
Automated Computation of DecomposableSynchronization ConditionsGilberto Matos James PurtiloComputer Science Department and Institutefor Advanced Computer StudiesUniversity of MarylandCollege Park, MD 20742Elizabeth WhiteDepartment of Computer ScienceGeorge Mason UniversityABSTRACT: The most important aspect of concurrent and distributed computationis the interaction between system components. Integration of components into a sys-tem requires some synchronization that prevents the components from interacting in waysthat may endanger the system users, its correctness or performance. The undesirableinteractions are usually described using temporal logic, or safety and liveness assertions.Automated synthesis of synchronization conditions is a portable alternative to the man-ual design of system synchronization, and it is already widespread in the hardware CADdomain. The automated synchronization for concurrent software systems is hindered bytheir excessive complexity, because their state spaces can rarely be exhaustively analyzedto compute the synchronization conditions. The analysis of global state spaces is requiredfor liveness and real{time properties, but simple safety rules depend only on the refer-enced components and not on the rest of the system or its environment. Synchronizationconditions for delayable safety critical systems can be computed without the state spaceanalysis, and decomposed into single component synchronization conditions. Automatedsynthesis of decomposable synchronization conditions provides a solid groundwork for theindependent design of system components, and supports reuse and maintenance in concur-rent software systems. This approach to integration of concurrent systems is embodied byGenEx, an analysis and synchronization tool that integrates system components to satisfya given set of safety rules, and produces executable systems.This research is Supported by the O�ce of Naval Research under contract ONR N0001494103201

1 Introduction and MotivationSynchronization is an important aspect in the development of complex concurrent sys-tems. Most programming languages lack synchronization support, or are limited to simplesynchronization protocols (like mutual exclusion supported by Java). Due to the absenceof explicit synchronization support, reliability veri�cation for complex concurrent systemsrelies on informal methods. Inspections and testing can �nd errors, but their absence cannot be asserted without formal veri�cation. Reliability based on inspections and testingis probabilistic and depends on the structure and complexity of the system. This level ofreliability is not satisfactory for the safety{critical systems.Automated formal veri�cation can verify the absence of errors, assert a system's reliabil-ity, and �nd errors earlier in the development process thus reducing the developmentcost [Man96]. Formal development methods are widely used in the research commu-nity [Man96], but their acceptance in development environments is lagging. The mainreasons for this are the high level of skill that is generally required for formal veri�cation,its lack of scalability, and its resistance to incremental system evolution [dLSA95].Automated correction of inconsistencies between software systems and requirements is gen-erally undecidable, but there are some domains where this approach is a viable alternativeto manual error correction [EC82]. Most current formal approaches to concurrent systemsuse �nite state machines (FSM) to model components, and �nite state domains can bee�ectively analyzed and transformed. Error correction in FSM{based delayable systemsis automated by computing the synchronization conditions from the detected requirementviolations. The synchronization conditions restrict the system behavior, and the result-ing system model satis�es its safety requirements [Lim96]. The automated rule{basedsynchronization process takes the description of a system and its safety rules, and pro-duces a synchronized model that satis�es safety, and an executable implementation of thatmodel (see Figure 1). The user speci�es the system as a set of components and variables,where the components read and write the variables to communicate with the environmentand with each other. The user also provides a set of safety rules that reject some statesand execution paths representing safety violations. The automated synchronization tooldetermines the preconditions for the safety violations and uses them to compute the syn-chronization conditions for each component. Adding the synchronization conditions to thecomponents makes the system comply with the given safety rules.Previous research in the area of automated synchronization was concentrated in two do-mains. Theorical research discussed the complexity of automated synchronization for tem-poral logic assertions [EC82]. The complexity of system synchronization for temporal logicassertions is exponential, and not all formulas can be satis�ed by synchronizing the systemcomponents. Attempts at practical synchronization concentrated on constrained systems2

such as hardware{based systems [Lim96] or a sequential safety kernel [WK95]. These do-main restrictions provide a limit on the system complexity or make the synchronizationtrivial as in the safety kernel case.Automated synchronization of concurrent software systems is the primary goal of ourresearch. Analysis of the full state space for a software system is not a viable approach,and therefore we envision an approach for a restricted set of properties that allows thepartition of the analysis and synchronization process. In such an approach, the complexityof the analysis and synchronization is independent from the complexity of the whole system,and depends only on the complexity of the referenced components.We propose automated rule{based synchronization as an alternative method for developingand maintaining concurrent systems with complex safety requirements. This method, asimplemented in the prototype tool GenEx, generates reliable synchronization for a varietyof execution environments ranging from single processors to distributed systems. Unlikeprevious approaches, GenEx can synchronize systems even if their combined reachabilitygraph is too complex to compute. The unlimited complexity of systems that GenExcan synchronize makes it a practical software development tool for complex concurrentapplications.Section 2 describes the formalisms and notations used in GenEx, and gives a brief descrip-tion of the automated rule{based synchronization process on a simple concurrent system.A high level overview of the computation and use of the synchronization conditions is inSection 3, followed by a detailed description of the algorithms in Section 4. Section 5 givesa brief overview of other work related to our own, and explains the di�erences. Section 6outlines the work we propose to do in the future, and the conclusion presents the bene�tsof this method.2 Notation and a Driving ExampleThis section introduces the FSM{based notation for representing the behavior of concurrentsystems, and describes the capabilities of automatic synchronization on a client{serveraccess example.2.1 Finite State Machine Representation in GenExGenEx uses a FSM notation inspired by the tabular notation used in SCR [Hen80], andfunctionally equivalent to a subset of the SMV notation [McM93]. Each component isa Mealy �nite state machine [JEH79]. The system contains a set of Boolean variables3

Synchronization
Algorithm

FSM Description of
System Components

Synchronized and
Reliable System

Reliable Synchronized
System Implementation

Algorithm
Code Generation

System Safety Rules

Figure 1: Automated Rule{Based Synchronization Process Overviewthat can be monitored(external) or controlled(internal), and these variables are the inputsand outputs of the components or the environment. For a given group of components,controlled variables are those that contain the output from some of the components in thegroup, and all other variables are monitored. Only one component is allowed to control agiven variable, by setting or resetting its value. In the client example shown in Figure 2,req and done are monitored variables and accessing is controlled by the component.Whenever a variable changes value, it produces an event, @T(req) when req becomestrue and @F(req) when it becomes false. Events get enabled only immediately after avariable changes value, and get disabled when the variable's value stabilizes. The initialstate of the system is de�ned by the initial states of all components and initial values ofthe variables. 4

Each component is speci�ed as a stand{alone unit, and the system is speci�ed by instan-tiating the components and the safety rules that apply to them. The speci�cation of eachcomponent starts with its name and initial con�guration. The initial con�guration containsthe initial state, and it may also contain some restrictions on controlled and monitoredvariables. The transition table for each state contains a list of transitions that may beactivated in that state. The enabling condition, destination state and the e�ects de�neevery transition. The enabling condition is a conjunction of event and variable values , orthe keyword `ELSE' for the default transition. The default transition is executed whenevernone of the other transitions is enabled, and it makes the transition set complete. If theenabling conditions overlap for two transitions, their precedence is used to determine thepriority when the component is executed. The e�ects associated with a given transition arechanges in the value of controlled system variables, and calls to data processing segments.GenEx uses the synchronous execution semantics similar to SMV [McM93], Esterel [BG92]and LUSTRE [CRR91]. When the transitions are executed, every component updatesthe values of its controlled variables, and shares that data with all other components.A transition is enabled when the associated combination of events and conditions is true.The monitored variables are sampled and all components receive their current value. Everytransition takes a �nite time to execute, and that is the sampling interval for the monitoredvariables.The synchronous execution model simpli�es the system analysis and the code generationfor the synchronized system. The most important aspect of the synchronous execution isthe immediate distribution of the global state information, that allows the components tomake synchronization decisions locally, based only on the state data. While the systemis analyzed assuming synchronous transitions in all components, this assumption is notpractical for distributed systems. The synchronous execution assumption can be weakenedfor asynchronous and distributed environments while preserving the safety and reliabilityof the generated system.A sample execution illustrates the semantics of GenEx in Figure 3. The time-line shows thechanges in the state of a client component, and the values of the monitored and controlledvariables leading to or resulting from the transitions. The event @T(req) causes thecomponent to make the transition from the state local to access, and set the controlledvariable accessing to the value true. As long as the component is in the access state,the value of the variable req and its events are irrelevant. When the monitored variabledone becomes true, it enables the transition from the state access to local, that resetsthe value of accessing to false. All components execute one transition in parallel andshare their state data and controlled variables before the next one.The component speci�cation in Figure 2a provides a description of a single component.System speci�cation consists of a set of component speci�cations and safety rules. The5

a)Component ClientInitial local, !req, !done, !accessing;State localWHEN @T(req) access set(accessing);else local;State accessWHEN (done) local reset(accessing);else access;b)
LOCAL ACCESS

Input Signals : req, done

1x/1

x1/0

Output Signal: accessingFigure 2: Textual and graphical FSM representation of a client componentsafety rules describe the system behaviors that are undesirable in the �nal product, andrestrict the domain of valid behaviors. Safety rules of interest for the client{server systemdeal mainly with the mutual exclusion and the desired ordering of the accesses. Mutualexclusion requires distinct clients to access the server during nonoverlapping intervals. Theclient accesses can be ordered using a speci�c access protocol such as priority or FIFO.GenEx accepts the safety rules represented using �nite state machines or regular expres-sions [JEH79]. Both representations are functionally equivalent but suitable for di�erenttypes of safety rules. The FSM representation of safety rules is similar to the componentrepresentation with only minor distinctions. The FSM for safety rules have no interfaceto the data processing code, and they contain a state with the prede�ned name reject forthe rejecting state. Rejection of an execution sequence by a safety rule FSM represents asafety violation. The FSM safety rules use the component's output and state variables,and monitored variables as their input, and produce their own state data as output. Thestate data from safety monitoring FSM is used by the synchronization algorithm to preventsafety violations.The following regular expression{de�ned safety rule de�nes strict alternation of two clients'accesses, beginning with an access by the �rst client:AllPaths 2 (((access(1))+)((access(2))+))*6

NEW VALUE OF A CONTROLLED

VARIABLE IS DECIDED AT THE TIME

ACCESSING

REQ

@T(REQ)

STATE

DONE
OF THE TRANSITION, BUT IT IS

USED WHEN THE MONITORED

time

TRANSITION TIMES VARIABLE SAMPLING

THE VALUE OF MONITORED VARIABLES

HAS NO INFLUENCE ON THE

COMPONENT TRANSITIONS.

