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Abstract Q S@T l

This paper describes a modeling technnique for single-agent reactive systems, that is influenced
by the modeling paradigm of Parnas [5] as well as by the synchronous paradigms of LUSTRE[4] and
ESTEREL[1].

In this paradigm, single-agent reactive systems are modeled in a universe having a discrete clock.
This discretization of time greatly reduces the temporal complexity of the model. We believe that
the advantage of this reduction in temporal complexity is that the resulting model is in many ways
better suited to automated software construction and analysis techniques (e.g., deductive synthesis,
transformation, and verification) than models that are based on continuous representations of time.

1 Motivation

In [5], real-time systems are elegantly modeled in terms of a collection of controlled and monitored
variables. System behaviors are then described in terms of time functions that describe the values of
controlled and monitored variables over time. Specifications are then defined as sets of acceptable or
desirable behaviors. ‘

While the model and notation given in [5] is quite intuitive, we believe that for reactive systems, it
is not ideally suited to automated software construction technologies such as deductive synthesis and
transformation. At the root of this difficulty lies the continuous nature of time that is expressed within
the model. For many systems, this richness of expression is unnecessary and can “confuse” automated
analysis and construction techniques.

Consider for a moment how one might define a system “state change” with respect to a paradigm of
the type described above. Initially, at time #g, the system will be in some state that is possibly defined
as a tuple of monitored and controlled variables, (773,¢). Then at some time, ¢1, the system will enter a
new state, (7, c).

If such an approach is taken it will, in general, often be the case that a control vector, ¢, can cause
a system to pass through a number of states over time.

— t - t = t —
(mlaé) = (m27a = (m2aé) = (m376) .

Some of the states that the system passes through can be directly sensed and will be reflected by changing
values in the vector of monitored variables (e.g., m1, mg, mg). Other states, cannot be explicitly sensed
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(e.g., (12,0) 5 (Mg, €)) but are implied by the trace history of the system. Because of the potential,
that a single control vector has, to cause the system to pass through a number of states over time, it
becomes difficult to distinguish a transition sequence from an individual transition without addressing
time in some nontrivial fashion.

For example, consider a robotic system consisting of a conveyor belt and a rotating table. In this
system a metal plate can be passed from the conveyor to the table as follows: (1) Assume a plate is at
the left side of the conveyor, (2) turn the conveyor motor on, (3) keep the conveyor running until the
photoelectric sensor located at the right side of the conveyor senses the plate, (4) if the table is in its
leftmost position and the conveyor motor is running and a plate is sensed by the photoelectric sensor,
then when the photoelectric sensor no longer senses the plate, the plate will have been transfered from
the conveyor to the table.

Sensar

Conveyor

A simple robotic system

Consider the following attempt to formally express the plate transfer just explained:

Vii,t2:  (t1 <t2) A sensor_on(t1) A table_left(t1) A sensor_off(ta) N conveyor on(ti)
=
plate_on_table(ts)

This formalization is incorrect for a number of reasons. First of all, missing is the fact that ¢3 is
the earliest time after ¢; that the predicate sensor off becomes true. Also missing is the fact that the
table is in its leftmost position during the entire time interval [t...ts]. Clearly, if the table moves out of
its leftmost position during the interval [¢;...t5] then one cannot assume, from the English explanation
given, that a “proper” plate transfer has occurred. And finally, the predicate conveyor on is not
very useful in the sense that it does not convey any relevant information. That is, if we removed the
conveyor _on predicate from the above description its meaning would essentially remain unchanged in
as much as that the same behavior is still being described.

The problem in the example just given stems from the fact that it is difficult, within the formal
model, to distinguish state change sequences from individual state changes. In the model, this distinction
is made through variables that describe discrete points with respect to a continuous model of time. In
such a model a system description can easily become overly complex. The complexity arises because the
notion of time essentially falls outside of the paradigm and must be accounted for (i.e., modeled) using
brute force low-level mechanisms (e.g., variables quantified over a continuous range of values). The end
result is that time is not modeled in a very abstract manner.

