8 cm2 with a resolution of 100 points per 

frame. The sensing frequency equals 120 Hz. The range of 

force detection per point is of 1 9 N . Thus, the robot detects 

the pressure applied to solid or flexible objects grasped by 

the robotic fingers with a resolution of 200 points (100 points 

per finger). 

The data collected from the sensor arrays are processed 

by a downsize algorithm or by a CNN-based approach to 

evaluate non-deterministic data (see Section III). The neural 

network’s objective is to estimate the tilt orientation of 

grasped objects. 
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D. LinkGlide Haptic Device 

 

 
 

Fig. 3.   LinkGlide haptic device. 

 

The LinkGlide device provides the sense of touch at three 

different points in the palm of the user where multimodal 

stimuli can be delivered. The proposed device is based on 

LinkTouch technology [16]. Three 2-DoF inverted five-bar 

mechanisms, distributed in parallel planes, deliver object 

detection and manipulation sensation, produce the sliding 

force, and multi-contact state at the palm. Each of the 

mechanisms has two servo motors PowerHD DSM44, which 

angles provide the planar position of the single contact point 

between palm and linkage. Therefore, three contact points 

can be created, i.e., C1, C2, C3. The linkage configuration 

of LinkGlide is presented in Fig. 4. 
 

Fig. 4.   Linkage configuration of LinkGlide. 

 

The equation of τan, and τen are respectively: 
 

2 2 2 
τan = 2 arctan( n n n ) (1) 

Hn − Dn 
 

2 2 2 
τen = 2 arctan( n n n ) (2) 

Kn − In 

where Dn = −2Xcnl2, En = −2Ycnl2, and  Hn = l2 + 

III. TACTILE RENDERING 

To provide high-fidelity tilt perception of the contact 

surfaces during the dexterous manipulation task, a high- 

efficiency digital signal processing is required. This section 

proposes a method to generate tactile patterns on the user’s 

palm using the three contact points of the device. Two 

methods are proposed to convert the data from the tactile 

sensors on the gripper’s fingers to the user’s palm. The 

methods are described below. 

A. Downsize Tactile Patterns 

The first stage of the method resizes and adapts the sensor 

data array (10x10 cells) to the dimension of the LinkGlide 

haptic display, reducing it to the stimulation array size 

(3x3 cells) with a unique stimulation point per row. We 

used the Bicubic Interpolation algorithm to downsize the 

tactile information and a maximum peak filter to assign the 

stimulation position for each contact point. This mathemat- 

ical resampling algorithm produces a smooth output array 

with few interpolation artifacts [17] and without a relatively 

high computational cost. This stage results in digital tactile 

patterns that preserve most of their original contact surfaces’ 

details and permit a more natural recognition of artificial 

tactile patterns. 

B. Mask Tactile Patterns using CNN Tilt Estimation 

The second stage proposes to use a set of predefined tactile 

patterns as mask arrays (Fig. 5). The use of a specific masked 

pattern depends on the CNN tilt estimation. The final tactile 

stimuli will be the Boolean multiplication (AND) between 

the mask array and the downsized array generated in the 

previous stage. The final result of this operation will be the 

tactile stimulus arrays delivered by the multi-contact tactile 

display. 

IV. CNN-BASED PERCEPTION OF OBJECT ORIENTATION 

A. Architecture Description 

To present a clear tactile pattern to the user, angle and po- 

sition classification problems have to be solved. CNNs have 

found their applications in many areas, but commonly they 

are used for image processing. Nevertheless, it is possible 

to apply CNNs for tactile sensor data processing. In [18], 

failures during grasping were predicted by the information 

from an array of Inertial Measurement Units. Gandarias at 

al. [19] suggested to use CNN with high-resolution tactile 

sensors for object recognition. 

For pipette angle and position recognition, we have imple- 

mented a classification CNN model with two heads, which 

architecture is shown in Fig. 6. 

