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Abstract standard visual notation for expressing the artifacts of com-
plex distributed systems. It is the leading industry-standard
The paper introduces a method which allows quanti- language for object-oriented modeling and design of sys-
tative performance and dependability analysis of systemstems ranging from embedded systems to business applica-
modeled by using UML statechart diagrams. The analysistions. It is supported by a wide variety of tools and envi-
is performed by transforming the UML model to Stochas- ronments, offering services for specification, design refine-
tic Reward Nets (SRN). A large subset of statechart modelment and automatic code generation. In the recent years,
elements is supported including event processing, state hi-several methods were elaborated to support the analysis of
erarchy and transition priorities. The transformation is pre- UML based designs. Among others, problems of system-
sented by a set of SRN design patterns. Performance mealevel dependability modeling [5], formal verification [10],
sures can be directly derived using SRN tools, while de- performance analysis [7] of (subsets of) UML models were
pendability analysis requires explicit modeling of erroneous solved. [4]

states and faulty behavior. Our work is focused on the quantitative analysis of the

behavioral models of UML. The dynamic behavior of the
system is described in UML by statechart diagrams [13], a
1 Introduction variant of classical Harel statecharts [9]. They describe the
internal behavior of components (objects, hardware nodes
As the complexity of the computer systems used in our €t¢.) as well as their reactions to external events. The
everyday life increases, the task of the engineers in devel-detailed description of the behavior by statecharts enables
oping these systems becomes increasingly difficult. Well- Poth quantitative performance analysis (as timing informa-
specified, easy-to-use environments and standardized delion is assigned to state transitions) and dependability anal-
sign languages are required that support specification, de¥sis (in the case of extending the model with explicit failure
sign, verification and validation of complex (distributed) States/events and probabilistic information). The standard
systems. A wide variety of languages and methods is avail-UML notation has not been designed for and does not cover
able nowadays, however, the selection among them is nothe aspects related to quantitative analysis, however, it pro-
easy. On one hand, languages and formalisms that are/ides standard mechanisms to extend the model both with
amenable to (formal) analysis are usually not easy to under-timing/stochastic information (in the form of tagged values)
stand and use by designers, since they require theoreticand classification of model elements (in the form of stereo-
background and experience. On the other hand, widely-tyPed states and events).

used dESign environments often lack of anaIySiS Capab”- In previous works [7] the quantitative ana|ysis of a re-
ities. One way to bridge this gap is the development of stricted subset of statecharts, the so-called Guarded State-
methods to support the automatic analysis of models pre-charts (GSC), was proposed. GSC models fit well for mod-
pared using popular design languages. eling of embedded systems where synchronization among
The Unified Modeling Language (UML) [14] providesa components can be described solely by Boolean predicates
~Thi - . ) on the active states of concurrent components. However,
is work was partially supported by the “Hungarian-German Re-

searchers Exchange Program” (DAAD®) project No. 8. and by ~ GSC models do not support event processing, which con-
projects OTKA-F030553, OTKA-T30804 and FKFP-0193/1999. cept may be of crucial importance in modeling real dis-




tributed systems. Moreover, it does not allow the use of tics are not defined in the standard. In this case we tried
state hierarchy, one of the most useful concepts in stateto parameterize our transformation by elaborating patterns
charts. In our work the input model is extended in special for different possible cases. The next problemis, that the se-
consideration of event processing and state hierarchy (themantics of UML statecharts with timed state transitions was
latter extension also comprising transition priorities). not formalized yet. While considering the issues of time, we
The analysis, similarly to [7], is based on the trans- were stuck to the requirements of the untimed case (run-to-
formation from UML statecharts to Petri net models with completion processing, execution steps).
timing and stochastic extensions. Petri nets (PN) are a UML statecharts (SC) were specified by the Object Man-
widely accepted formalism for modeling and analysis of agement Group [13] as a variant of classical Harel state-
distributed systems. For performance and dependabilitycharts [9]. The semantics of UML statecharts is expressed
evaluation extensions of PNs like Generalized Stochasticin terms of a hypothetical machine with the following com-
Petri Nets [1], Stochastic Reward Nets [6, 12] offer not ponents:
only precise mathematical background but also sophisti-
cated off-the-shelf analysis tools. Although there are also ® An event queue storing events coming from the ma-
other methodologies for quantitative analysis (like queue- chine itself or from the environment. The internal
ing networks [2], stochastic process algebra [3] etc.) Petri structure of the event queue is not specified.
nets are still considered to be the most mature in terms of ® An event dispatcher selecting one event at a time from
the number and scope of theoretical results, the efficiency ~ the queue. If an eventis dispatched, it will be passed to
of the analysis algorithms and the number of available tools ~ the machine to react to it. When the machine finished