Another difficulty here is that in addition to modeling problems there are also algorithm optimiza-
tion/manipulation problems. Consider the following informally described algorithm consisting of the
sequential composition of two behaviors:

move the table to its left position and then turn the conveyor on

Suppose that we wanted to perform these behaviors in parallel. From a correctness point of view
we need to be able to formally verify that parallelization of these behaviors is indeed possible and




correctness preserving. In general, reasoning about this kind of optimization involves (1) showing that,
during the relevant time intervals, the behaviors do not intersect or interfere with each other in some
“behavior altering” manner (e.g., a safety violation such as a collision), and (2) showing that behaviors
will complete at the proper time (e.g., the table must be in its left position before the plate leaves the
right edge of the conveyor).

Let us look at this general problem from a more implementation oriented perspective. Consider the
following code fragement which is an example of a control algorithm for achieving a specific behavior.

begin loop
m = poll sensors;
if py(m) — &
[ p2() — &
[ pu(m) — &,
endif
end loop

Here the if-endif construct is a guarded command. Recall that the guard expressions in such a command
are complete. That is,
Y7L pr () V p2(m) V...V pp () = true

Because of its completeness, care must be taken when manipulating an if-endif construct via automated
mechanisms such as transformation. An additional difficulty here is that in the general case a control
vector, ¢;, can effect numerous components in the system simultaneously. For example, rotating a table
to the left and engaging a conveyor. And to make matters worse simultaneously operating components
can complete various objectives at different times.

An approach that is much more suited to transformation is to begin with simple control vectors that
“just do one thing” and that are embedded within their own sense-reace loop. Given such an initial
form, correctness preserving transformations can be used to merge control loops and compose control
vectors into more complex vectors. However, in order for such a bottom-up compositional approach to
be practical, the modeling framework must readily support it.

We would like to point out that other types of sense/react loops can be constructed (e.g., we don’t
need a guarded command construct with its completeness requirement). The purpose of the above
example is simply to draw attention to some of the difficulties that can be encountered in constructing
software for reactive systems and how the complexity of the underlying formal model can impact this
process.

To address the difficulties described above, we have developed a synchronous paradigm for modeling
reactive systems. Though we only briefly touch upon it in this paper, the paradigm we present is
well suited to a bottom-up software development process where simple behaviors (i.e., simple control
vectors and simple control structures) can be synthesized deductively and then transformed into complex
efficient behaviors in a correctness preserving manner. The paradigm we present somewhat limits the
kinds of systems that can be modeled. However, we believe that a large class of real world problems
can be described by this model. Our goal is to create a formal model in which, during the algorithm
design phases of software development, time is a discrete and essentially unitless quantity (all atomic
behaviors take 1 unit of time regardless of their actual duration).

To date we have used the synchronous model described in this paper to model a moderate sized
robotic system. This model together with a suitable specification has been formally abstracted and




given to a deductive synthesis system. The result from the synthesis stage is an inefficent correct-
by-construction abstract algorithm that can then be optimized and targeted to a specific computing
platform through correctness preserving transformations|2][14][15].

2 Single-Agent Reactive Systems

Definition 1 Reactive System — a system in which the metric (i.e., duration) of time is not impor-
tant. A system’s behavior can be described by considering only temporal (e.g., before, after, eventually)
qualities of events.

Reactive systems are often formally described in terms of a collection of controlled and monitored
variables. The values that are bound to the monitored variables are generally supplied by various
sensors, and the values bound to the controlled variables are used to produce various system behaviors
(e.g., operation of mechanical devices such as opening and closing of valves, operation of electrical
devices such as engaging electromagnets, etc.) Given this view, the function of a controller is to (1) use
the information provided by the monitored variables in order to determine what state the system is in,
and (2) adjust the values of the controlled variables in order to achieve a desired system behavior.