VARIABLES ARE SAMPLED

LOCAL ACCESS LOCAL ACCESSFigure 3: The execution semantics of the modelGenEx converts the regular expressions into the deterministic FSM representation beforecomputing the synchronization conditions. Rejection of an execution sequence by a safetyrule FSM represents a safety violation. The regular expression notation is more compactthen the FSM notation, but its applicability is limited to simple rules like invariants andprede�ned sequences. For more complex rules the FSM notation o�ers better readabilityand simpler changes.2.2 Client{Server SystemThe client{server system consists of a set of independent clients connected to a sharedserver. Depending on the nature of the interactions, as well as the capabilities of theserver, the clients can access the server simultaneously, or be restricted to concurrent orexclusive access1. Di�erent specialized subclasses of client{server systems can be derivedby asserting di�erent sets of safety rules, as well as new versions of existing systems whencomponents or safety rules change. The main rules for the client synchronization deal withcontol of simultaneous accesses, and with explicit ordering of accesses.� Mutual ExclusionSome or all clients may be able to adversely in
uence each other when their accessesare concurrent, or the server may be unable to handle concurrent accesses. If this1Simultaneous access applies when the server can accept several request simultaneously, while concur-rent access refers to transaction{style accesses. 7

Priority access for a pair of processes

FIFO property for a pair of processes

REJECT

access2

access1, access2 component in critical section

req1, req2 requests for appropriate components
EMPTY

WAIT1 NEXT1
!access2

access1

EMPTY

WAIT1 NEXT1!access2
RQST1

access2

req1 & !access1
 & access2

req1 & req2
& !access1 & !access2

req1 & !req2
& !access1 & !access2

access1

access1

REJECT

access2

access1

req1 & !access1
 & access2

req1 & !access1
& !access2

Figure 4: Graph representation of the FIFO and priority propertiesis the case, some or all clients have to be restricted to mutually exclusive access.Mutual exclusion is a simple invariant safety rule, and it is de�ned by a single stateFSM or by the regular expression below. The safety rule references the components'states and controlled variables to determine if the violation condition occurs.{ assert AllPaths 2 (:(access(2) & access(3)))*This is a singular mutual exclusion rule for clients 2 and 3{ forall(i; j 2 1::3; i < j) assert AllPaths 2 (:(access(i) & access(j)))*Generalized rule for all pairs of clients in the system� Access ProtocolsThe order of client accesses may be a factor in the system performance and relia-bility. Access protocols allow the user to de�ne the appropriate order for a givenimplementation, and make them a part of the system speci�cations. Priority andFIFO access protocols are illustrated by FSM in Figure 4. The priority access rulegives precedence to higher priority clients when lower priority clients are waiting foraccess, regardless of the order of requests.2 The safety rule for priority access rejects2In their original form, the clients make the transition to the access state immediately after receiving arequest, but synchronization means that some accesses can be delayed. When components are delayed in8

access by the lower priority component (access2 in this case) while the higher pri-ority component is waiting for access. The rule is not preemptive, and the higherpriority requests will not force lower priority components to end or suspend theiraccess. The FIFO access rule requires the accesses to the server to occur in orderof their respective request signals. Figure 4b) shows the rule that rejects access2if req1 was active before req2 occured. This rule makes client2 respect FIFO andanother similar rule is needed to make client1 delay on previous requests by client2.� Global SequencesSome systems may require speci�c sequences of accesses, like round{robin accessor interleaving of di�erent groups of clients. Sequencing rules can synchronize thesystem into a desired global pattern of accesses. A simple sequencing rule requiresthe components client1, client2 and client3 to access the server in this order. Thissequence may be necessary because their actions are dependent on the previousaccesses by other components. The following rule requires this sequence of accesses.assert AllPaths 2 ((access1)+(access2)+(access3)+)�This system consists of a set of client processes, which get synchronized in their accesses toa shared server.3 The safety rules in the system require mutual exclusion of client accesses,and FIFO policy for delayed accesses. GenEx processes this system speci�cation andgenerates a synchronized and safe system implementation. The automatic synchronizationallows simple modi�cations of the system, by adding or removing safety rules that restrictits behavior.To illustrate the maintenance and reuse support, suppose the system is later modi�ed tothe priority access policy between two classes of clients. The system will be resynchronizedaccording to the modi�ed speci�cations without manual modi�cations to the components.A manually implemented client{server system can satisfy a �xed set of safety properties,but additions or modi�cations can require extensive design and veri�cation rework. Formalreliability veri�cation of the speci�cations is meaningless when the implementation ormaintenance is done manually.2.3 Synchronization of ClientsThe two clients in Figure 5 access a shared server, and given the safety rules from theprevious section, their simultaneous access is a mutual exclusion violation. Figure 5c) showsaccessing the server the FIFO policy limits their delay to the completion of the accesses that were initiatedearlier.3The server is not described here, but it handles only the data processing of the client requests, nottheir synchronization. 9

local access

L A L A

M2M1

LA

AL AA

LL

Combining Two Components Combined Reachability Graph

Safety violation

FSM Representation of
One Componenta)

b) c)Figure 5: Conceptual representation of safety violationthe reachability graph that represents all execution sequences for this system, includingsome that violate the mutual exclusion rule. The state preceding the violation containsthe information on the causes that lead to the violation, and this information can beextracted and used to prevent the safety violations from happening. In this case, theviolation occurs when one component enters the access state while the other is alreadyaccessing the server, or when both components request access simultaneously. Using �nitestate models and model checking tools, these violations are easy to detect and analyze.The concept of delayed execution is simple to capture in systems based on �nite state ma-chines. The transitions that can cause safety violations are modi�ed by adding a delay statethat is used to block the component until the conditions for proceeding to the destinationstate are met. The transition from local to access is the only transition that can cause thesafety violation, and a delayed transition is shown in Figure 6a). The enabling conditionfor the original transition is combined with the safety violation preconditions to derive theenabling condition of the delayed transition. The delayed transition is not enabled unlessthe original transition is enabled and a safety violation is imminent. Figure 6c) shows howthe safety violation state present in Figure 5 can be avoided by delaying the transition fromlocal to access when it can violate the safety rule. One or more components are delayedwhen the completion of their transitions can cause safety violations. In the global reach-ability graph, the delayed transition of some component produces a redirected combinedtransition that leads to a safe state. This solution is very similar to using a semaphore orlock to guard the access, but it has the advantage of greater scalability and portability.The automatic synchronization is computed based on the given safety rules, and can berecomputed whenever the safety rules or components change.Automatic synchronization of interacting processes, as outlined above, is conceptually sim-ple, but the combinatorial complexity of the global interactions makes it computationally10

delay
accesslocal

L A

D

L A

D

M1’ M2’

Representation of a single

transition
component with a delayed

Safety Violation Transitions
Delayed to Satisfy Safety

Violation state is
now unreachable

AA

LL

AL

DL

LD

LA

AD

DA

DD
Combined delayed components

Figure 6: Delaying transition to preserve safetyintensive, with a potential for exponential growth. Figure 6 gives an example of the kindof modi�cations that are used to automatically synchronize systems. While the combinedreachability graph for all components makes it simple to �nd safety violations, the sizeof the graph may make it impossible to construct. Our approach to automatic synchro-nization is oriented toward computing the synchronization conditions for each componentwithout constructing the global reachability graph for the whole system. This is possiblefor a constrained but nontrivial set of safety rules.GenEx uses only delays to synchronize the systems and make them satisfy the safety rules.The usage of delays obviously restricts the satis�able safety rules to those that do notrequire real{time behavior. The non{real{time nature of satis�able rules is a major factorin the decomposability of the synchronization process, because real{time requirementsmake the time a globally shared variable. A system can be synchronized to satisfy allgiven FSM{based non{real{time safety rules, and real{time rules can be detected and theuser warned. Synchronizing the system for real{time rules leads to creation of deadlocks, as11

does the existence of con
icting safety rules. Even the synchronization for noncon
ictingsafety rules can sometimes lead to deadlocks, so the deadlock veri�cation is an indispensablepart of the development process.3 Safety{Based SynchronizationThe automated synchronization system computes the synchronization conditions for asystem of user{de�ned components. The synchronized system consists of a synchronizationskeleton and data processing code segments supplied by the user. Automated safety{basedsynchronization solves a conceptually simple but combinatorially very complex and timeconsuming problem, and helps produce a more reusable and maintainable system.The user provides three distinct parts in the system de�nition: the component description,the safety rules and the system instance. The component description provides a formalmodel that de�nes the functionality of each component, and the interface linking the �nite{state control to the separate data processing implementation. Every component is de�nedas a deterministic �nite state machine, triggered by combinations of signal values. Everystate in a component is associated with some component activity that can interact withother components or the environment 4. All components are independent except for theinteractions using controlled variables.the local properties it has to satisfy, and that theAnother part of the system description is the de�nition of all safety rules that the systemmust satisfy. These safety rules are de�ned as �nite state machines based on an alphabetthat contains all component states and all monitored and controlled variables in the system.The safety rule for mutual exclusion in Figure 7a) shows how a safety rule is de�ned, andhow it references system components and variables. The system instance speci�es howthe components are instantiated, and what safety rules are de�ned for them. The systemdescription may also contain the equivalent description of the system when it is used as acomponent of a larger system. In our client{server example, all client modules behave in asimilar way, and they can be described by instantiating the basic behavior and adding rulesto achieve speci�c behaviors. Figure 7b) shows the instantiation of a system of clientswhere the safety rule for mutual exclusion is replicated for every pair of components, andpriority access specializes the components into two priority classes.The process of automatic synchronization, as illustrated in Figure 8, consists of severalsteps where the synchronization conditions are computed and decomposed to components,4When a component is de�ned with more states then necessary, it increases the complexity of theanalysis and the computation of synchronization conditions.12

a)Restriction mutex(i,j)Reference client(i), client(j);Initial state OK & client(i)=local & client(j)=localState state OKWHEN (client(i)=access) & (client(j)=access) reject;else state OKend Restriction;b)System access order;Modules: client(i: i in 1 .. 4);Restrictions:forall(i,j in 1 .. 3 & i!=j) assert(mutex(i,j));forall(i in 1 .. 2, j in 3 .. 4) assert(prio(i,j));Figure 7: A FSM description of a safety rule and a sample system instanceand the executable code for them is generated. The automatic synchronization algorithmcomputes the component synchronization conditions that make the system comply withthe safety rules. The code generation algorithm generates executable models of the syn-chronized system components, and links them together and with the data processing code.Automatic Synchronization is based on delaying selected components in order to makesafety violations unreachable. The delays are applied only on the violating transitions;i.e. those transitions that trigger the safety violations. The violating transitions aresubstituted by their delayed versions, where at least one component is delayed until itstransition can be safely completed. A general assumption in this process is that everycomponent is delayable and correct with respect to its requirements and that the goal ofthe synchronization is to satisfy the global safety rules. When all safety rules are satis�ed,an additional check is performed to verify that the system satis�es its reachability andliveness requirements, as well as implicit deadlock freedom. This is necessary to verifywhether the synchronization created any deadlocks. The satisfaction of these requirementsguarantees that the re�nements in control are not at the expense of the functional behaviorof the system.The computation of synchronization conditions requires the following steps:1. The System Expansion step prepares the system for synchronization by enablingthe components to detect when their transitions can cause a safety violation, and byproviding them with an alternative execution that preserves safety. Delayed tran-sitions are added to the components to make them synchronizable, and the global13