[8]. Accordingly, our choice was the class of Stochastic its reaction (possible state changes) and reached a sta-

Reward Nets (SRN). SRNs generalize classical PNs by re- ble state, a next event can be dispatched. The selection

wards (various measures) and by assigning guards and dis-  policy of the dispatcher is not defined.

tributions of the firing time to transitions. ¢ A state machine processing the dispatched events. The
Our transformation is presented in a modular way, by reaction of the machine is determined by its actual state

introducing a set of SRN design patterns. These patterns ~ and the possible transitions triggered by the selected
are assigned to peculiar constructs (like event dispatcher)or ~ event.
concepts (like state hierarchy, synchronization) of the UML ) ) ) ) )
statechart formalism, this way they help in decomposingthe ~ 1h€ operation consists of cyclic event dispatching and
problem and understanding the proposed solutions. Thesétaté changing phases, called steps of the state machine.
patterns are combined automatically by using well-defined Steps are characFenzed by run-to—gomplet|on processing Qf
interfaces and composition rules. The modularity of the def- €V€Nts, i.. there is no new event dispatched until the previ-
inition helps also in proving the properties of the resulting OUS One is completely processed (the state machine reaches
SRN model according to the informal requirements of the & sta_b_le state configuration). _Durmg a step, several state
UML semantics as defined in the standard [13]. transitions can be executed, since the statechart may con-
The paper is structured as follows. Section 2 discussed@in concurrent substates. _ _ _
the differences between the semantics of UML statecharts Other peculiar aspects of the semantics are discussed in
and SRN models, thus analyzing the problems to be solvedhe following sections where the particular transformation
by the transformation. Section 3 identifies the designs pat-Patterns are presented. _ o
terns and presents the SRN subnets. Section 4 defines the The source models of the transformation described in
composition rules of the subnets. The application of the this paper are restricted to UML statecharts without history
transformation in dependability and performance analysis States. Actions are restricted to generation of new events,
is discussed in Section 5. The paper is closed by a smallWhile events cannot have parameters.

illustrative example (Section 6) and a section of conclusion. ~ Stochastic Reward Petri Nets (SRN) are a GSPN-like
formalism based on an independent semi-Markov reward

process [6, 12].

2 Semantics of models By definition, an SRN is a 10-tuple consisting of:

In this section we summarize and compare the seman- 1. a finite set of places,
tics of the source and target models of our transformation. 2. a finite set of transitions,
The discussion of the UML statechart semantics is based on 3. a finite set of inarcs (from places to transitions),
the (informal) UML standard [13] and on the formalization 4. afinite set of outarcs (from transitions to places),
presented in [10]. 5. aninteger weight for every arc,

While analyzing the semantics, we were faced with two 6. a guard function for every transition,

7

problems. The first is, that some aspects of UML seman- 7. an initial marking,



8. a distribution of the firing time for every transition (it event queues. Accordingly, we will define patterns for sev-
can be exponential, deterministic, Cox etc. or a deter- eral policies and leave it to the designer to specify the details
ministic value O for immediate transition), in the UML model (e.g. by using constraints).

9. a priority relation (irreflexive, transitive) among the

o Priority of transitions: One important feature of state-
transitions,

o charts is the hierarchic structure of states. States can con-
10. afinite set of measures. tain substates (only one of them is active at the same time)
. . . or concurrent sub-machines (all of them are active if their
The transitions of an SRN will be briefly referred t0 as g ren; state is active). Transitions of an SC may have their
SRN transitions, in contrast to the UML transitions. source and target states at different levels of the state hier-
An SRN transitiort is enabled for a given markingifand  5rchy. Due to the state hierarchy, multiple transitions (trig-
only if the guard function of the transition evaluates to true, gered by the same event and having source states being ac-
there is no other enabled transition with higher priority, and jye in the current state configuration) may be enabled at the
in the given marking there are not fewer tokens on every same time. Enabled transitions which have common state(s)
placep than the weight of the inarc from the plapeo the 14 eyit (i.e. not in concurrent sub-machines) are in conflict.
transitionz. When the transition fires, every place has  gome conflicts can be resolved by the priority relation: a
in next marking as much token fewer, as the weight of the yansition having source state at lower level has higher pri-
inarc fromp to ¢, and as much token more, as the weight of qjty From the point of view of the priority, enabled tran-
the arc fromt to p. The weight of a non-existingarcis 0. sjtions can be represented in the form of a tree according to
Firing of SRN transitions has only local effects, i.e. the the state hierarchy. Transitions on different branches of this
firing of a transition depends only on the source places andyree can fire independently, while the conflicts of transitions
on the guard and timing of the transition, and modifies only being on the same path from the root to a leaf are resolved
its local environment. There is no central event dispatch- by the priority scheme (the transition being closer to the root
ing, and firings of transitions enabled by the same stimulushas |ower priority). Conflicts among transitions emanating