Since the controller can change the state of the system, it is considered to be an agent of that system.
Similarly, if the environment has the ability to change the state of the system it is also considered to be
an agent of that system.

Definition 2 Single- Agent Reactive System — a reactive system in which the controller is the only
agent (i.e., a reactive system in which the environment cannot initiate state changes in the system).

For practical reasons our research is currently limited to deterministic single-agent systems. These
are single-agent systems in which all atomic state transitions (defined in Section 5) produce a state
change whose outcome can be determined apriori. For the remainder of this paper, we will use the term
“system” to refer to a deterministic single-agent reactive system.

3 A Basic System Model

. . . . - def
We begin by modeling a system, s, as a vector of monitored variables m = (m,ma2,...,m;,) and a

vector of controlled variables &% (c1,¢2,--.,¢). In our model, we require that the controlled variables
be independent of one another in the sense that assigning a value to a variable ¢; should not restrict! the
value that can be assigned to a variable ¢; when i # j. Let M and C respectively denote the sets of all
possible configurations of the monitored and controlled variables that are allowed by the environmental

constraints. The set § & {(m, &) | m € M A€ € C} then describes the state space of the system.

Observable State Space — Given a system together with a behavior that we would like this system
to satisfy, the observable state space of the system is the collection of states that the controller must be
able to distinguish in order produce the desired system behavior. For example, if a controller needs to
be able to distinguish distances on a robot arm to a resolution of 1 cm, then the sensors of the system
must be able to directly (or indirectly) provide this level of resolution, otherwise the capabilities of the
system will not be sufficient to produce the desired behavior.

! This does not subsume the possibility of a safety violation.




Control State Space —— The conitrol state space is the set of all possible values that the control vector
can assume given the environmental constraints that the system is subjected to.

System Behavior — Let M denote the observable state space of a system. A system behavior is a
sequence of elements by, = < m}, mh, mj, ... > such that each m, € M. We say a system implementation,
s, satisfies the system behavior by, iff the system eventually enters all of the states m] € by, in the
order defined by the behavior. For example, to satisfy b, the system s must eventually enter mf,
then it must eventually enter mj, and so on. Systems behaviors can be at various levels of detail. At
one extreme, they can provide so much information that they become algorithmic in nature. At the
other end of the spectrum, elements in a system behavior sequence can be used to describe attributes
of interest such as invariants for infinite behaviors and pre and postconditions for finite behaviors.

System-Controller Behavior — Let § {(m,c) | m € M Ac € C} denote the state space of a
system. A system-controller behavior is essentially the same as a system behavior except for the fact
that system-controller behaviors also contain information about the control state of the system. That
is, a system-controller behavior is a sequence of elements b; = < (m1,c1), (Mg, c2), (M3, c3)... > such
that each (m;,c;) € S.

Specifications — A specification defines a set of system behaviors. We also say that a specification
defines a problem. Given a specification, spec, and a system behavior f, if f € spec, then f is said to
solve the problem defined by spec.

Software Construction — Given a system, s, with the characteristics described above together with
a statement of a problem, p, that we would like the system to solve (i.e., a specification), our objective
is to construct a software controller that monitors the system via / and controls the system via € in
order to solve p.

3.1 Virtual Sensors

Let spec be a problem specification. In general, 7 will not directly provide enough information to
distinguish all states in the observable state space of the system. In other words, in practice it is often
the case that by using only the information provided by 7 it will not be possible for a controller to
achieve a behavior f € spec. However, by combining (1) knowledge of the systems initial state, (2) the
information provided by m, together with (3) an historical trace of the system, the controller will have
sufficient information to solve p.2

A more unified perspective of the system state can be obtained by viewing the historical trace as

a collection of wvirtual monitored variables, (vi,v2,...v;), which represent the cumulative information

provided by the trace. Such a view extends the monitored variables from o (mq,ma, ...,my) to

—

My dof (ma,ma, ..., My, Unt1,Vn42, -.Unt;). This correspondingly modifies the definition of the system

" state space to: S, =

(i.e., My = M).