CONDITIONS
SYNCHRONIZATION

COMPONENT SPECIFIC

PRECONDITIONS FOR
SAFETY VIOLATIONS

DESCRIPTION
EXPANDED SYSTEM

AND SAFETY RULES
SYSTEM COMPONENTS

SYNCHRONIZED
SYSTEM COMPONENTS

EXECUTABLE
SYSTEM

CODE GENERATION

DECOMPOSITION OF SYNCHRONIZATION CONDITIONS

SAFETY VIOLATION IDENTIFICATION

SYSTEM EXPANSION

ADDITION OF SYNCHRONIZED TRANSITIONS

OR MODEL CHECKING

DEADLOCK SEARCH

VERIFICATION
 RESULTSFigure 8: Process of Automatic Synchronizationsystem state is made accessible to every component that needs to detect potentialsafety violations.The components with potential for safety violation are modi�ed to delay rather thencause a safety violation. System components are de�ned as FSM that take the tran-sitions between states when the system variables enable them. The synchronizationmechanism in GenEx is based on the delaying of transitions when they lead to asafety violation. The concept of a delayed transition is implemented by introducingone additional state for every transition that might need to be delayed. The delayedversion of the transition is given a lower priority than the original transition, so if nosafety violations can occur, the transition is never delayed. Figure 9b illustrates thedelayed transition implementation for the Figure 9a before the safety analysis. If theanalysis �nds that the transition could lead to a violation, the enabling condition ofthe delayed transition REQ will be combined with a set of conditions ERRCOND14

TRANSITION

LOCAL

ACCESS

REQ

LOCAL

ACCESS

DELAY

true

REQ

true

REQ

LOCAL

ACCESS

DELAY

!ERRCOND

REQ & !ERRCOND

REQ & ERRCOND

ERRCOND

ADDED DELAY SYNCHRONIZED DELAY

Figure 9: A simple transition, a blank delayed transition, and a delayed transition withadded synchronization conditionsthat is the precondition of the safety violation. This new version of the delayedtransition will get a priority that is higher then that of the original transition, thuspreempting its execution when a safety violation is imminent. The set of conditionsERRCOND is also used to substitute the true condition that activates the loopingtransition in the delay state, and its priority is raised above that of the transition tothe destination state. The transition from the delayed to the destination state willoccur only when there is no potential for a safety violation.The system state variables are shared throughout the system to make componentsaware of each others' state. These extended variables contain information on thecurrent states of the components, the priority of the components, and on the cur-rent states of safety monitoring rules. When components have the access to all thisinformation in the decision on local transitions, the synchronization information canbe e�ectively extracted during the execution. These signals are also the main in-terfacing mechanism between the components and the runtime support mechanisms.The priority variables are generated by the runtime support mechanism, to help thecomponents decide on the transitions that are delayed. Other additional variablescan be used for advanced synchronization of sets of simultaneous transitions. Addedvariables that encode the states of the components will not increase the complexityof the reachability graph because they represent state information in a condensedform. Priority variables will add to the complexity of the executable system, butthey are used only when safety violations are corrected, and then they are added tothe re�ned system without in
uencing the analysis process.15

2. The Safety Violation Identi�cation step, when the system behavior is checkedwith respect to the safety rules. Since the analysis is limited to non{real{time safetyrules, all safety violations are detectable from the behavior of the referenced com-ponents only instead of the whole system. The preconditions of the detected safetyviolations provide the basis for the computation of the synchronization conditions.Several processes can detect the safety violations, with di�erent levels of complexityand precision. GenEx currently detects safety violations by constructing the reacha-bility graph for the subset of components that are referenced by the safety rule. Thisprocess has exponential complexity, but for a single safety rule with several refer-enced components it is within the reach of modern computers. A di�erent approachto detecting safety violations is possible, but is not yet implemented. This static ap-proach uses only the description of the components and safety rules to �nd potentialsafety violations, but it can identify unreachable violations, and the performance ofthe synchronized system may be reduced as a result.The combined reachability graph is constructed for components referenced by a safetyrule, in order to determine if their interaction can cause a safety violation. Thedescriptions of components that are referenced by a safety rule are combined togenerate a model of their behavior. The combined state space contains all reachableviolations of the safety rule, allowing GenEx to identify them and correct them bydelaying some of the components contributing to the violations. The componentsare combined with their respective delayed transitions, so the combined reachabilitygraph contains the solutions to the violations. The delayed transitions are enabledby the same conditions that enable the original transitions, so they are treated asnondeterministic choices for the analysis purposes. By expanding the behavior thatfollows a delayed transition, GenEx analyzes all behaviors of the system, includingthose that will result from delaying the detected safety violations.Even if the reachability graph is too complex to construct, a static violation sourcegraph (see Figure 10) can be created to identify potential rule violations. The staticviolation source graph is a graph that only contains violation states and all of theirpredecessor states, whether reachable or not. The complexity of this graph is verylikely to be lower then that of the reachability graph, making it possible to analyzeand synchronize more complex safety rules with more referenced components. Thedisadvantage of not creating the reachability graph is that deadlocked states mayremain undetected, requiring further global checking.Consider the mutual exclusion rule for Client1 and Client2 and their combined reach-ability graph as in Figure 5c). Since the components Client1 and Client2 both havetwo states, the reachability graph can have at most four distinct states 5. When5In this case the size is bounded by the product of the component sizes, because the safety and controlledvariables are dependent on the current state of the components. The safety rules like priority or FIFO,with multiple non{rejecting states, and controlled variables that contain information on previous states16

REJECT

INIT

REMAINDER OF THE

REACHABILITY GRAPH

UNREACHABLE STATES

STATES WHICH CAN POTENTIALLY

LEAD TO REJECT STATE

REGARDLESS OF THEIR

REACHABILITYFigure 10: The violation precedence graph, contains all system con�gurations from which aviolation would be possible.the system is expanded with the delayed transitions, the reachability graph becomessimilar to the one in Figure 6c), with the transitions to the safety violation state stillactive.The Figure 11 shows the transition table for the initial state in the combined reach-ability graph. It shows the enabling conditions for transitions to di�erent systemstates. Destination state is represented by a pair of component states, and the safetyrule state. The state <access , access, reject>, reachable by the transition numbersix, represents a safety violation. All violations of the safety rules will appear asglobal states that include the rejecting state for some safety rule FSM. The enablingcondition for the transition to the safety violation state also enables transitions 7, 8and 9, to states <access, delay>, <delay, access> and <delay, delay>. Eachone of those transitions can substitute the violating transition as necessary. Theprecondition for this safety violation is a conjunction of the current system state andthe enabling condition for the violating transition; in this case it is local1 & local2increase the potential complexity of the reachability graph in proportion with their complexity(number ofstates for safety rules or two for boolean controlled variables).17

Enabling <Client(1),Client(2),mutex12>Condition Destination State1 !req1 & !req2 <local , local , state_OK>2 !req1 & req2 <local , access , state_OK>3 !req1 & req2 <local , delay , state_OK>4 req1 & !req2 <access , local , state_OK>5 req1 & !req2 <delay , local , state_OK>6 req1 & req2 <access , access , reject >7 req1 & req2 <access , delay , state_OK>8 req1 & req2 <delay , access , state_OK>9 req1 & req2 <delay , delay , state_OK>Figure 11: Combined transitions from the state <local,local>& req1 & req2.3. The Decomposition of Synchronization Conditions is a process where thesafety violation preconditions are partitioned into synchronization conditions for com-ponents. Every synchronization condition consists of the violation precondition and aselection part that nondeterministically chooses the delayed components. Whenever acombined transition leads to safety violation, a nondeterministic decision is added tochoose some safe subset of transitions that are taken, while the rest are delayed. Thetransition leading to <access,access> in Figure 11 can be removed and substitutedby the transitions to states <access,delay>, <delay,access> or <delay,delay> thathave the same enabling conditions 6. One of the components client1 or client2 hasto be delayed to preserve safety, and this nondeterministic choice can be representedas relative execution priority. The variable prio12 represents this nondeterministicchoice, and is randomly controlled by the runtime support environment. Synchro-nization condition for each client guarantees that the client will delay its transitiononly if violation preconditions occur, and the union of all synchronization conditionsfor a given violation is equal to the violation precondition, guaranteeing that theviolation will never occur in the execution.The component client2(client1) is delayed when the violation precondition occurs andthe variable prio12 is true(false), meaning that client2(client1) has lower priority.The resulting combined transitions preserve safety, by redirecting the violating tran-6The state <delay,delay> is reached only if both components are delayed, and this safety rule can besatis�ed even with a single delayed component. Nevertheless, the transition to the state <delay,delay>might be required in an execution when a third client is in its access state, and also requires exclusiveaccess. 18