cannot be divided into steps. Accordingly, event dispatch- from the same state are resolved non-deterministically.
ing, the synchronization of guard evaluation, step comple-

tion etc. need extra constructions in the transformation. Semantics of timed transitions: The standard UML does

The target models of our transformation are SRNs with not d'efine. the semantics of timed trangitions, therefqre the
guarded transitions (immediate or timed). SRNs could be '¢lationship of guard evaluation and time progress is not
defined including inhibitor arcs, and infoutarcs with mark- SPecified. We will define various patterns for the possible
ing dependent multiplicity, but our transformation does not cOmbinations of timing and guard evaluation.
necessitate these extensions. Synchronization: The transitions of the UML statechart

In figures, the guards of transitions will be depicted as fire in steps, i.e. a stable state configuration is reached only
expressionsin square brackets, placed close to their guardef the maximal set of enabled transitions has already fired.

transitions. Aplace namen a guard, or a “markflace  In contrary, SRN reaches a stable state after each firing.
namg” expression is true if and only if the named place Since guards are evaluated in stable states, the behavior of
is not empty. “!I”, “&&” and “——" are logical NOT, AND the UML state machine and of the SRN model may differ.
and OR operators, respectively. The guard “[guard]” meansExtra constructions are required in the SRN to force consis-
an arbitrary guard expression. tent evaluation of the guards.

3 Design patterns 3.1 Event dispatchers

Two patterns for event dispatchers are defined below.
One is selecting events from the queue non-deterministical-
ly. It is easy to implement with SRNs, and it covers all

Event queue and event dispatcher: The events arrivingpotential behaviors. Another dispatcher is also elaborated,
from the environment or from the state machine itself are selecting events in the order of their arrival (FIFO, First In,
collected in the queue and dispatched by the dispatcher oné-irst Out). Itis the intuitive operation of an event queue (but
at a time. Event queues provide the interfaces among statét is not easy to implement it by SRNs). These dispatch-
machines belonging to different objects. The queue anding policies are adequate for different applications. Both
the dispatcher can be implemented by distinguished objectof them can be extended to support multi-level priority dis-
or by the services of the run-time environment (operating patching, but this is beyond the scope of this paper.
system). The UML standard defines precisely neither the  The patterns include explicit places, where tokens repre-
policy of the dispatcher nor the number and distribution of senting incoming events are collected, and other dedicated

In this section the following patterns of the transforma-
tion are outlined:



incoming events

places where tokens representing selected events will be

placed for further processing. Places for
queuel beginning queue2 beginningincoming
events

311 Nondetel’ministic eVent diSpatCherS [pa not empty] [pa not empty]

[pa empty]
V__ [pa empty]

n-th row
of the FIFO

| [pbempty]

O

Figure 1 shows the pattern for nondeterministic event dis-
patchers. Tokens representing incoming events are col-
lected in the places on the left side, thus these places contain
the same number of tokens as the number of events of the
given kind available in the queue.

to the leaves of the trees

incoming events Start new step | [pc empty]
eventl active E E H
eventl
queue2 end first row
event2 active of the FIFO
event2 .
. Operation Start new step
* o column
. . . Places for
° eventl active event2 active selected
y / A events
eventn active
eventn to the leaves of the trees
eventl column  event2 column
Figure 1. PN pattern of a non-deterministic Figure 2. PN pattern of a FIFO event dis-

event dispatcher patcher

When there is a token at the plas&rt new stepa to-
ken from a non-empty place on the left side is chosen non-of the figure and the just selected one is issued at the bot-
deterministically. It corresponds to the selection of an eventtom. The structure of the pattern guarantees that there are
by the dispatcher (from the queue)_ No more events (tokens)@ither exaCtIy zero or two tokens in each row. If there are
can be Se|ected unt" a new token appears at the pme two tOkenS in arow, one Of them iS placed in the |eft-mOSt
new stepand all non-selected events are preserved. The se(i-e. controlling) column. The tokens in this column “fall”
lected event can be processed by accessing the token on tH€ the bottom.
right side. Events arrive to thbeginningplaces. If the queue is full,