{(771,,,?) | me M,A ce C}, where M, is observable state space of the system

*Note that we are assuming that a solution to p is possible given the controller’s capabilities.




4 A Synchronous Modeling Paradigm

On close inspection it becomes apparent that there is a delay between (1) the time that the system
enters an observable state and the time it takes for the controller to recognize that the system is in that
state, as well as (2) the time that the controller changes one or more values of the controlled variables
and the time it takes for the system to enter into the (new) observable state as dictated by the control
state.

New
Observable
State

React
delay

_ Physical Observable React Control Physical

delay State delay State delay Control

The time delays between observable states and control states.

It is worth noting that the time it takes for the observable state to reflect the changes brought about
by a control state can vary greatly. For example, turning an electromagnet on in order to “grab” a
metal object results in an almost instantaneous observable state change. On the other hand, moving
an object down a conveyor can require a significantly longer amount of time to produce an observable
state change. The question that arises here is: “To what extent does this temporal aspect of the system
need to be modeled?”

synchronous hypothesis — The synchronous hypothesis assumes that the controller is fast enough
to react to every observable state change. By accepting this hypothesis we can, without loss of
generality, set the time between “observable state” and “control state” (i.e., the react delay) to

zero!
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A Synchronous Behavior Perspective

If we accept the synchronous hypothesis as a proof obligation (i.e., a hypothesis whose proof we defer
to a later point in the software construction process), we are able to abstract time in a very elegant
manner.

4.1 Parallel Systems

It is worth mentioning that in a system in which parallel activities can take place (e.g., two conveyor
belts operating at the same time), one must be careful when assuming a synchronous hypothesis. A
little thought will show that in most cases it is unrealistic to unconditionally assume a synchronous
hypothesis for systems in which parallel behaviors are possible.




For example, in a two conveyor system, let ¢; and ¢; respectively denote the time at which the
photocell of the first conveyor senses an object and the time at which the photocell of the second
conveyor senses an object. Without additional assumptions one cannot conclude that the difference
between t; and t2 will not become vanishingly small at some point during the operation of the system.
Thus for many parallel systems one might think that the synchronous hypothesis does not hold.

It turns out that the difficulty described in the previous paragraph can be easily avoided by first
constructing a sequential controller and then introducing parallel behavior only when it can formally
be verified to be correct (i.e., the event times between parallel activities can safely be ignored). In an
upcoming paper we describe how correctness-preserving transformations can be used to optimize (i.e.,
parallelize) controller algorithms in this manner.

4.2 Atomic (sequential) System Behaviors

Due to the difficulties that can be encountered with parallel controller states, we are interested in
limiting our attention to states that “just do one thing”. In Section 5 we define atomic control states
in terms of their nearness to stable control states. However, until that section is reached, the informal
— “just do one thing” — definition should suffice. In order to avoid potential difficulties that can be
encountered in parallel systems, we will assume from here on out that all control states are atomic (i.e.,
they just do one thing).

The (atomic) restriction on control states together with our synchronous hypothesis allows us to
model time in terms of discrete ticks of a universal clock in the following manner:

e the controller always reacts instantly to the observable state of the system (i.e., react delay = 0),
and

e given an atomic control state it will take exactly one clock tick for the observable state to change
in a manner corresponding to the control state (i.e., physical delay = 1).

4.3 Synchronous Notation

We write the expression [ﬁz:?]ti to denote that at time ¢; the system is in observable state m and
control state c. Informally, the relationship between m and ¢ is as follows: at the instant of time
denoted by ¢;, the controlled variables have been set to ¢ and the observable state has not yet been
given an opportunity to respond to (i.e., to be affected by) the new control state. For convenience we
will omit the time subscript when it is unimportant with respect to what we wish to express.