Enabling <C[1] , C[2] >Condition Destination State!req1 & !req2 <local , local >!req1 & req2 <local , access>!req1 & req2 <local , delay >req1 & !req2 <access , local >req1 & !req2 <delay , local >req1 & req2 & prio12 <access , delay >req1 & req2 & !prio12 <delay , access>req1 & req2 <delay , delay >Figure 12: Reachable states that preserve the safety rulesition to a safe system state. Delaying both components is not necessary becausea single delay is su�cient to avoid the safety violation. This means that no syn-chronization condition has to be generated for that case. The combined transitiontable for the state <local,local> after the removal of the mutual exclusion violationis shown in Figure 12.4. The Addition of Synchronized Transitions is a process that uses the decom-posed synchronization conditions to create new delayed transitions for components.This results in the creation of synchronized components that can be integrated with-out causing safety violations. These transitions are assigned a higher priority thenthe existing transitions in order to preempt their activation when the synchronizationis necessary.To guarantee the preservation of the mutual exclusion rule starting from state<local,local > , we have to add one delayed transition to each of the two compo-nents. Adding a delayed transition to client2 with the enabling conditionlocal1^local2^req1^req2^prio12, and giving that transition a priority that ishigher than the original transition to the access state guarantees the mutual exclu-sion when prio12 holds, i.e. when client1 has priority. No changes are necessary inclient1 when it has priority because the delay of the other component is su�cient tosatisfy the safety. The enabling condition local1^local2^req1^req2^:prio12 forthe delayed transition of the component client1 guarantees that the mutual exclu-sion is satis�ed when the component client2 has priority. This synchronization stepis executed for every combined state that can lead to a safety violation, and thusmore than one version of the delayed transition may be necessary. For example, thecomponent client1 requires another delayed transition with the enabling conditionlocal1^access2^req1 to guarantee that it delays until the component client2 exits19

its access state.5. Model Checking of the system is necessary to verify the functionality of the syn-chronized system. If the given safety rules have some real{time requirements, or ifa set of safety rules is inconsistent with the system, the synchronization will resultin the existence of deadlocked states. Another source of deadlocks is the circulardependence between synchronized components. GenEx generates a model of thesynchronized system in the SMV [McM93] notation that allows symbolic checking ofvery complex systems. The deadlocks can involve components that are not referencedby a single rule, so the full system may have to be checked. The complexity of indus-trial scale systems is probably beyond the capabilities of SMV, so other approachesto deadlock detection are necessary. As in the case of safety violation detection, astatic method can be used to verify the existence of deadlocks.The static deadlock search method is based on a search for cycles in the delay{dependency graph. This graph can be constructed from the component and safetyrule de�nitions, without combining their behaviors, and is therefore of polynomialcomplexity. The drawback of this method is that it can report unreachable deadlocksthat prevent the user from using a deadlock{free system until a more detailed analysisproves its correctness. This static method is currently not a part of GenEx, but itis a planned addition, and will be discussed in more depth in the proposed worksection.Together with deadlock veri�cation, model checking tools can verify that the synchro-nized system satis�es some reachability, liveness or real{time speci�cations. Theseclasses of properties either propagate dependencies between parts of the system, orare unenforceable because they require control of the input from the environment.These properties are very important for the correctness of a system, so even if enforc-ing them is not an option, their preservation can be formally veri�ed. The automat-ically computed synchronization conditions that guarantee safety are also minimalin the sense that no acceptable states are made unreachable. This guarantees thepreservation of all reachability and liveness properties, as long as they are consistentwith the safety properties of the system. 7 The model checking can be done with theoriginal components, and all the properties that can be satis�ed without violatingthe safety will be preserved in the synchronized system.6. Code Generation produces the executable versions of all synchronized components,as well as the interfaces to the runtime support environment and links to the dataprocessing code. The code is generated separately for every component and includesits delayed transitions. The components can be grouped for execution in arbitraryways, in a variety of execution environments. The runtime support is currently7A reachability property is inconsistent with the safety when the only way to satisfy the reachabilityrequires safety violations. 20

available only for centralized execution, and more general distributed versions areplanned.The generated code is equivalent to the synchronized components, and the wholesystem is guaranteed to satisfy the safety rules that it was synchronized for. Linksto the external data processing code are also generated according to the componentspeci�cations. The priority signals are generated by the runtime support, and theycan be randomized to guarantee the fairness of the system. The fairness in theselection of delayed components guarantees the preservation of the liveness propertiesin the synchronized system.4 Detailed Algorithm DescriptionIn this section we will concentrate on the details of the automated computation of thesynchronization conditions. The synchronization process consists of the following phases:single rule synchronization, global deadlock cleanup, and liveness checking. Two distinctalgorithms can be used to compute the necessary synchronization between the components,and the choice depends on the number and complexity of the safety rules and componentsthat in
uence them. The deadlock prediction algorithm is global and is intended to preventdeadlocks between components whose combined reachability graphs were not constructedin the synchronization phase. Additional liveness and reachability checking can verify ifthe synchronization prevents the system from completing its functional tasks.4.1 Single Rule Synchronization Using the Reachability GraphCombining related components is the �rst step in the reachability{based analysis of systemcompliance with the safety rules. Only the components which are relevant to the propertyare combined, thus limiting the complexity of the combined state space. This complexityis a decisive factor in the practical applicability of the reachability{based analysis. Theanalysis can be limited to the referenced components because the system is being synchro-nized to satisfy safety rules. Safety rules depend only on the referenced components, sothe synchronization that satis�es them can ignore other components.Since all components are represented by �nite state machines, the combined state spaceis a �nite state machine. The safety rules are represented by FSM, and they have to beincluded in the generation of the combined FSM, because some safety violations dependon the previous safety related states of the system. The construction of the combinedreachability graph starts with the initial combined state s0, that is the combination ofinitial states for all combined components, and the initial state for the safety rule. Thetransitions in the combined reachability graph contain a set of component transitions, and21

a transition for the safety rule. The component transitions t1 of component c1 and t2 ofc2 can be combined if they fall in one of the following categories for every system variablev. � Both t1 and t2 require v to be true or @true.� Both t1 and t2 require v to be false or @false.� The enabling condition of at least one of the transitions t1 and t2 is independentfrom v.The combined reachability also requires the consistency of the transitions with the pre-ceding combined system state. Transition t1 of component c1 can take place in state s ifthe state of c1 in s is the source state of t1, and one of the following conditions holds forevery system variable v.� Transition t1 requires v to be true(false) and the present value of v in state s istrue(false).� Transition t1 requires the event@true(@false) to hold for v, and the present valueof v in state s is true(false), and previous value of v is false(true).� The enabling condition of the transition t1 is independent from v.� Previous and present value of v are unrestricted in s. The value for a monitoredvariable in a state is unrestricted when the combined transition to that state isenabled regardless of the value of the variable.The transition of the safety rule FSM also has to be consistent with the component transi-tions in the combined transitions. The safety rule transition is enabled by the destinationstates of the component transitions and by the new values of the controlled variables. Inother words, the transition of the safety rule is selected based on the result of the combinedtransitions of all components. The transition computation for the reachability graph hastwo phases: the composition of the component transitions, and the safety rule transition.When the component transitions are combined and veri�ed for consistency in the sourcestate, the resulting state is encoded into the expanded state variables. The enabling con-dition for the safety rule is computed from the expanded state variables. If the enabledtransition for the safety rule leads to the reject state, the combined destination state isa safety violation state, and the conditions that enable the combined transition are thesafety violation precondition. If any other state is the destination state for the safety ruletransition, the combined destination state is safe.22

LL

AA
When both clients complete their transitions
they trigger a safety violation.
A comparison with a delayed transition
that preserves the safety points to
the component that should be delayed.

AD

One Component
Delayed

Both Components

Source State

Safety violation

Complete Transitions

State reached when the client 1
completes the transition to access
state, and the client 2 is delayed.

ss

sv

t

td

sd

Figure 13: Selection of delayed components and delay conditionsEvery consistent combined transition from a state in the combined reachability graph leadsto another state in the graph. The graph is constructed by exhaustive expansion of everynew state to �nd its successors until all transitions lead to some already explored state.Only transitions from the safe states are constructed and their destination states added tothe graph. The safety violation states will be made unreachable after the synchronization,and that will make their successors unreachable as well.The primary goal of the analysis phase is to �nd whether a safety rule is satis�ed bythe system and, if it is not, to compute the synchronization conditions that make thesystem safe. The combined reachability graph contains all reachable states of the system,including safety violation states. The identi�cation of safety violation states is a part of thereachability graph construction. This is done to limit the construction of the reachabilitygraph to only those states that can be reached without safety violations. This way, thestates that are only reachable after safety violation states will not be included in thereachability graph. The selection of delayed components is based on their contributionto the safety violation. A component has to be delayed only when the completion of itstransition leads to a safety violation that is avoided when the transition is delayed.For every pair of states ss and sv, connected by a combined transition t, where sv is asafety violation state, the delay of the combined transition is propagated to the componentsthat contributed to the violation. Analysis of the di�erences between the states ss and svidenti�es the components that changed their state or controlled variables in the transitiont. To identify the components that caused the violation, the analysis looks at all states sdreachable by a delayed transition td that satisfy the safety rules. The di�erence between23

the delayed transition td and the violating transition t determines the condition that ispropagated to the component to trigger the delay.Figure 13 shows the three system states used for the computation of synchronization con-ditions. When a delayed transition td satis�es the safety rule violated by the transitiont and the combined transitions di�er only by the transition of a component C, then thatcomponent can be delayed to make the safety violation unreachable. The enabling condi-tion for the delayed transition is the enabling condition of t combined with the prioritymask condition that contains the information on the components that have higher prioritythan C. The Figure 13 shows the states LL with both clients in their local state, AA withboth clients in the access state, and AD with client 1 in the access state and client 2 inthe delay state. The following algorithm �nds the components that need to be delayed,and computes the delay conditions.� For all states sd that satisfy the safety rules, with a transition td from ss to sd doloop:� If the transition td from ss to sd is not enabled by the same condition cv as thetransition t then break.� If some component transition in t is a delayed version of the transition by the samecomponent in td then break.� If td di�ers from by more then one component transition then break.� Identify the component C that is delayed in td and completes the transition in t.This component causes the safety violation, and has to be delayed.� Identify states scs, sc and scd where the component C makes a transition from scsto sc in t, and from scs to scd in td.� Assign the set of components that complete their transitions in both t and td to thepriority mask condition cp� Assign the conjunction of the enabling condition cv for t and the priority mask cpto delay enabling condition cd.� Generate a delayed transition from scs to scd in component C, enabled by thecondition cd.For behavior rules which are speci�ed as regular expressions, the analysis is based on thecombination of the related components and the �nite state representation of the rule. Theanalysis then consists of checking if any of the rejecting states in the rule representation isincluded in some reachable global state. The way to improve the system in those cases isbased on simple elimination of the o�ending states from the combined system description.24