This pattern consists @+l places,e transitions and8  then they will be discarded, else they are placed in the up-
arcs per per UML states, wheeedenotes the number of permost place of the column corresponding to the type of
kinds of events handled by the system. the event. Simultaneously a token is generated in the upper-
most place of the control (left-most) column. The pair of
tokens is running downwards to the bottommost row with a
free place in the control column. Accordingly, if there is an
Figure 2 shows the pattern for event dispatchers issuingevent on the n-th place of the UML event dispatcher queue,
events in the order of their arrival (FIFO). The pattern pre- then there is a token in the n-th place (from the bottom) of
sented on Figure 2 depicts only two kind of events, but the the operation column and of the column corresponding to
concept is the same for more events. The input of the queughe type of the event as well.
structure is at the top of the figure, and the output is at the  Dispatching of events is modeled in the same way as in
bottom, therefore the tokens will flow downwards in the fig- the case of the non-deterministic event dispatcher. There
ure. is an immediate transition for each type of events taking

There are three columns (of the length of the FIFO) of one token from the placstart new stepone token from
places: the left-most group is controlling the FIFO struc- the bottom place of the control column and one token from
ture, the other two (or possible more) groups are for storing the bottom placequeue enygof the corresponding column.
the different events. The incoming events arrive at the top One token is put in a place corresponding to the paant

3.1.2 FIFO event dispatchers



i active (Figure 2). The selection of the events is determin- priority is located closer to the leaves, and non-conflicting
istic since there is only a single column (except the control transitions and conflicting ones with equal priorities are lo-
one) with token in the bottom place, and there is always cated on different arcs of the tree. Compound transitions

such a column except the queue is empty. are mapped to a set of simple transitions.
The size of the pattern is as followisdenotes the length
of the FIFO, e denotes the number of kinds of events AR A

handled by the system):

Places in this pattern: (I + 2)e + 1
Transitions: (1+2)e
Arcs: 4(l+1)e

3.2 Priority of transitions

One important feature of statecharts is the hierarchical
structure of states. A state of an SC can be:

e a basic state, containing no other states,
e an OR-state, containing only substates being active al-
ternatively if the state itself is active,

e an AND-state, containing only concurrent sub- _ o
machines. Figure 3. The tree structure of the priority re-

lation

Transitions are enabled when their source states are ac-
tive, their triggering event is dispatched and the guard ex-
pressions of the transitions evaluate to true. Two transitions
are conflicting when firing of one of them inhibits the other
from firing, that is the intersection of the two sets of states

Figure 3 shows a small statechart as an example. 8 tran-
sitions @ to g) are presented, all of them being triggered by
the same event. (Transitions triggered by other events are
they exit is not empty. not depicted.) The tree structure of the transitions is shown

Transitions originating from substates of the source state®" the bottom.

of another transition have higher priority than the other tran- 1€ Structure of the tree strongly depends on the priority
sition. When several transitions are enabled. the maximalStructure of the transitions to be transformed, therefore it

non-conflicting set of them (with maximal priority, see be- is not expedient to draw a generic tree structure here. The

low) may fire at the same time in a single step. Each Stepinternal structure of the SRN patterns corresponding to the
consists of the following hypothetical phases: individual nodes of the tree will be described below.

When an event is selected, the tokens representing the
e dispatching an event, selected event should run through the tree from the leaves
e collecting the enabled transitions, to the root. On parallel arcs they run simultaneously, the
e selecting a maximal subset of them, where enabledarcs are synchronized only at the join points. Every transi-
transitions with higher priority must not left out if an-  tion has to know, whether the transitions with higher prior-
other transitions with lower priority are therein, ity have “consumed” the event or not, because an enabled
o firing the selected transitions simultaneously. transition may only fire if the transitions with higher prior-
ity could not fire. In the tree structure, the transitions get
The priority relation defines a partial ordering relation the eventin the order of their priorities.
over the set of the transitions (because there can be source Accordingly, the SRN representing the selection of UML
states not containing each other). Partial ordering relationstransitions is a tree of interconnected sub-SRNs (each of
are usually represented as tree structures. them representing a single UML transition) with an aux-
The priority relation of transitions has to be implemented iliary control structure. This additional structure consist
by the transformation. The tree structure offers itself as a of two chains of places, where the tokens representing the
good choice: the transitions triggered by the same event carevents can run through the tree. A given token runs on one
be arranged in a tree corresponding to the hierarchy of theof the chains, when the event is “not yet consumed” by the
transitions. (Trees are depicted having root at the top andtransitions on the given arc of the tree, and the token runs
leaves at the bottom, thus the directions “up” and “down” on the other chain, when the event is “already consumed”.
have to be understood accordingly.) A transition with higher These chains will be referred to in this paper as chains of