Given an atomic control state, ?, our objective is to construct a system model in which the change
to the observable state is accomplished during one tick of the universal clock. The expression [frﬁ)l:_c)] =
me asserts that if at some (arbitrary) time the system is in observable state m; and the controller is in
atomic state ?, then at the next clock tick the observable state will be ﬁg. It is important to remember
that this notation is only defined when  is an atomic state. This restriction allows us to deal with the
- issues of parallel behaviors completing at different times within a transformational framework.

5 Stable Systems

In order for a single-agent system to be reactive, it must have the property that it can be brought to rest
in any observable state. That is, for every observable state there exists a control state that will cause
the observable state to remain unchanged over time. We call control states that have this property

7



stable control states. With some thought it can be seen that for systems where this is not the case the
metric of time is important — hence, such a system is not strictly reactive.

At this point, we assume the existence of a function, £, that measures the energy needed to maintain
a control state. For example, keeping an electromagnet on is a control state that requires energy.
Similarly, keeping a conveyor belt running requires energy.

Definition 3 Given a system, s, let M and C denote the observable state space and the control state
space of s respectively. Then

o stable(s) Yvm e M,3ce C : [m:c] = m. Though we do not go into it in any great detail in
this paper, systems that are stable are interesting because they have a temporal simplicity that s
well suited to automated construction and analysis techniques.

e passive(s) = (Ym e M,3ce C:[m:c]=m A &(c) =0).
e stable control state — given a tuple (771, ?), ¢ is stable with respect to m iff [777,:2)] =m.

Definition 4 Atomic — A control state ¢ is atomic with respect to an observable state m iff it is
possible to change the value of a single element, c;, in ¢ and thereby produce a control state that is stable
with respect to m. In this case we say that the value ¢; makes the control state active. Note that as
a result an atomic control state can simply be denoted by the value of the element c;. This observation
allows us to describe an atomic control state compactly in terms of the value ¢; (rather than the vector

c).

5.1 An FSM-based System Model

As we have already mentioned, a stable control state causes the observable state of the system to “freeze”.
Mathematically, stable control states can be thought of as temporal fixed-points. Metaphorically they
are stepping stones across the river of temporal complexity and as such can be used to limit the scope
of temporal consideration during software construction and analysis.

—

Definition 5 minimal(c,m) = ([m:c] = m) A ~(3 c3: [meca] = m) A (E(ez) < E(¢C))

At this point, our objective is to define a move on an observable state, 771, as a control tuple (E{, E;)
where ¢3 is a stable control state that is minimal with respect to the observable state TI_’ZQ, and [T?lc—f] =

7772 where a is an atomic control state. Given the observable state 777,, the move (0_1),55) defines the
system-controller behavior:

< ((777/731))7((;12,55)) > where [7?7'6—1)] = 77?2

We can further simplify this model by implicitly assuming that at this stage in the software devel-
opment process, every atomic control state will be followed by a minimal control state. Thus an atomic
control state is simply a transition from one stable control state to another. Furthermore, since stable
control states are functions of the observable state, we simply use the observable state m to denote the
state (’F’L,Eg) where ¢ is a stable control state. At this point we have an FSM-based® model of our
system that is well suited to deductive synthesis and transformation.

3We say “FSM-based” model because it might be desirable to model system properties like Liveness in terms of virtual
monitored sensors over infinite domains. Such a model would not be a pure FSM.
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An FSM-based System Model

6 Algorithm Synthesis

At this point we have system model that elegantly supports an incremental approach to algorithm con-
struction. This particular incremental algorithm framework is appealing because algorithm construction
can be realized using deductive synthesis techniques. :

Given a (non-algorithmic) specification of a set of system behaviors, deductive synthesis can be used
as a technique to “discover” an abstract algorithm satisfying the specification. More precisely, we are
interested in using deductive synthesis to compose a sequence of moves such that the resulting system
behavior is an element of the set of behaviors that is described by the specification.