The proposed neural network consists of the backbone 
2 2 
cn cn — l2.  In = −2(Xcn − l1)l5,  Jn = −2Ycnl5, CNN network and two heads for angle and position clas- 

and Kn = l2 + (Xcn l1)2 + Y 2 l2. 

In each of the three contact points, one force sensor was 

installed, as shown in Fig. 3. The independent control of the 

inverted five-bar linkages allows to generate different patterns 

at the user’s palm and to move in different directions. 

sification. Backbone is responsible for feature extraction and 

consists of two convolutional layers with ReLU activation 

functions and batch normalization. Features are then fed 

into classification heads. Heads include four fully connected 

linear layers. 
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Fig. 5.   Set of tactile pattern masks represented on the user’s palm. 

 

 
Fig. 6. CNN model architecture for angle and position classification from 
the tactile sensor data. 

 

 
B. Model Training and Validation 

13392 data pairs from the tactile sensor arrays were col- 

lected for model training and validation. Angle classification 

problem included 4 classes (135 deg., 90 deg., 45 deg., and 0 
deg.) and position classification problem included 3 classes 

(center, left and right pipette positions). 31 gripper positions 

were considered in the experiments (from minimum pressure 

applied to the pipette to maximum). The data was split into 

training set (50% of the dataset), validation set (25% of the 

dataset), and test set (25% of the dataset) for performance 

evaluation of the network. Data samples are shown in Fig. 

7. 
 

 
Fig. 7. Contact patterns for different positions and angles of pipette 
inclination. 

Deep learning models were implemented with the Py- 

Torch open-source machine learning framework. ReduceL- 

ROnPlateau scheduler was applied for dynamic learning rate 

reduction. 

The cross-entropy loss was applied as a criterion for both 

classification heads. The total loss of the proposed neural 

network was the sum of the losses of two heads. 

Angle prediction model achieved 95.09% test accuracy af- 

ter 50 epochs of training. Position prediction model achieved 

93.98 % test accuracy. 

V. EXPERIMENTAL EVALUATION 

We conducted two user evaluations to determine the 

human perception of the orientation and position of the 

pipette during grasping by the two fingers gripper. The 

experiments evaluate the extent to which the tactile feedback 

with masked data, achieved by CNN classification, improves 

the users’ perception at the palm of the deformable object 

tilt and orientation in comparison with the direct downsizing 

haptic feedback. The participants were informed about the 

experiments and agreed to the consent form. This study was 

approved by the Institutional Review Board of the Skolkovo 

Institute of Science and Technology. 

VI. EXPERIMENT ON TACTILE PERCEPTION 

This evaluation is centered on the analysis of the hu- 

man perception of the tactile rendering. During the first 

experiment, the tilt and position perception was rendered 

directly from sensors data to the LinkGlide display using 

the downsizing method described in Section III.A. During 

the second experiment, we assessed participants’ perception 

of the pipette tilt angle and position with data masking 

performed by the CNN classification described in Section 

III.B. 
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Fig. 8. The experimental setup of the multi-contact tactile perception during 
the grasping of the pipette by the 2-finger gripper. 

 

Ten right-handed participants (4 females) aged 22 to 24 

years volunteering complete the evaluation. None of them 

reported any deficiencies in sensorimotor function. 

Before the study, the experimenter explained the purpose 

of the multi-contact haptic device to each participant and 

demonstrated the tactile feedback provided by the device for 

each of the four angles and three positions of the pipette. 

The demonstration was provided, at first, with additional 

visual feedback, and then at least one time blindly. During 

the experiment, the user was asked to sit in front of a 

desk and to wear the haptic display on the right hand as 

shown in Fig. 8. On the palm of the participants, the tactile 

patterns are rendered during the pipette grasping, evaluating 

the angle of its tilt and the position on the gripper. Each 

angle and position combination was presented 5 times blindly 

in random order, thus, 60 patterns were provided to each 

participant in each of the evaluation. 