“unconsumed/consumed events”. At the beginning of a step, the selected event is “not con-

sumed”, i.e. no transition has fired processing that event.

Accordingly, the tokens representing the event on the sev-

vertis eral arcs of the appropriate tree structure of the triggered

uncomsumed transitions appear in the “chain of unconsumed events”.
They will be put on the other side immediately, if a tran-

predecessor states

i sition fires on the given arc. The dashed arrow in the figure

represents some places and transitions corresponding to the
et is event sl timing policy, as will pe described in sect{qn 3.3.1. Such a
consumed uncomsumed sub-SRN corresponding to an UML transition can only fire

if the token representing the triggering event appears on the
“unconsumed” side.
If there are two conflicting transitions of the statechart
Figure 4. PN pattern of a simple transition enabled at the same time then the firing of the corresponding
sub-SRNs happens as follows:
Figure 4 shows the SRN pattern of a simple (i.e. not join)
node of the tree. It consists of places representing the fol- e If one them has higher priority than the other one, then

successor states

lowing items: it is placed closer to the leaves of the tree structure,
and the sub-SRN corresponding to the other transition
» states to be left when the transition fires can only fire if the event was not consumed by the sub-

(predecessor states), o SRN corresponding to this transition.
* states to be entered when the transition fires e If they have the same priority, then the transitions are
(successor states), placed on different arcs of the tree, and the conflict is
¢ the “chain of consumed events”, resolved by the guards and the firing times of the timed

¢ the “chain of unconsumed events”. UML transitions.

The predecessor states are the source state of the transition .
and sll of its parent states which are not parent states of the 't ¢an be proved that the properties of the UML SC se-

target state. They can be identified by the analysis of the2ntics are satisfied by these patterns, i.e. a sub-SRN cor-
structure of the SC. There are also other states to be Ie1‘t,resloondlng to an UML tra_n_smon can pnly_flre if the prede-
namely the active states of parallel regions of the SC. These SSSOr states of the transition are active, its guard evaluates
states cannot be identified unambiguously by the static analX° ru€ and no transition with higher priority was enabled
ysis of the SC, thus exiting these states necessitates an othé‘>nd triggered.

construction described later in this paper. These states are Ajoinhing node of the tree is shown at Figure 5. IE these
not represented in the SRN corresponding to the transition, 1°d€S there are no sub-SRNs corresponding to the UML

Accordingly, firing of an UML transition as represented transitions, they only merge the event chains of the subtrees.

by the above SRN pattern can result in an inconsistent state\!l 0f the UML transitions in the subtree have higher prior-

This inconsistency vanishes before completing the step, beltY than any transitions along the common path of the tree
cause above the joining node, therefore “event is unconsumed

applies to this common path if and only if the event was not

o if there is a transition having (partially) common pre- consumed by any of the transitions of the subtree.

decessor (source and parent) states with the given one, The “event is consumed” applies to the common path
then |eaving a common predecessor state inhibits theWhen some of the transitions of the subtree have already

incorrect firing of this transition; fired (they had carried over the tokens on the “consumed”
« if there are no common predecessor states, then the rechain) and the other transitions could not fire (they passed
sult of an incorrect f|r|ng vanishes before Comp|eti0n on the tokens along the Chain). This construction ensures
of the step (the results of firing in a parallel region will that if the token representing the event reaches the root of
vanish as the states in this region will be de-activated the tree, no more sub-SRNs corresponding to transitions of
explicitly at the end of the step). the statechart will fire, theextandlast places (see Section
3.3.2) can be synchronized, and the places corresponding to
The successor states of a transition are the states to bsome exited states can be emptied.
entered when the transition fires. This set of states can be In the figure there is an SRN inarc with multiplicity
unambiguously identified by analyzing the static structure higher than 1. The multiplicity of that arc is equal to the
of the SC. number of the joining arcs in this point. The names “still



event is still unconsumed B event is consumed C

eventissill unconsumed] C They may fit to different applications. Since only enabled
. UML transitions can be selected for firing, the first transi-
tions of each pattern below must be guarded. This guard
contains the guard of the appropriate UML transition ex-
tended by a conjunctive term to express that the transition
can only fire if the appropriate state was active before the

event is consumed B

actual step.
predecessor states predecessor states predecessor states
event is consumed A event is unconsumed A
Figure 5. PN pattern of a joining node in the
tree structure [guard] ['guard] {guard]