We would like to mention that from a correctness standpoint, deductive synthesis is attractive for
algorithm construction because (1) it can be automated, and (2) since this form of synthesis creates an
algorithm using sound reasoning steps, it produces correct-by-construction algorithms.

In spite of the attractiveness of deductive synthesis from a correctness perspective, in practice the
number of moves that are possible in a system model can present a major obstacle to effective use of
deductive synthesis. Theory resolution [9][12] and abstraction[3] are two complementary and promising
techniques that can be tailored to specific problem domains to greatly enhance the capabilities of
deductive synthesis.

We are presently developing a theory for constructing an abstraction hierarchy suitable for our
formalization of single-agent reactive systems. We envision a hierarchy where an algorithm at one
level of abstraction can be utilized to assist a deductive synthesis engine in constructing a consistent
algorithm at a lower level of abstraction. From a correctness standpoint, a very attractive feature of
this hierarchy is that it is created in a formal framework and not as part of the formalization process.
Note that a traditional top-down or object oriented approach tends to encourage the construction of
a similar abstraction hierarchy as part of the formalization process itself. Such a construction cannot
be recommended for high consequence software construction because it falls outside of the scope of
verification.



7 Transformation

After an abstract algorithm has been synthesized, transformations can applied with the purpose of
optimizing controller behaviors. An brief example of this is given in the appendix. For the general
synchronous modeling paradigm that we have presented in this paper, we have discovered numerous
problem independent theorems. These theorems encapsulate general model knowledge sufficient to
enable automated verification of the correctness of numerous optimizing transformations. To imple-
ment these transformations we have developed a language independent, syntax-derivation-tree based
transformation system called HATS [15} which can apply transformations in a fully automated fashion.
Additionally, in [14] we develop a general framework for proving the correctness of transformations that
introduce implementation level constructs.

8 Summary

In this paper we have presented a synchronous paradigm for modeling deterministic single-agent reactive
systems. Systems are modeled in terms of a vector of monitored variables and controlled variables. The
monitored variables are extended with virtual sensors to capture the information provided by the trace
of the system. Through these extensions, the monitored variables describe the observable state space
of the system.

Next we accepted a synchronous hypothesis as a proof obligation for the model. This allowed the
abstraction of time as a discrete quantity represented by ticks of a universal clock.

We then argued that strictly reactive systems must have a stable state(s) for every observable state.
This lead to further simplifications that resulted in an FSM-based model of the system. We then
briefly discussed the issues surrounding the use of deductive synthesis and transformation as a means
to construct system behaviors based on these models.

In closing we would like to mention that the development of the model presented in this article
forms a cornerstone of a formal method called AST* that is being developed within the High Integrity
Software (HIS) program at Sandia National Laboratories. The goal in AST [15] is to develop a software
construction methodology based on Abstraction, (deductive) Synthesis, and Transformation (hence the
acronym AST) that can be used to construct ultra high-assurance software.

Appendix A: A Simple Example

Consider a system that consists of a single conveyor belt. In this system, issuing the command
add_ object will cause an object to be placed on the left end of the conveyor. This conveyor belt
has a motor that can be turned on and off. When this motor is turned on, the conveyor belt can trans-
port an object from the left end of the conveyor to the right end. In addition, there is a photoelectric
sensor that can sense when an object reaches the right end of the conveyor. Furthermore, let us assume
that the conveyor belt is long enough so that two objects can fit on the conveyor with enough space
between them so that the photoelectric sensor can distinguish both objects as they pass off the right
end of the conveyor (e.g., the moment the photoelectric sensor detects an object another object can
safely be placed on the left end of the conveyor via the add object command).

“see http://www.sandia.gov/ast/
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Left Region . Right Region

A Conveyor Belt

The standard model of this system consists of a single boolean-valued monitored variable (the
photoelectric sensor) and two controlled variables (the motor, and the variable associated with the
add_ object command).