A. Downsized Direct Data Rendering Results 

The results of the human perception of the pipette tilt 

angle by rendering the downsized data are summarized in 

a confusion matrix (see Table I). 

In order to evaluate the statistical significance of the 

differences between the perception of the angles and position 

without mask (12 patterns), we analyzed the results using 

single factor repeated-measures ANOVA, with a chosen 

significance level of α < 0.05. The open-source statistical 

packages Pingouin and Stats models were used for the 

statistical analysis. According to the ANOVA results, there 

is a statistical significant difference in the recognition rates 

for the different angles, F (11, 108) = 6.397, p = 4 10−4 . 

The ANOVA showed that the angles significantly influence 

the percentage of correct responses. 

According to the ANOVA results, there is not statistical 

significant difference in the recognition rates for the dif- 

ferent combinations of angles and positions, F (11, 108) = 
1.87, p = 0.051. With these results, we can not confirm 

TABLE I 

CONFUSION  MATRIX  FOR  ACTUAL  AND  PERCEIVED  TILT  ANGLES  AND 

POSITIONS  ACROSS  ALL  SUBJECTS  FOR  RECOGNITION  WITHOUT 

MASKS. 
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that statistically significant difference exists between the 

recognized patterns. The overall recognition rate is 9.67%, 

which means that the user can not distinguish the angles and 

positions. However, the overall recognition increases to 28% 
if only the angles are considered during the evaluation. The 

average recognition time is 4.97 sec. 

B. Masked Data Rendering Result 

The results of the human perception of the pipette tilt angle 

and positions by the masked data rendering are summarized 

in a confusion matrix (see Table III). 

TABLE II 

CONFUSION  MATRIX  FOR  ACTUAL  AND  PERCEIVED  TILT  ANGLES  AND 

POSITIONS  ACROSS  ALL  SUBJECTS  FOR  RECOGNITION  USING  MASKS. 

 

% 
Answers (Predicted Class) 

0 1 2 3 4 5 6 7 8 9 10 11 

P
a

tt
er

n
s 

0 0.92 0.00 0.04 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
1 0.02 0.78 0.00 0.00 0.12 0.02 0.00 0.04 0.02 0.00 0.00 0.00 
2 0.04 0.00 0.80 0.00 0.00 0.14 0.02 0.00 0.00 0.00 0.00 0.00 
3 0.04 0.02 0.02 0.76 0.06 0.04 0.00 0.04 0.02 0.00 0.00 0.00 
4 0.12 0.02 0.00 0.18 0.58 0.06 0.00 0.00 0.04 0.00 0.00 0.00 
5 0.00  0.00  0.02  

0.00  
0.00 0.00 0.96 0.00 0.00 0.02 0.00 0.00 0.00 

6 0.08 
0.06 

0.00  0.00   
 0.00   

0.00  
0.00  

0.00 
0.00 

0.92 0.00 0.00 0.00 0.00 0.00 
7 0.02 0.00 0.02 0.90 0.00 0.00 0.00 0.00 
8 0.00 0.00 0.10 0.00 0.02 0.08 0.08 0.02 0.66 0.02 0.00 0.02 
9  0.00  

 0.00  
0.00 0.00 0.06 0.00 0.00 0.00 0.02 0.00 0.86 0.00 0.06 

10 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.02 0.08 
0.10 

0.88 0.00 
11 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.88 

 
In order to evaluate the statistical significance of the 

differences between the perception of the six angles, we 

analyzed the results using single factor repeated-measures 

ANOVA, with a chosen significance level of α < 0.05. 