[guard]

unconsumed”, “consumed” and “unconsumed” correspond

to the names in Figure 4. {guard]
The size of the tree pattern is as follows (the duplicated

places representing the states of the SC are not counted):

SUCCessor states sUccessor states SUccessor states
a b. C

Transitions of the statechart: ¢
Joining points of the tree: j
Joining arcs in a given point: j;

Sub-SRNs described in 3.3.1:¢ Figure 6. Models for combining guards and

Additional places: t+j timing
Additional transitions: t+ 311 (2 + 25i)
Additional arcs outside: 6t + 37—, (3 + 35i) The three alternatives are as follows:
3.3 Semanticsof transitions e The selection of the transitions is irrespective of tim-
ing. (a.)
There are differences between the semantics of UML e The guard has to be true during the delay else the tran-
statecharts and of SRNs. First, the relationship of timing sition will be deselected. (b.)

and guard evaluation is not specified in standard UML. Sec- e The “fastest” enabled transition wins. (c.)

ond, the execution step of UML semantics requires some ) )
synchronization of firings, while in SRN the transitions fire The three figures show sub-SRNs corresponding to the tran-
independently. sitions of the statechart, as introduced in the previous sec-

Below we describe some possible semantics for timedtion. The predecessor and successor states are shown, but

and guarded UML transitions and their transformation pat- the event chains are not.

terns. At first, the problems of combining guard evaluation ~ The types and parameters of the timed SRN transitions
and timing are discussed. correspond to the types and parameters of the correspond-

ing SC transitions. No other timed transitions are in the
patterns, since according to the UML semantics, the event
selection, guard evaluation and the selection of the fire-
In our approach, time delay is associated with UML transi- able subset of the enabled transitions happen immediately,
tions, assuming that this delay is produced e.g. by programi.e. in zero time. The timing policy (resampling, race with
code execution or communication delay. Accordingly, the age/enabling memory, ...) is determined by the designer
guard expressions have to be evaluated before the firing ofand must be implemented by the SRN-tool used for the
the (timed) transitions. Another possible way is to associateanalysis).
the delays to the states, where the evaluation of the guards Event sending by the transitions is implemented by out-
and the selection of the transitions is preceded by some dearcs from the timed SRN transitions to the appropriate
lay. In our opinion, the former approach fits better to the places of the event dispatcher.
majority of practical problems. The number of model elements in the pattern is as
Figure 6 shows three different (alternative) implemen- follows (the duplicated places representing the states of
tations of the combination of timing and guard evaluation. the statechart are not counted to the size of the pattgrns,

3.3.1 Guards and timing



denotes the number of predecessor stateslenotes the  resenting the statd of a statechart. There must be such a

number of successor states of the given transition): pattern for each state.
The placesA and A’ represent the given state. There
Model Places Transitions Arcs is a token in4 if and only if the stated of the SC was
a 1 2 tp +ts +2 active just before the actual step, and there is a token in
b 1 3 2tp + 1, +3 place A’ if and only if the stated of the SC will be active
¢ 0 1 tp +ts after the actual step. The placgsl andSB are places of
a synchronization chain described below. The place name
3.3.2 Synchronization superAshould be replaced by the place name according to

The UML . : h luati f th q the SC state directly containing the state
€ semantics requires the evajuation of the guards ;g pattern not only synchronizes the duplicated places,

of the transitions at the beginning of a step, before firing of but also corrects transient inconsistencies in the markings.

any trangltlon. There is no dO.Ubt that the guards refer to Due to the incompleteness of identifying the dynamically
the consistent state configuration before the actual step. Inchanging set of active states when an SC transition fires,

ShRNS’ the 9“""?‘? of ? transr:tlon WI'” b.e e\{aluated J#S;blefgre the tokens must be removed from places representing states
the glve_n tr_ansnflon“ |res,,,t ede\r/]a uat|o|n Is not sche uz ;[Oconsidered to be inconsistently active, since their parent
the beginning of a “step” and the results are not stored. In .o o e inactive (see an example below).