5 Related WorkThis section shows some related approaches in the design and veri�cation of concurrentsystems. The emphasis of most of these systems is on the formal assurance that the crit-ical system requirements are satis�ed. The main distinction between GenEx and theseveri�cation systems is in the programming paradigm they use. The veri�cation systemstake a description of the system and its requirements, and verify the consistency betweenthem. The system development using GenEx is based on the automatic generation of thesystem synchronization code that will guarantee its consistency with the safety require-ments. GenEx and other design{oriented systems generally support a subset of propertiesthat can be handled by the veri�cation systems, but their use generally results in fasterdevelopment.Correctness veri�cation is an essential part of the development of complex concurrent anddistributed applications. Testing can provide an estimate of the system reliability andcorrectness, but it covers only a subset of all executions, so errors can remain undetected.Formal checking e�orts in the area of concurrent systems have been concentrated in twomajor areas: proving temporal properties of �nite system abstractions, and trying to provethat implementations satisfy the speci�cations. Proving correctness of abstract descrip-tions is of limited use because of the possible discrepancies between the implementationand the description. In general the scalability of this approach is limited by the complex-ity of the system. When complexity is kept low, mcb [Bro86, CES86] can successfully ande�ciently check formulas in �rst order temporal logic CTL. PAL [YY91], [YY93] is a com-positional reachability analysis tool that uses algebraic methods to reduce the state spaceof the problem. It allows the checking of more complex problems, but some examples canforce it into searches of exponential size.Proofs on real code are rarely used because their complexity is generally unacceptablyhigh, and they are often undecidable. Some systems try to extract abstract informationfrom the source and do partial analysis. STeP [ZM+94] tries to prove the given assertionsautomatically and when that fails it lets the designer guide the proof by choosing theassertions that are to be proved. Analyzer [CG95] requires additional information relatedto the abstract description to be inserted in the source code, and combines it with theprogram reachability graph to check the consistency of the program and SCR [Hen80] stylespeci�cations. Due to the undecidability of the program behavior, this analysis is eitheroptimistic or pessimistic, and exact analysis is impossible. The requirement to annotatethe code for analysis has a positive side{e�ect, it forces the designer to understand anddocument the relationship and the mapping between the speci�cations and the code. Thesetwo systems both support the idea that automatic checking is unable to deal with the dataprocessing aspect of computation, and human involvement is required in system validationand veri�cation. GenEx is de�ned in the domain of system interaction, where automated25

veri�cation and synchronization is possible because it is isolated from the data processingaspect, and its complexity is inherently limited to the �nite{state domain.Compositional and symbolicmodel checking are two approaches that try to reduce the com-plexity of the state space representations. Compositional model checking [CLM89], [FG94]tries to limit the complexity by constructing abstractions that can represent system com-ponents in further analysis of the given properties. By eliminating states that are irrelevantto the property, it can achieve signi�cant reduction in the complexity of the analysis. Thisapproach is orthogonal to automatic synchronization, and the same abstraction and re-moval of irrelevant states can be used in GenEx to reduce the complexity of the reachabilityanalysis. Symbolic model checking [BCM+90] relies on the symbolic representation of thestate space, where regularities in the state space are exploited to minimize the complexityof the representation. These techniques are very powerful analysis tools, but they requirethe designer to correct all inconsistencies. Also the correctness of the abstraction in noway guarantees the correctness of the implementation done by hand, a fact that reducesthe practical applicability of those systems.The concept of product state machines, as described in [Lim93], [Lim96] is conceptuallyvery similar to GenEx, and the main di�erence between them is the scalability. Theapproach in Lim's system is that the global reachability graph is actually constructed andrestricted to eliminate violation states, and the restricted graph is used in the execution. Asdiscussed before, this approach does not scale to the level of realistic software systems. Thesituation is di�erent in hardware based or manufacturing systems where the complexitygenerally has to be such that it can be completely captured. Other similar approaches existin the hardware design area where the behavior of circuits can be completely modeled andthe sequential circuit is generated as an instance of the veri�ed model. Conceptually,GenEx does the same thing, but the emphasis is on the local analysis and synchronizationof components, and the complexity is kept low because the synchronization mechanism forevery safety rule is independent.Automatic code generation is a technique that has been used in many areas of softwareengineering, and it greatly increases the consistency and the reliability of the generatedsystems. Lex and Yacc generate code that parses a given language, based on the grammarand operator priorities in the language. The code is generated for a modi�ed version of thegrammar that is obtained by eliminating the ambiguities from the original grammar ac-cording to the speci�ed priorities. Polylith and other con�guration languages automate theinterfacing between application components based on the global connection descriptions.GenEx extends this automatic interfacing concept by using safety properties as rules thatguide the synchronization process. The performance of the generated code is potentiallyvery high, because our descriptive model is based on deterministic �nite state machinesthat can be naturally mapped into e�cient executable code.26

Several systems have used the code generation to implement synchronized concurrent sys-tems, LUSTRE [CRR91] and Esterel[BG92] being based on a similar model of computationas GenEx. These systems use a synchronized model of computation, making them simpleto analyze and generate code for. Both LUSTRE and Esterel support the veri�cation ofgiven system properties versus the system behavior. The main di�erence about GenEx isthat instead of verifying that the speci�ed system satis�es the given properties, it actuallycomputes the necessary synchronization of the components that makes the system con-sistent with the given safety properties. This is a fundamental di�erence because GenExallows the programmer to give a partial system description, and have it automaticallyre�ned to satisfy the given set of rules; the other systems would notify the programmer ifthe description satis�es the rules and if not, the design would require some changes by theprogrammer. Apart from requiring high skill, the manual re�nement might also involvesizeable e�ort because the physical size of the description might have to increase.TRACTA is another compositional veri�cation system with code generation support. Theexecution model in TRACTA uses an even stronger version of synchronization, embod-ied by the labelled transition system(LTS). The synchronization in LTS is based on thesynchronous transitions by all components that use a given label. This synchronizationis context{based, unlike simple synchronous execution of all components used in GenEx, LUSTRE and Esterel. The expressiveness of LTS makes it possible to design very ele-gant systems, using similar decomposition to that used in GenEx. The main drawbacksof TRACTA come from the strong synchronization provided by LTS. The LTS models arehard to design without deadlocks, and their implementation on distributed systems is ofquestionable e�cacy. Although TRACTA reduces the analysis space using compositionalveri�cation, the complexity can be an exponential function of the number of componentsin the systemAnother related concept is that of Safety Kernel [WK95] that is less formal, but involvesthe code generation capability and automatic safety implementation. This centralized, andmore importantly sequential, paradigm makes the code generation trivial by reducing itto a simple runtime check of the desired property. The main shortcoming of this systemis its orientation towards centralization, that is useful in its domain of safety enforcement,but not really applicable to the concurrent and potentially distributed systems. The in-applicability is due to the notion of a centralized safety kernel that controls all accesses,while the concurrent and distributed systems require the maximum possible decentraliza-tion. Despite this shortcoming, the system is an example of how simple methods can solvecomplex problems, given the right domain.The decomposition aspect of our method is based on some features introduced by the con-�guration languages such as Polylith [Pur94] and Darwin [JM]. Separation of conceptualdescription from the implementation is a powerful concept that provides these languageswith great
exibility in porting applications between di�erent environments, due to their27

support for mapping the concepts to a given physical structure. Unlike con�guration lan-guages, GenEx supports extracting behavior information to the conceptual level, where itcan be used in the re�nement of the system to comply with the given set of rules. Whilethe goal of GenEx is similar to the con�guration languages, to simplify the interactionbetween system components, the domains where they operate are clearly distinct and theycan be combined in the construction of a concurrent system where GenEx would generatethe synchronization code, and Polylith can provide the data communication between thecomponents, as well as the underlying communication for the GenEx runtime kernel.6 Proposed Research and Future WorkThe goal of automatic rule{based synchronization is to integrate the independently devel-oped components into a concurrent or distributed system whose behavior satis�es the givensafety rules. The basic assumption is that each component is "delayable", i.e correctness ofits execution is time{independent. Given a set of delayable components, the global behav-ior of the system can be integrated using local analysis and re�nement, without the needfor the computationally costly global analysis. This approach helps to reduce developmenttime and, even more importantly, maintenance time for complex concurrent systems.The application of automatic synchronization in software design provides the users witha synchronization skeleton that is created based on the given set of safety rules. Thegenerated code also has a simple interface to link it with the data processing code, whetherit is implementedmanually or generated by other tools. The generated code is very e�cientbecause it consists of a single table lookup for every component in the system. Even moreimportantly, the performance is predictable because the overhead of the table lookup canbe accurately estimated.The remaining work for the completion of the GenEx automatic synchronization systeminvolves the completion, integration and assessment of achieved results. The �rst priorityis the completion of the missing functional units for the system, such as the static safetyviolation prevention, and the global deadlock detection and removal algorithm. Anotheraspect of system completion is the necessary optimization of some computationally in-tensive functional units. The optimization is necessary to improve the performance ofthe analysis tools that are currently written in prolog, and therefore very ine�cient, andthe optimization strategies range from reordering data �elds within prolog predicates torewriting the analysis tool in a compiled programming language such as C.The next task is the integration of all these parts into a functional prototype that imple-ments the automatic synchronization method. The integration of the system requires afront{end interface that analyzes the safety rules and generates a script with the necessary28

sequence of automatic synchronization operations. Other integration aspects include theinterfaces to temporal logic veri�cation tools such as SMV [McM93].6.1 Static Violation DetectionThe automatic synchronization based on the construction of combined reachability graphshas one important drawback. The computational complexity of the graph can exceed theavailable processing capacity or, the time required to compute the synchronization changescan become too large to be acceptable in practice. Both of these problems are direct resultsof the combinatorial nature of the global system behavior, and they can be alleviated bydi�erent analysis approaches, but it is improbable that they can be solved completely.An alternative to combined reachability graph construction is the static analysis methodthat is based on the detection of transition combinations that can lead to safety viola-tions. Every potential safety violation is identi�ed, and all possible delayed versions of thetransition are added to the system as alternatives that preserve the safety. This approachhas the advantage that it only requires the construction of a single{layer precedence graphfor the violation states, as opposed to the whole combined reachability graph. Since thereachability graph is not constructed, some of the detected violations may be unreachable,and their delayed versions may never be executed. The addition of transitions that willnever be taken does not change the behavior of the system, and only imposes some run-time overhead in the transition selection phase. This overhead should be an acceptabletradeo� to preserve the automatic synchronization capability when the complexity of theexhaustive reachability graph approach is unacceptably high. It is specially useful in theearly design phases, when changes in the system occur more often, and the performancerequirements are less strict. Multi{layered violation precedence graphs can be used todetect more unreachable transitions, and eliminate them from consideration.The single{layer violation precedence graph has a lower complexity than the reachabilitygraph, but its size is still an exponential function. Instead of being a function of the numberof states per component, the complexity of the violation precedence graph is a function ofthe number of transitions that may lead to a violation in each component. This shouldresult in a great complexity reduction when complex components and safety properties8are involved.8Complex here refers to the representations of the components and rules having larger number ofstates. For example, invariant properties are considered simple, and their representation consists of onlytwo states, one of which is a rejecting state. On the other hand, complex properties could be those with 2or more non{rejecting states, because each such property at least doubles the complexity of the reachabilitygraph. Priority, �fo access, sequence scheduling are examples of such complex properties.29