According to the ANOVA results, there is a statistical sig- 

nificant difference in the recognition rates for the different 

combination angles and positions, which correspond to the 

patterns in Fig. 5, F (12, 108) = 2.190, p = 0.019. The 

ANOVA showed that the angles and positions significantly 

influence the percentage of correct responses. The paired 

t-tests showed statistically significant differences between 

the pattern 0 and 4 (p  = 0.017  < 0.05), 0 and 8 (p  = 
0.025 < 0.05), 10 and 4 (p = 0.042 < 0.05), 11 and 4 

% 
 

0 1 2 3 4 5 6 7 8 9 10 11 

P
a

tt
er

n
s 

0 0.16 0.02 0.18 0.06 0.04 0.12 0.06 0.04 0.04 0.10 
0.10 

0.08 0.10 
0.10 1 0.06 0.06 0.32 0.12 0.00 0.08 0.00 0.06 0.00 0.10 

2 0.14 0.02 
0.02 

0.16 0.14 
0.14 

0.02 0.14 0.04 0.00 0.10 0.14 0.06 0.04 
3 0.12 

0.12 
0.22 0.04 0.12 0.02 

0.00 
0.00 0.04 0.06 0.16 0.06 

4 0.04 0.16 0.16 0.00 0.20 0.02 0.08 0.08 0.04 0.10 
5 0.08 0.06 0.18 0.12 0.08 0.10 0.06 0.06 0.04 0.14 0.06 0.02 
6 0.18 0.04 0.20 0.06 0.02 0.08 0.06 0.08 0.06 0.08 0.12 0.02 
7 0.16 0.02 0.16 0.12 0.08 

0.08 
0.10 0.02 0.02 0.12 

0.12 
0.16 0.02 0.02 

8 0.12 0.02 0.22 0.08 0.04 0.04 0.08 0.02 0.06 0.12 
9 0.08 0.02 0.24 0.10 0.00 0.12 0.10 0.04 0.14 0.08 0.04 0.04 

10 0.10 0.10 0.32 0.06 0.08 
0.08 

0.04 0.00 0.04 0.10 0.06 0.08 0.02 
11 0.10 0.02 0.06 0.04 0.08 0.10 0.04 0.12 0.02 0.16 0.18 

 



(p = 0.031 < 0.05), 3 and 5 (p = 0.034 < 0.05), 4 and 5 

(p = 0.005 < 0.05), 4 and 6 (p = 0.011 < 0.05), 4 and 7 

(p = 0.018 < 0.05), 5 and 8 (p = 0.021 < 0.05), and 6 and 

8 (p = 0.044 < 0.05). The open-source statistical package 

Pingouin was used for the statistical analysis. 

The overall recognition rate is 82.5%. The pattern with 

less recognition rate is the number 4, which corresponds to 

45 degrees on the left of the gripper. The pattern with higher 

recognition rate is the pattern number 5, which corresponds 

to 45 degrees to the right of the gripper. This effect can be 

caused because by the shape of the hand, having a better 

contact closer to the thumb. The average recognition time is 

3.13 sec. 

VII. CONCLUSIONS AND FUTURE WORK 

In the presented work, the tactile tilt and position recogni- 

tion of deformable objects was studied. The tilt and position 

data from the gripper while plastic pipettes were grasped was 

rendered to the users’ palm by a multi-contact haptic device 

LinkGlide. 

The experiments have shown that, the users’ tilt and posi- 

tion perception of multi-contact tactile feedback with down- 

sized data is significantly poor, with an average recognition 

rate of 9.67%, and only tilt perception of 28%. Applying the 

masked tactile patterns by CNN, we were able to increase the 

operator’s perception of the tilt and position to 82.5%. Based 

on this evidence, we can conclude that the use of multi-modal 

tactile feedback on the users’ palm in combination with the 

CNN-based rendering methods can potentially improve the 

telemanipulation of deformable objects. 

Additionally, we can observe from the results, that the 

recognition rate for 45 deg. at the right is the higher perceived 

pattern (96%), followed by 0 and 135 deg. at the center 

(92%). However, the lower recognition rate was for 45 deg. 

at the left (58%). These results can be used to explore dif- 

ferent methods to render the information combining different 

patterns. 

The proposed system and CNN-based rendering method 

can be applied to increase the tilt and position recognition of 

laboratory instruments at remote co-working Labs, improv- 

ing the dexterous telemanipulation and the users’ response. 
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