SRNs it is possible, that some transitions have already fired Remember that the predecessor states on Figure 4 are
before the guard expressions of another transitions are evalbnly the source and parent states of the SC transition, which
uated. To the correct evaluation of guards the last stableare to be exited. However. there are other states als,o to be
state configuration of the state machine (i.e. the state beforeexited, namely the active s:ubstates, and the active states of
the actua! step) must be recorded. To d(_) that, the IC’l"“cesgarallel regions of states to be exited. Since they cannot
representlng the states of_the SC are dqphcated. Ff’r a statgy jgentified statically, these states were not emptied when
A there is a placel containing a token if and only if the 0 0 ecessor states were exited. This inconsistency must
stateA was active just before the actual step (called in the be resolved at the end of the step. Note that this vanishing

fo!lo_wmg last pl_ace), and t_here IS an o_ther pIaqﬁ con- problem does not affect the result of the step.
taining a token if and only if the staté will be active after

the actual step (calledext placen the following). Example: On figure 3 a small statechart is presented. The
The places “predecessor states” and “successor states”in - predecessor states of the transiticareAB1AA AB1A
Figure 4 depict th@extplaces, while the guards of the ap- andAB. If ais enabled then eithétB2Aor AB2Bmust

propriate transitions in the sub-SRNs corresponding to the  pe active (since their parent st&® is active). It can-
UML transitions are expressions over marking of the places not be identified statically, which of them is active at

recording the last stable state of the systemlagtplaces). the given situation, therefore they do not appear in the
The contention is for the tokens of thextplaces, while the set of predecessor states af Before the end of the
last places provide a consistent guard evaluation during the step whera fires, the active one of them must be ex-
firing of the guarded transitions. ited, because their parent stétB was exited.

This concept necessitates a synchronization of the dupli-
cated places at the end of each step. The SRN pattern of th&/hen the token representing the selected event reaches the

synchronization is shown in Figure 7. root of the tree of the triggered transitions, it is passed to
a synchronization chain. This chain controls the synchro-
A A [["mafa':ﬁfA))ii nization of the duplicated places. All states of the SC are
Q A mark(SA)] included in this chain, where every state precedes all of
kA8 its substates, otherwise the order is arbitrary. In the SRN
[(!!rr“naafr'f(((ﬁ\)ﬁf mark(A)&.& model, the synchronization chain is the chain of places cor-
(mark(A)&& [!mark(superA)] mark(SA)] responding to the SC states.
ity ofi The synchronization of the duplicated places could hap-
pen independently, but this non-deterministic order would
8 produce a large state space of the SRN without any fur-
ther advantages. The fixed ordering avoids this kind of state
Figure 7. Synchronization of the duplicated space explosion.
places Figure 7 shows the synchronization pattern of state

Until there is no token in the placgA, nothing can happen.
When there is a token in this place, it cannot be removed
The pattern shows the synchronization of the places rep-until:



e Thereis atoken in both placelsandA’ butthereisno 5 Model analysis
token in the place representing the direct parent state
of state A (the place pair corresponding to that state The model can be analyzed by standard SRN tools. In

is already synchronized). In this case baethand A’ certain cases analytic solution is possible, otherwise sim-
will be emptied, and the token from the plagéel will ulation has to be performed. If a steady state exists then
be passed to the plac3 (for synchronizing the next  steady state measures can be computed, otherwise transient
state in the order of the synchronization chain). analysis can be executed.

e The markings of the placed and A" are the same, The results of the analysis of the SRN (and so of the

with respect to that both of them can have a token if transformed UML model) are, for example,
and only if there is a token in the place representing

the direct parent state of. ¢ the reachable state and state configurations of the sys-
tem,
Note that the places corresponding to SC states never have o the expected probability that a state is active,
more than one token in these SRN patterns. o the expected value of the throughput of a transition,
The synchronization of the placesand A’ can happen o the expected probability that a transition is enabled,

by the help of the two transitions on the right side of the e the expected probability that a transition fires.
figure, if there is a token i§ A. B )
In the synchronization subnet belonging to the last state These results can be utilized to gain both performance and

of the chain,SB is replaced bytart new step dependability measures of the model. o
This pattern consists of 1 place, 4 transitions and 8 arcs  Simple performance measures (throughput, utilization)
per per UML states. can be derived directly from the above presented results.

In more complex cases, user-defined reward functions can
also be used (expressed in the UML model in the form of
structured comments).