C1 C2

C3

t11

t12

t21

t22

t31 t32

DEADLOCK CYCLEFigure 14: Blocking graph cycle detection of deadlocks. The directed edges connect a blockedcomponent with a component that is blocking it.6.2 Static Deadlock DetectionA well known e�ect of synchronization by blocking processes is the appearance of dead-locks. While mutual exclusion, and priority violations that the user speci�es are domaindependent safety violations, the deadlock is a systemic fault that appears as a potentialresult of the synchronization when some components are required to wait for events inthe system that allow them to continue the execution. Since deadlocks are an implicitbyproduct of the blocking synchronization, they have to be identi�ed and removed fromthe system just as the user{speci�ed safety violations are.Deadlocks can be a result of the synchronization for a single safety rule, or of multiplesafety rules de�ned on overlapping sets of components. If a single safety rule produces thedeadlock, and the rule is satis�ed using the combined reachability graph, the deadlockedstate is easy to detect and remove like other safety violations in the graph. In the caseof static analysis or when multiple rules lead to a deadlock, a cycle detection algorithmis used to identify the deadlocked components and states. The delayed transitions of allcomponents make the nodes of the deadlock detection graph, and the edges are directedbetween transitions that may block one another. Figure 14 illustrates how a cyclic blockingmay exist between components of a system, and how it di�ers from acyclic blocking thatexists between correctly synchronized components.While the deadlocked states in reachability graphs can be removed immediately, the dead-locks which are identi�ed by the cycle method should not be treated as new safety viola-30

tions. This is because the synchronization for the additional rules would simply generatenew deadlocks, and the complexity of the analysis would increase due to the increased num-ber of components referenced by the safety rule. The alternative approach to solving thesedeadlocks is the relaxation of the state correspondence for the delayed transitions. Insteadof having the delayed state represent the source state, with the capability to continue theactions started in the source state, a relaxed delayed state becomes a new, do{nothingstate that can not interact with any other component in any way.The relaxation produces idle states in components, and its application should be kept toa minimum. The components to be relaxed should be chosen by the number of di�erentdeadlocks they prevent, and by the importance of their activity in the system. User shouldbe able to direct this process by declaring the critical components or transitions that shouldnot be relaxed.6.3 Synchronization Case StudiesThe practical applicability of the system has to be veri�ed on di�erent types of problems,to assess its performance, reliability and suitability for problems of realistic size. The mostimportant use of the automatic synchronization method is in the systems that comply withpotentially evolving safety requirements. The veri�cation of the suitability of automaticsynchronization for this type of system involves two factors: the resynchronization capabil-ity, and the preservation of the interface compatibility between the generated code and theuser{supplied data processing code. These capabilities will be veri�ed on the client{serverexample by modifying the types of safety rules and protocols required from the system.The capability to handle concurrent systems of non{trivial complexity is the most impor-tant requirement for the practical applicability of automatic synchronization. Veri�cationof the scalability of the automatic synchronization method will be based on concurrentsystems whose complexity is a result of the number rather then the complexity of the com-ponents and synchronization rules. The client{server example with incremental increasesin the number of components will be used to verify the scalability of the analysis of thisclass of systems. Successful synchronization of complex systems supports the claim thatthe synchronization complexity does not depend on the complexity of the whole system,but on the complexity of the individual components and safety rules.Veri�cation of the performance and reliability of the system will be based on standardsynchronization problems such as the dining philosophers or cruise control. This typeof synchronization problems provides a benchmark to compare the code generated byautomatic synchronization with manually generated applications or with code generatedby other automatic methods. 31

Additional case{studies will address the issues of non{�nite state systems such as stacks/bu�ersand event counting, and other aspects of interaction that the automatic synchronizationdoes not satisfy directly, such as real{time behavior, asynchronous execution and delaysin the sharing on global state information. Even if the complexity of the analysis for theseproperties is unacceptably high, the automatically synchronized systems can be used toaddress them. The adaptations usually involve some manual changes to the architectureof the components or the global shared data, and some of that could even be automated.The bene�ts of using the automatic synchronization method have to be compared to thoseof other methods for producing concurrent systems. I am currently aware of only twosystems that consider the safety requirements in an abstract form and implement them inthe executable system, The Safety Kernel concept [WK95], and the State Combination ap-proach by Lim [Lim93]. The system will also be compared to systems that are based on theveri�cation of user generated concurrent systems such as Esterel [BG92] or SMV [McM93].7 ConclusionAs described in the previous sections, the process of automatic rule{based synchronizationtakes a set of system components and system safety requirements, and produces an inte-grated system consistent with the given requirements. Thanks to the embedded interfaces,the system is readily linkable with data processing code that is manually developed or pro-duced using other software generation tools. This method allows very quick developmentof high reliability concurrent applications, and increases its reusability and maintainabilityby supporting automatic resynchronization whenever the components or the safety ruleschange. The synchronization process itself is organized in a way that limits the computa-tional complexity of the analysis, and guarantees that the system synchronization will besuccessful even for very complex systems.References[BCM+90] J.R. Burch, E.M. Clarke, K.L. McMillan, D.J. Dill, and L.J. Hwang. \SymbolicModel Checking: 1020 States and Beyond". In Proceedings of the Fifth AnnualSymposium on Logic in Computer Science, pages 428{439, June 1990.[BG92] G. Berry and G. Gonthier. \The Esterel Synchronous Programming Language:Design, Semantics, Implementation". Science of Computer Programming, 1992.32

[Bro86] Michael C. Browne. \An Improved Algorithm for the Automatic Veri�cation ofFinite State Systems Using Temporal Logic". In Proceedings of the Symposiumon Logic in Computer Science, pages 260{266, August 1986.[CES86] E.M. Clarke, E.A. Emerson, and A.P. Sistla. \Automatic Veri�cation of Finite-State Concurrent Systems Using Temporal Logic Speci�cations". ACM Trans-actions on Programming Languages and Systems, 8(2):244{263, April 1986.[CG95] M. Chechik and J. Gannon. \Automatic Analysis of Consistency between Im-plementations and Requirements". Technical report CS-TR-3394, Dept. of CS,University of Maryland, College Park, January 1995. (in preparation).[CLM89] E. M. Clarke, D. E. Long, and K. L. McMillan. \Compositional Model Check-ing". In Proceedings of the Fourth Annual Symposium on Logic in ComputerScience, pages 464{475, June 1989.[CRR91] N. Halbwachs C. Ratel and P. Raymond. \Programming and veryfying crit-ical systems by means of the synchronous data{
ow programming languageLUSTRE". Software Engineering Notes, pages 112{119, ? 1991.[dLSA95] Rogerio de Lemos, Amer Saeed, and Tom Anderson. \Analyzing Safety Re-quirements for Process-Control Systems". IEEE Software, 12(3), May 1995.[EC82] E. Allen Emerson and Edmund M. Clarke. \Using Branching Time TemporalLogic to Synthesize Synchronization Skeletons". Science of Computer Program-ming, 2(3):241{266, Dec 1982.[FG94] Je�rey Fischer and Richard Gerber. \Compositional Model Checking of AdaTasking Programs". Technical report, University of Maryland College Park,February 1994.[Hen80] K. Heninger. \Specifying Software Requirements for Complex Systems: NewTechniques and Their Applications". IEEE Transactions on Software Engi-neering, SE-6(1):2{12, January 1980.[JEH79] Je�rey D. Ullman John E. Hopcroft. Introduction to Automata Theory, Lan-guages and Computation. Addison Wesley, Reading, MA, 1979.[JM] Je� Kramer Je� Magee, Narankar Dulay. " A constructive Development Envi-ronment for Parallel and Distributed Programs ".[Lim93] Alvin See Sek Lim. `' A State Machine Approach to Reliable and DynamicallyRecon�gurable Distributed Systems ". PhD thesis, University of Wisconsin.,Madison, Wisconsin, 1993. 33

[Lim96] Alvin Lim. \Compositional Synchronization". In International Conference onDCS, 1996.[LL95] Claus Lewerentz and Thomas Lindner. \Formal Development of Reactive Sys-tems". Springer Verlag, Berlin, 1995.[Man96] Toni Mandrioli. COMPASS 1996 Keynote Address, 1996.[McM93] K.L. McMillan. Symbolic Model Checking. Kluwer Academic, 1993.[Pur94] James Purtilo. \The POLYLITH Software Bus". ACM Transactions on Pro-gramming Languages and Systems, 16(1):151{174, jan 1994.[WK95] Kevin G. Wika and John C. Knight. \On the Enforcement of Software SafetyPolicies". In Proceedings of the Tenth Annual Conference on Computer Assur-ance, pages 83{93, June 1995.[YY91] Michal Young and Wei Jen Yeh. " Compositional reachability analysis us-ing process algebra". In Proceedings of the Symposium on Softvare Testing,Analysis and Veri�cation (TAV 4), pages 49{59, October 1991.[YY93] Michal Young and Wei Jen Yeh. " Compositional reachability analysis of AdaPrograms Using Process Algebra". July 1993.[ZM+94] Nikolaj Bjorner Zohar Manna, Anuchit Anuchitanukul et al. " STeP: the Stan-ford Temporal Prover". June 1994.
34

DEPOSIT BELT

PRESS

ARM1

FEED BELT

ROBOT

ARM2

ROTATING TABLE

CRANE

Figure 15: The Production Cell systemA Production Cell ControllerOur method automates the integration of FSM{based concurrent and distributed systems.Many other methods work with the same kind of systems, and simplify the design usinga variety of integration, veri�cation and analysis tools. To assess the quality and thepotential of our method, we will analyze its e�ects in the development of an industrialsafety critical control system, where many other methods have been used with the samegoal. We will attempt to design a controller for the production cell system [LL95] used fora case study of over a dozen formal design methods for concurrent systems.The production cell system in Figure 15 is an example of a controlled concurrent systemwith decomposable interaction between the components. The production cell contains �veindependent devices that have to synchronize with each other to achieve correct behavior.The devices are: a press that processes metal blanks, a rotating robot with two extendablehands that places blanks in the press, and takes them out after they are processed, afeeding belt that brings the blanks , a rotating table where the blanks are deposited tobe picked by the robot, and a deposit belt where the robot deposits the processed blanks.A crane between the feeding and deposit belt maintains a continuous stream of blankscoming into the system.Each component of this system has some individual restrictions on their mobility, and theinteraction between them has to occur within prede�ned parameters to preserve the safetyof the system. The safety of the system is violated by collisions between components, and35

by the inappropriate handling that results in blanks being dropped. The collisions occurwhen two machines work in the same area, while metal blanks can be dropped when themachines are not in compatible states for transfering them.The goal of the controller is to synchronize the machines to accept the blanks, press themand deposit the pressed blanks on the deposit belt. The component behavior is outlinedby the authors, in the form of �nite state machines, and we use those descriptions to createour own controller for the system. Our controller consists of the component controllers,taken from the system speci�cation, and synchronization and safety rules that specify therestrictions on the interaction between the machines. The synchronization and safety rulesare also in the form of FSM, and they monitor the behavior of the components, signallingsafety violations when the components interact in undesirable ways. The integration ana-lyzes the behavior of the components and uses the detected safety violations to delay thetransitions that generate those violations. The components can complete their delayedtransitions only when they no longer endanger the system safety. This way, the safety ofthe system is guaranteed by design, and the generated controller enforces it.A.1 ComponentsThe simplest components of the production cell system is the feed belt. The belt is equipedwith a sensor that detects when a metal blank reaches the end of the belt, and it acceptsone controlling signal specifying whether to move or stop. The behavior of the feed beltis simple: it should move until a blank is detected at the end of the belt, then it shouldstop and restart when the rotating table is ready to receive the blank. This behavior isformally de�ned in Figure 16a).The deposit belt is similar to the feed belt, but its behavior is somewhat di�erent becauseit has to wait for the crane to take the blank o� the belt rather then just drop the blank.The behavior of the deposit belt is the following: it moves until a blank is detected by thesensor, and passes by it; when the sensor no longer detects a blank, it is in position tobe lifted by the crane. After the crane lifts the blank, the deposit belt can restart. Thisbehavior is de�ned in Figure 16b).The rotating table can move vertically, adjusting its height to receive the blank from thefeed belt, and to allow the robot to pick the blank with the magnet on its arm. The tablealso rotates to position the blank in the correct position to be picked up by the robot.The behavior of the rotating table follows: it starts in the low inline position, and thenrises and rotates clockwise until it gets to the high and diagonal position. From the highdiagonal position the table lowers and rotates counterclockwise until it gets to the lowvertical position. This behavior is de�ned in Figure 16c).36