Note that the monitored variable does not capture the observable state space of the system. In
particular, the monitored variable cannot determine when the left side of the conveyor has an object
on it. However, given an historical trace of the system together with the initial state of the system, it
is possible to determine whether the left side of the conveyor has on object on it. This implicit state
information can be modeled by creating a boolean-valued virtual sensor v that stores the information
explicitly. When taken together the monitored variables m and v now can distinguish all states in the
observable state space of the system. This gives us the following model of the system:

controlled variables = (c¢1,¢2)

monitored variables = (v, m)

a1 = {motor_on, motor_off }

ca = {add_object, do_nothing}

v = {object_in_left region, object not_in_left region}

m = {object_in_right region, object not in_right region}

At this point it is worth asking the question: “If the conveyor was long enough to hold 3 objects
would we need to introduce another virtual sensor into the vector of monitored variables?” The answer
is no! The reason being that, given a single sensor, the trace alone cannot provide enough information
to enable a controller to safely introduce three objects onto the conveyor. To accomplish this real-time
considerations must be taken into account — which would violate our assumption that the system is
(strictly) reactive.

Appendix B: A Simple Synthesis and Transformation Example

In this section we give an overview of how a simple robotic cell can be modeled, and specified and how
this formalization can be used to construct an abstract controller algorithm.




Informal System Description

The robotic cell in this example consists of a conveyor belt (like the kind described in Appendix
A) and an elevating-rotating table. The table can be in two rotational positions: a left position and a
right position. Setting the rotational-controlled variable to turn_left/turn right will cause the table
to rotate into its left/right position. The rotational motor can also be stopped. In addition, the table
can also be in two elevational positions: top and bottom. Setting the elevation-controlled variable to
table _up/table_down will cause the table to elevate to the top/bottom position. The elevational motor
can also be stopped. There is a sensor that senses if the table is in the right or left position. There is a
sensor that senses if the table is in the bottom or top position.

Sensor

Conveyor

A simple robotic cell

An object can be transferred from the conveyor to the table by placing the table in its lower left
position and passing an object through the photoelectric sensor. That is, when an object is sensed by
the photoelectric sensor this implies that the object is in the right region of the conveyor belts observable
state space. If such a state is reached and the table is in the lower left position, then if the conveyor is
turned on and the photoelectric cell no longer senses the object, we can conclude that the object is now
on the table. This of course assumes that the table does not move away from the lower left position
at any time during the exchange process. Note that, as we mentioned in the beginning of this paper,
expressing this assumption can be awkward in non-synchronous paradigms.

Finally, if the table has an object on it and is then moved to its upper right position we assume
that the object is consumed (i.e., it leaves the system).

Informal Specification

We would like a controller to orchestrate the behavior of this cell so that the cell will “consume”
an infinite number of objects.

Synchronous Model

This system has four controlled variables.

Ci = {do_nothing, add_ object} ={0,1}
Cy = { motor_off, motor_on} = {0,1}
C3 = {stop_turn, left_turn, right turn} ={0,1,2}

Cy = {stop_elevate, table_down, table up} ={0,1,2}

This system has the following observable state space.




Dy = {object_not_in_left region, object in_left region} = {0,1}
Dy = {object_not_in_right region, object in_right_region} = {0,1}
D3 = {left_position, right_position} = = {0,1}
Dy = {bottom_ position,top _position} ={0,1}
Ds = {object_not_on_table, object on_table} ={0,1}

Let ¢ = (a,b,c,d,e) denote the vector of controlled variables and let m= (v,w,z,y, z) denote the
vector of monitored variables whose elements are quantified over the domains C1, Cs, ..., Cs and Dy,
Ds, ..., D5 respectively. For human readability we might want to consider rewriting the controlled and
monitored vectors as follows:

o C= control _state( conveyor(a,b), table(c,d) )

o m= observable state( conveyor(v,w), table(z,y,z) )

The Atomic Transition Set

For space considerations we drop human readable state annotations in this section. The transi-
tions given here are by no means complete. In particular, the failure space of the system is omitted.
The notation that we are using to describe the atomic transition set is an exhaustive enumeration where
states are described by very simple predicates. Predicates so simple, that unification alone enables one
to determine whether a concrete state matches a specific transition definition. Note that this simple
(and verbose) notation is generally not practical for modeling larger state spaces.