. . Dependability-based analysis in this framework requires
By analyzing the structure of a given statechart the above xplicit modeling of faulty behavior. The approach pre-

mentioned subnets are constructed based on the design pag-

terns. The subnets are connected with each other accordin ented in [7] can be followed. The error model based
. . o . 8n state perturbations (unintended state transitions, loss of
to the interface places identified by the same name in the

messages) can be applied. Erroneous states can be included
patterns. ST S
The necessary number of patterns is the following: epr|IC|tIy in the model, The duplication of places repre-
senting SC states (Section 3.3.2) can be directly utilized
¢ The number of event queues and the type of the eventfor modeling of failures (loss of synchrony). The possibil-
dispatcher(s) is defined by the designer (additional in- ity of event processing enables to model error propagation,
formation is attached to the UML model). communication errors, external erroneous messages reach-
e There are as many transition hierarchy trees as theing the system etc. The corresponding states and events can
number of events handled by the transitions of the stat- be distinguished in the UML model by stereotypes, the nec-
echart. essary probabilistic information can be included in the form
e The number of sub-SRNs representing transitions is of tagged values (corresponding to transition firing times in
the same as the number of transitions in the model.  the SRN model). The enriched SC can be transformed to
e Each state of the statechart is represented by a pair ofan SRN as described in the previous sections. The resulting

4 Composition of subnets

places in the SRN. SRN can be analyzed in special consideration of the distin-
e For each state of the statechart, there is a synchronizaguished (erroneous) states.
tion subnet. The analysis of the probability of erroneous states leads

to reliability (if no repair is modeled) and availability fig-
dires (if repair is modeled). Analogously, safety figures can
be derived by distinguishing the unsafe states in the model.
Performance and dependability characteristics can be com-
bined e.g. by comparing the performance in fault-free and
erroneous cases.

The initial state of the SRN is defined as follows. If the
event queue contains events in the initial state then thes
events are represented by the initial marking of the appro-
priate places. The initial state configuration of the SC has
to be mapped to the SRN by inserting tokens into the corre-
sponding place-pairs. The initial marking of the platart
new stephas to be one.

The external environment can be modeled (in closed sys-6  Examples
tems) by separate UML statechart(s) which will be trans-
formed to SRNs with outarc(s) to the appropriate places of  To give a formal proof of the equivalence of the arising
the event queue(s). SRN and the original SC is beyond the scope of this paper.



In this section only an illustrative example is presented: a References

small system, several statechart models of it and the SRNs
representing them. [1]

The example is a variation of a production cell model
[11]. The system contains a press that processes metal
blanks, a robot with two arms for loading and unloading [2]
the press, and a rotary table for positioning the blanks for
the robot. A UML-model of an extended version of this
example is given in [5].

A high-level model of the production cell consists of
6 statecharts. Each of them has its own event queue and
event dispatcher with non-deterministic dispatching policy.
The statecharts have 4,2,2,2,2,2 states, 9,2,2,2,2,2 transi-[4]
tions and 5,2,2,2,2,2 events, respectively. The SRN rep-
resenting this statechart model consists of 103 places, 112
transitions (82 guarded, 20 timed), 142 inarcs and 144 out-
arcs.

A more detailed model consists of one single statechart (5]
with 15 concurrent states containing 50 substates, and 68
transitions triggered by 42 events (14 timer events). A sin-
gle global event queue is supposed with non-deterministic
dispatching policy. This statechart was transformed to an [g]
SRN with 373 places, 472 transitions (304 guarded, 82
timed), 547 inarcs and 558 outarcs.

(3]

7 Conclusion 7]

We presented a method which allows quantitative perfor-
mance and dependability analysis of systems modeled by
using UML statechart diagrams. Our transformation from
statecharts to Stochastic Reward Nets covered a large sub-[8]
set of model elements including event processing, state hi-
erarchy and transition priorities. By using the transforma-
tion and analyzing the resulted SRN performance and de-
pendability measures can be computed. Since the analysis
is based on a detailed model of the system, in the case of
complex systems this kind of analysis should be restricted
to core critical parts of the system. [10]

The transformation was presented in the form of design
patterns. The properties of the resulting SRN satisfy the
requirements defined in the UML standard. The number
of places and transitions in the generated model is propor-
tional to the number of model elements in the statechart. [11]
The generated number of states (state space of the underly-
ing Markov chain) corresponds to the number of state con- [12]
figurations of the UML model.

9]
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