The press moves only vertically, and has three height sensors that detect its position. Thesensors can detect the high position when the press closes and processes the metal blank,the medium position when the press is ready to accept a new blank from the robot, and thelow position when the processed blank can be picked up by the robot. The press receivesa new blank in the medium position, and then presses it until it reaches the high position.After the blank is pressed the press opens until it reaches the low position where the blankcan be picked up by the robot. Then the press closes until it reaches the medium positionwhere a new blank can be received.This behavior is de�ned in Figure 16d).The robot performs two functions in the system, its �rst arm carries blanks from therotating table to the press, and its second arm takes processed blanks from the press andplaces them on the deposit belt. The robot can rotate as a whole, extend and retractboth arms individually, and pick blanks by activating magnets on the arms. The robotalso senses its rotation angle, and the extension of the arms to help it in the correctpositioning. The detailed behavior of the robot is as follows: it picks a blank from thetable, then rotates and extends arm two to pick a processed blank from the press. Next, itrotates counterclockwise and retracts the second arm to drop the processed blank on thedeposit belt and then rotates more to drop the new blank from �rst arm onto the press.After that it retracts both arms and rotates clockwise until the �rst arm points to therotating table and extends it to pick a new blank.The crane takes blanks form the deposit belt and places them on the feed belt to maintaincontinuos operation. The crane can move horizontally between the two belts, and verticallyto adjust its height to the level of the belts. The crane is equiped with three sensors, twosignal when the crane is in the correct horizontal position over the belts, and the thirdprovides the information on the crane elevation. The crane moves to the deposit belt, andlowers to its level to pick a processed blank. Then the crane lifts the blank, and travels tothe feed belt where the blank is lowered and dropped when the crane magnet is turned o�.The common denominator of all described components is that they are all independentfrom each other. Each component is described only in terms of its position without regardto the state of other components. But it is clear from the description of the system thatthese components have to be synchronized to pass the metal blanks. The rotating tablehas to wait for the blank from the feed belt before starting to raise and rotate, and the feedbelt has to wait for the rotating table to come to the low inline position before startingto unload the blank. This informal description of the desired interaction between thecomponents is easily formalized into a safety rule that requires that behavior.The safety rule FEED TABLE in Figure 17a) speci�es the interactions between the feedbelt and the rotating table that should be made unreachable in the executable version ofthe controller. The safety violations are de�ned as transitions to the state reject of thesafety rule. The safety rule prohibits the feed belt from entering the UNLOADING state37

UNLOADED

MOVE BLANK

UNLOADING

Sensor ON / STOP

Sensor OFF / -

- / START-/-

READY

Sensor ON / -

Sensor OFF / STOP

MOVE

AT_SENSOR

TAKEN
- / START

-/-

DIAG / STOP_H

- / RAISE

- / ROTCTR

INLINE / STOP_H

ROTATING TABLE

LOW_ROTCTR LOW_DIAG

- / ROTCLK

- / LOWER

HIGH_ROTCLK

HIGH_DIAGLOWER_DIAG

HIGH / STOP_V

LOW / STOP_V

LOW_INLINE RISE_INLINE HIGH_INLINE

- / PRESS

- / -

- / -

- / -

HIGH / OPEN

- / PRESS

MED / STOP

LOW / STOP
PICKED

LOW_EMPTY RAISE_TO_LOAD

RDY_TO_PICK OPEN

RDY_TO_LOAD LOADED

PRESS

FEED_BELT DEPOSIT BELT

PRESS

b)

d)

c)

a)

Figure 16: Components of the Production Cell systemuntil the rotating table gets to the LOW INLINE state where it can accept a new blank.Once the table is in the state where it can accept the new blank, it is not allowed tostart rising until the feed belt unloads a blank on it. After the new blank is passed to therotating table, it is allowed to start rising and the safety rule prohibits the feed belt fromunloading until the rotating table returns to the low inline position.This safety rule enforces what is basically a handshaking algorithm for the feed belt andthe rotating table. It requires a speci�c interleaving of transitions by the two components,insuring that the feed belt unloads the metal blank on the rotating table. Although thecomponents are de�ned independently, this rule references both of them, and enables theintegration process to modify their interaction by delaying one or the other and allowingthem to complete the delayed transitions only when they preserve the safety.The safety ruleARM1 TABLE in Figure 17b) speci�es the interaction between the robot38

b)

FREE

UNLOADING

Table = High_Diag

UNLOADED

ARM1_TABLE

Table = Lower_Diag

TBL_READY

REJECT

Robot = Ext1_tbl

Robot = Ext1_tbl

Table = Lower_Diag

Table = Lower_DiagRobot = Ext1_tbl

Robot = Picked_new

a)

FREE

UNLOADING

Table = Low_Vert

Feed = Unloaded
UNLOADED

FEED_TABLE

Table = Rise_Vert

TBL_READY

Table = Rise_Vert

Table = Rise_Vert

Feed = Unloading

Feed = Unloading

REJECT
Feed = Unloading

Figure 17: Some safety rules for the Production Celland the rotating table when the �rst robot arm picks a new blank from the table. Thissafety rule requires the robot to wait for the rotating table to get to the high diagonalposition before the robot starts extending its arm to pick the blank, and requires therotating table to remain in the high diagonal position until the robot succeeds in pickingthe blank. The two FSMs are isomorphic, and the same applies to all other safety rulesfor this system. In every case one component has to wait for the other to complete someaction that transfers the metal blank between them. The simplicity and uniformity of thesafety rules makes this system description very compact and intuitive. The independencebetween the components simpli�es design and maintenance and promotes component reusefor similar systems.A.2 System IntegrationThe integration of our production cell controller starts with a safety analysis of the com-ponent behavior.The integration of our production cell controller consists of several phases where the com-39

ponents and safety rules are analyzed, modi�ed and �nally combined into an executablemodel. The analysis phase tries to identify all possible ways the safety rules might be vi-olated by the components, and these violations are memorized. For every safety violationone or more components are identi�ed for causing it; these components will be delayed topreserve the safety. The delayed transitions substitute the original transitions wheneverthe preconditions for the safety violation are satis�ed. The components are modi�ed toinclude the delayed transitions in their description, and the code is generated from themodi�ed components and safety rule descriptions.We will show the main phases of this process in more detail on the analysis and integrationof the feed belt and the rotating table using the safety rule FEED TABLE. This safetyrule references only the feed belt and rotating table, and thus only these components canlead it to safety violations. We limit the analysis to those components and thus signi�cantlyreduce its complexity. The highest possible complexity of the combined behavior of thesetwo components and their safety rule is the product of the numbers of their states. In thiscase that is 4 � 8 � 5 = 160 states, and that complexity is easy to analyze automatically.Since only one state per component can cause a safety violation, there are 4 possibleviolations: When the table starts to rise while the safety rule is in the state TBL READYor UNLOADING, or when the feed belt starts unloading while the safety rule is in thestate FREE or UNLOADED. We can use these potential safety violations for componentdelays without analyzing their reachability, thus reducing the complexity even further.The �rst phase of the integration is the addition of delayed states and the creation of ashared global variable pool where the system state data resides. The delayed states arethe states where the components remain while their transitions are delayed, and one stateis necessary for every delayed transition. In this system only transitions from BLANK toUNLOADING in the feed belt, and from LOW INLINE to RISE INLINE may need to bedelayed to satisfy the FEED TABLE safety rule, because only those transitions lead toa state that may violate the safety 9. After adding the delayed states to the components,we generate the shared state variables. These consist of: the environment variables, boththe monitored (sensor inputs) and controlled ones (control signals), the component andsafety rule state variables, and the nondeterministic priority variables. The state variablesencode the global state of the system, and they provide the information on the violationpreconditions for the detected safety violations. The priority variables have a purposewhen resource utilization is speci�ed using safety rules, but in this system all safety rulesrequire only action sequencing and the priority variables are redundant.The analysis of the reachability graph for this safety rule requires a graph with 100 states,and detects the safety violations described earier. The safety violations occur when one of9Other delayed states are added to these components because other transitions may violate other safetyrules, but these are the only ones necessary for the enforcement of the FEED TABLE rule.40