[(v,w,z,y,2) : (do_nothing,0,0,0)] = (v,w,z,y,2)
[(0,w,z,y,2) : (add_object,0,0,0)] = (1,w,z,y,2)
[(v,w,z,y,2) : (0,motor_off,0,0)] = (v,w,z,y,z2)
[(0,0,z,y,2) : (0,motor_on,0,0)] = (0,0,z,y,2)
[(0,1,0,0,0) : (0,motor_on,0,0)] = (0,0,0,0,1)
[(1,0,z,y,2) : (O,motor_on,0,0)] = (0,1,2,y,2)
[(1,1,0,0,0) : (0,motor_on,0,0)] = (0,1,0,0,1)
[(v,w,z,y,2) : (0,0, stop_turn,0)] = (v,w,z,y,2)
[(v,w,1,y,2) : (0,0,left turn,0)] = (v,w,0,y,2)
[(v,w,0,1,1) : (0,0, right_turn, 0)] = (v,w,1,1,0)
[(v,w,0,1,0) : (0,0, right_turn, 0)] = (v,w,1,1,0)
[(v,w,0,0,0) : (0,0, right turn, 0)] = (v,w,1,0,0)
[(v,w,0,0,1) : (0,0, right turn, 0)] = (v,w,1,0,1)
[(v,w,z,y,2) : (0,0,0, stop_elevate)] = (v,w,z,y,z)
(v,w,2,1,2) : (0,0,0,table_down)] = (v,w,z,0,z)
[(v,w,1,0,1) : (0,0,0, table up)] = (v,w,1,1,0)
[(v,w,1,0,0) : (0,0,0, right_turn)] = (v,w,1,1,0)
[(v,0,0,0,0) : (0,0,0, right turn)] = (v,w,0,1,0)
[(v,w,0,0,1) : (0,0,0, right turn)] = (v,w,0,1,1)
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Specification

Let <rﬁ’1, 7?12> specify a system behavior in terms of its pre and postcondition [10]. Furthermore, let
b1; by denote the sequential composition of behaviors b; and bs. Then assuming that the table initially
does not hold an object, the following recursively defined system behavior equation formally specifies
the behavior we want the controller to satisfy:

spec = < observable state(conveyor(vi,w:), table(object mnot on_table, y1, 21)),
observable _state(conveyor(v, ws), table(object _on_ table, 32, 22)) >
< observable _state(conveyor(vy,ws), table(object on_table, ys, 22)),
observable _state(conveyor(vi,w), table(object not on_ table, y1,2)) >
)
spec

Note that the object of specification is to describe the set of all possible system behaviors that would
be considered acceptable.

An Abstract Controller

Given the initial state observable state(conveyor(0,0),table(0,0,0)) the following abstract con-
troller can be synthesized:

spec = add_object; /* place an object on the left end of the conveyor */

motor_on;  /* move the object to the right end of the conveyor */
motor_on;  /* transfer the object to the table */

table_ right;

table_up; /* consume the object */

table_ left;

table_down; /* table is ready for next object transfer */

spec /* repeat */

Note that in the algorithm above, we are denoting atomic control states by giving the value (e.g.,
add_object) of the element of the control vector that makes the control state non-passive. The algo-
rithm above describes an infinite path through the FSM-based model of the system, and since it was
constructed using deductive synthesis the algorithm is correct by construction.

We now can apply correctness preserving transformations to produce the following optimized ab-
stract algorithm:

spec = (((table_right || table_up) ; (table_left || table down)) || (add_blank ; motor_on)) ;
motor_on ; Spec

Where the “||” denotes parallel composition and parenthesis denote the scope of expressions.




ot
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