UNLOADED

FEED_BELT

BLANK_DELAY

FEED_TABLE = UNLOADED / -
FEED_TABLE = FREE / -

FEED_TABLE = FREE / -
FEED_TABLE = UNLOADED / -

MOVE BLANK

UNLOADING

Sensor ON / STOP

Sensor OFF / -

-/-

- / START

(!FEED_TABLE = FREE) &
(!FEED_TABLE = UNLOADED) / STARTFigure 18: The modi�ed feed belt componentthe following preconditions is satis�ed:TABLE = LOW INLINE & FEED TABLE = TBL READYTABLE = LOW INLINE & FEED TABLE = UNLOADINGFEED = BLANK & FEED TABLE = FREEFEED = BLANK & FEED TABLE = UNLOADEDThe feed table causes the safety violation when it rises while the FEED TABLE is instates TBL READY or UNLOADING. That means that the transition from LOW INLINEto RISE INLINE has to be delayed until a blank is unloaded. The enabling conditionsfor the delayed transitions are taken directly from the violation preconditions. The sameconditions that select the delayed transition, also enable the looping transition in thedelayed state, and prevent the component from completing the transition before the safetypreservation is guaranteed. The transitions from LOW INLINE to LOW INLINE DELAYare enabled when one of the following conditions holds:FEED TABLE = TBL READYFEED TABLE = UNLOADINGThe delayed transitions are given a higher priority then the original transitions, thus pre-venting the original transitions from being enabled on a subset of its original enablingconditions. The subset of the original enabling condition where the delayed transition isselected corresponds to the intersection of the enabling condition and the safety violationprecondition. The same process will generate delayed transitions from BLANK and loop-ing transitions in the delayed state BLANK DELAY for the feed belt with the followingenabling conditions:FEED TABLE = FREEFEED TABLE = UNLOADEDThe resulting componentFEED BELT is in Figure 18. The delayed state BLANK DELAY41

is reachable when the safety rule FEED TABLE is in the states FREE or UNLOADED,and the same conditions keep the component in the same state. The original transitionfrom BLANK to UNLOADING is enabled only when the delayed transition is not, so thiscoomponent can no longer cause safety violations for the safety rule FEED TABLE.This process is repeated for every safety rule and its referenced components, and resultsin a set of delayed transitions enabled by the safety violation preconditions. The delayedtranstions for a given component are combined without interference because they all applyto single states. After analyzing all safety rules and adding delayed transitions to all com-ponents that need them, the controller is constructed by combining the components andthe safety monitors derived from the safety rules. The safety monitors model the behaviorof the safety rules used in the analysis, and provide the components with the informationon their state needed to evaluate the enabling conditions for the delayed transitions.A.3 System Veri�cationThe requirements for this system include a number of safety properties and one livenessproperty. The main safety properties de�ne the limits of machine mobility, the machinecollisions and the conditions when the metal blanks are dropped outside safe areas. Themachine mobility properties specify the safe ranges for the operation of individual ma-chines, that may be damaged if the limits are not respected. Since these properties areindividual for each machine, the controller components implement them directly. An ex-ample is the rotating table component in Figure 16c) that monitors its height and rotationangle and stops immediately when the table reaches the desired positions within the safelimits. It is obvious from the FSM that the rotating table respects the machine mobilityrequirements in its original form.Since the components are modi�ed by the addition of delayed transitions, it is conceivablethat some transition whose e�ect is to stop the machine could be delayed, thus leaving themachine to move without control. The mobility limits are preserved if the transitions thatstop the machines when they reach a desired position are never delayed. This conditionholds in our system because the safety rules only reject the states when the machinesinitiate a new movement. This is an informal proof of preservation of machine mobilitylimits. The same properties can be proved formally using the symbolic model checker SMV,on a partial model of the controller generated by GneEx. To verify the mobility limitssafety, the partial model only needs to include the component itself, and the complexity ofthe analysis is limited to the size of its FSM. The machine mobility limits are representedby CTL formulae that specify that the machine stops immediately when it reaches itsdestination position. The properties that verify the limits on the table rotation and raisingare given below: 42

AG(((tbl_high_pos = 1) & (tbl_raise = 1)) -> AX(tbl_raise = 0))AG(((tbl_diag_pos = 1) & (tbl_rotclk = 1)) -> AX(tbl_rotclk = 0))There are various reasons for machine collisions, one of them being the violations of mobilitylimits. Namely, if the rotating table rotates counterclockwise past the position in line withthe feed belt, it will collide with the belt. Other collisions may occur if the robot armsare too extended during rotation or if the crane is too low during horizontal movement.These components are designed to avoid those collisions by retracting the robot arms andlifting the crane during movement, according to the constants given in the speci�cations.Another cause of collisions is wrong synchronization when the blanks are being passedbetween machines. These collisions are prevented by the safety rules integrated with thesystem. The safety rules only allow the components to approach when their states arecompatible, and collisions are impossible.A related type of problem is the collision between blanks, it happens when a new blankis unloaded on the rotating table or press while the previous one is still there. This typeof collision is also prevented by the safety rules integrated in the controller, because theyrequire both components to exit the state where the transfer is possible before allowingthem to initiate another transfer. When the components leave a state where they receivea blank, they have to go through a state where the robot picks the blank before beingable to accept another blank. This shows how the handshaking algorithm implemented bythe safety rules forces the components to synchronize for the transfer of blanks, and leavethose transfer states to allow the transfer of blanks to other machines.The last type of safety requirement in the production cell system are the rules governingwhere the metal blanks may be dropped. These rules specify that the feed belt may onlyunload a blank to the rotating table in its low position and in line with the feed belt, orthat the robot may only drop a new blank on the press, meaning that its �rst arm pointsto it and is su�ciently extended. These rules are also enforced by the integrated safetyrules that synchronize the behavior of the components. Some of these rules are given belowusing CTL notation for invariant properties.Table in low position when feed belt is unloadingAG((feed = unloading) -> (tbl_pos_low = 1))Arm pointing to press and extended when dropping new blankAG((robot = drop_new) -> ((rbt_one_to_prs = 1) & (rbt_one_over_prs = 1)))Table in high diagonal position when robot picks the new blankAG((robot = pick_one) -> ((tbl_pos_high = 1) & (tbl_pos_diag = 1)))43

A.4 Executable Production Cell ControllerThe integrated controller model contains all necessary functionality to control the pro-duction cell system, and GenEx derives its executable model using the C programminglanguage. The generated code contains the representation of each component and safetymonitor, and is machine and architecture independent. Depending on the runtime supportused it can be executed on a single processor or a distributed network. The following givesa
awor of the generated code for the feed belt and its state BLANK.SMG_feed_belt(){ newstate= -1;trans=0;if(currentstate[_MD_feed_belt]==_ST_feed_belt__in__f_nothing){SMG_feed_belt__in__f_nothing(-1);}if(currentstate[_MD_feed_belt]==_ST_feed_belt__in__f_plate){SMG_feed_belt__in__f_plate(-1);}if(currentstate[_MD_feed_belt]==_ST_feed_belt__f_plate__f_unload__delay__1){SMG_feed_belt__f_plate__f_unload__delay__1(-1);}if(currentstate[_MD_feed_belt]==_ST_feed_belt__in__f_unload){SMG_feed_belt__in__f_unload(-1);}if(currentstate[_MD_feed_belt]==_ST_feed_belt__in__f_move){SMG_feed_belt__in__f_move(-1);}if(newstate!= -1){currentstate[_MD_feed_belt]=newstate; change=1; }}SMG_feed_belt__in__f_plate(num)int num;{if((sig1[_SG_tbl_inline_pos]==0)&&(sig1[_SG_feed_belt__f_blank]==1)&&(sig1[_SG_rot_table__rotctr]==1)&&(sig1[_SG_feed_table__ft_nothing]==1)&&((num==0)||((num== -1)&&(newstate== -1))||(num==1))){newstate=_ST_feed_belt__f_blank__f_unload__delay__1; SMG_action__80(); }}elseif(((num==0)||((num== -1)&&(newstate== -1))||(num==22))){newstate=_ST_feed_belt__in__f_unload; SMG_action__81(); }}} 44

The components are executed in parallel, and their results are propagated to the sharedstate variables. The safety monitors are executed in the second phase, using the newcomponent state information. This makes the code match the simulation structure used inthe safety analysis and integration. This structure speeds the detection of safety violationsin the analysis and provides precise preconditions for synchronization. The code thatintegrates the execution of components is given below.dotransitions1(){SMG_robot();SMG_press();SMG_crane();SMG_dep_belt();SMG_feed_belt();SMG_rot_table();getsigs();}dotransitions2(){SMG_robot1_press();SMG_robot2_press();SMG_robot_belt();SMG_robot_table();SMG_dep_crane();SMG_feed_crane();SMG_feed_table();propagation();getsigs();}inputsignals(){input_signals_fn();}outputsignals(){output_signals_fn();} 45

The inputsignals and outputsignals functions are used to communicate with the environ-ment, receiving monitored variables and sending control signals to the machines. Theinputsignals function is called before the components are executed in every phase, and theoutputsignals at the end of the phase when all new signals are computed. The user suppliesthese body for these functions, and it is preferably in the form of external functions thatdon't have to be typed in whenever the code is regenerated. Parts of the user suppliedfunctions are given below.input_signals_fn(){int inum[15];float num[15];scanf("%d",&inum[0]);if(inum[0] == 1) sig1[_SG_press_low_pos] = 1;else sig1[_SG_press_low_pos] = 0;scanf("%d",&inum[1]);if(inum[1] == 1) sig1[_SG_press_mid_pos] = 1;else sig1[_SG_press_mid_pos] = 0;scanf("%d",&inum[2]);if(inum[2] == 1) sig1[_SG_press_up_pos] = 1;else sig1[_SG_press_up_pos] = 0;scanf("%f",&num[3]);if(num[3] >= 0.5208) sig1[_SG_rbt_ext_to_tbl] = 1;else sig1[_SG_rbt_ext_to_tbl] = 0;if(num[3] >= 0.6458) sig1[_SG_rbt_one_over_prs] = 1;else sig1[_SG_rbt_one_over_prs] = 0;if(num[3] <= 0.3708) sig1[_SG_rbt_one_retracted] = 1;else sig1[_SG_rbt_one_retracted] = 0;}output_signals_fn(){if (sig1[_SG_tbl_raise] == 1) printf("table_upward\n");if (sig1[_SG_tbl_lower] == 1) printf("table_downward\n");if ((sig1[_SG_tbl_raise] == 0) && (sig1[_SG_tbl_lower] == 0))printf("table_stop_v\n");if (sig1[_SG_tbl_rot_clk] == 1) printf("table_right\n");if (sig1[_SG_tbl_rot_ctr] == 1) printf("table_left\n");if ((sig1[_SG_tbl_rot_clk] == 0) && (sig1[_SG_tbl_rot_ctr] == 0))printf("table_stop_h\n");if (sig1[_SG_feed_move] == 1) printf("belt1_start\n");else printf("belt1_stop\n");} 46

These functions work with the standard input and standard output, because that is theinterface that the production cell simulator uses. A di�erent interface to the simulator orsystem would be simple to design using appropriate control or message passing mechanisminstead of the scanf and printf function calls.The informal veri�cation of system functioning requires a simulated or live execution, andwe did that using the production cell simulator produced by the study authors. Thesimulated execution controlled a production cell system with three blanks simultaneouslyin the system.A.5 ConclusionThis example shows that using safety rules to specify the behavior of concurrent and dis-tributed systems can signi�cantly simplify the system integration process. Our speci�ca-tion uses very simple speci�cation for both components and interaction rules, and producesa correct and veri�able controller. The intuitive nature and simplicity of the componentsand synchronization rules makes them easily reusable in other similar systems. The ca-pabilities of our controller are comparable to those produced using other systems, and ithandles the maximum number of blanks that the simulator supports simultaneously in thesystem. The time required to design our system is in line with the best of the systemssurveyed in the study.The formal nature of the integration process guarantees that the produced system willenforce the desired safety properties. The integrated model generation facility producespartial models where the correctness of the system can be independently veri�ed. Finally,the generated code implements the veri�ed behavior as a safe and reliable executablesystem.
47

