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Abstract

The paper introduces a method which allows quanti-
tative performance and dependability analysis of systems
modeled by using UML statechart diagrams. The analysis
is performed by transforming the UML model to Stochas-
tic Reward Nets (SRN). A large subset of statechart model
elements is supported including event processing, state hi-
erarchy and transition priorities. The transformation is pre-
sented by a set of SRN design patterns. Performance mea-
sures can be directly derived using SRN tools, while de-
pendability analysis requires explicit modeling of erroneous
states and faulty behavior.

1 Introduction

As the complexity of the computer systems used in our
everyday life increases, the task of the engineers in devel-
oping these systems becomes increasingly difficult. Well-
specified, easy-to-use environments and standardized de-
sign languages are required that support specification, de-
sign, verification and validation of complex (distributed)
systems. A wide variety of languages and methods is avail-
able nowadays, however, the selection among them is not
easy. On one hand, languages and formalisms that are
amenable to (formal) analysis are usually not easy to under-
stand and use by designers, since they require theoretical
background and experience. On the other hand, widely-
used design environments often lack of analysis capabil-
ities. One way to bridge this gap is the development of
methods to support the automatic analysis of models pre-
pared using popular design languages.

The Unified Modeling Language (UML) [14] provides a
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standard visual notation for expressing the artifacts of com-
plex distributed systems. It is the leading industry-standard
language for object-oriented modeling and design of sys-
tems ranging from embedded systems to business applica-
tions. It is supported by a wide variety of tools and envi-
ronments, offering services for specification, design refine-
ment and automatic code generation. In the recent years,
several methods were elaborated to support the analysis of
UML based designs. Among others, problems of system-
level dependability modeling [5], formal verification [10],
performance analysis [7] of (subsets of) UML models were
solved. [4]

Our work is focused on the quantitative analysis of the
behavioral models of UML. The dynamic behavior of the
system is described in UML by statechart diagrams [13], a
variant of classical Harel statecharts [9]. They describe the
internal behavior of components (objects, hardware nodes
etc.) as well as their reactions to external events. The
detailed description of the behavior by statecharts enables
both quantitative performance analysis (as timing informa-
tion is assigned to state transitions) and dependability anal-
ysis (in the case of extending the model with explicit failure
states/events and probabilistic information). The standard
UML notation has not been designed for and does not cover
the aspects related to quantitative analysis, however, it pro-
vides standard mechanisms to extend the model both with
timing/stochastic information (in the form of tagged values)
and classification of model elements (in the form of stereo-
typed states and events).

In previous works [7] the quantitative analysis of a re-
stricted subset of statecharts, the so-called Guarded State-
charts (GSC), was proposed. GSC models fit well for mod-
eling of embedded systems where synchronization among
components can be described solely by Boolean predicates
on the active states of concurrent components. However,
GSC models do not support event processing, which con-
cept may be of crucial importance in modeling real dis-



tributed systems. Moreover, it does not allow the use of
state hierarchy, one of the most useful concepts in state-
charts. In our work the input model is extended in special
consideration of event processing and state hierarchy (the
latter extension also comprising transition priorities).

The analysis, similarly to [7], is based on the trans-
formation from UML statecharts to Petri net models with
timing and stochastic extensions. Petri nets (PN) are a
widely accepted formalism for modeling and analysis of
distributed systems. For performance and dependability
evaluation extensions of PNs like Generalized Stochastic
Petri Nets [1], Stochastic Reward Nets [6, 12] offer not
only precise mathematical background but also sophisti-
cated off-the-shelf analysis tools. Although there are also
other methodologies for quantitative analysis (like queue-
ing networks [2], stochastic process algebra [3] etc.) Petri
nets are still considered to be the most mature in terms of
the number and scope of theoretical results, the efficiency
of the analysis algorithms and the number of available tools
[8]. Accordingly, our choice was the class of Stochastic
Reward Nets (SRN). SRNs generalize classical PNs by re-
wards (various measures) and by assigning guards and dis-
tributions of the firing time to transitions.

Our transformation is presented in a modular way, by
introducing a set of SRN design patterns. These patterns
are assigned to peculiar constructs (like event dispatcher) or
concepts (like state hierarchy, synchronization) of the UML
statechart formalism, this way they help in decomposing the
problem and understanding the proposed solutions. These
patterns are combined automatically by using well-defined
interfaces and composition rules. The modularity of the def-
inition helps also in proving the properties of the resulting
SRN model according to the informal requirements of the
UML semantics as defined in the standard [13].

The paper is structured as follows. Section 2 discusses
the differences between the semantics of UML statecharts
and SRN models, thus analyzing the problems to be solved
by the transformation. Section 3 identifies the designs pat-
terns and presents the SRN subnets. Section 4 defines the
composition rules of the subnets. The application of the
transformation in dependability and performance analysis
is discussed in Section 5. The paper is closed by a small
illustrative example (Section 6) and a section of conclusion.

2 Semantics of models

In this section we summarize and compare the seman-
tics of the source and target models of our transformation.
The discussion of the UML statechart semantics is based on
the (informal) UML standard [13] and on the formalization
presented in [10].

While analyzing the semantics, we were faced with two
problems. The first is, that some aspects of UML seman-

tics are not defined in the standard. In this case we tried
to parameterize our transformation by elaborating patterns
for different possible cases. The next problem is, that the se-
mantics of UML statecharts with timed state transitions was
not formalized yet. While considering the issues of time, we
were stuck to the requirements of the untimed case (run-to-
completion processing, execution steps).

UML statecharts (SC) were specified by the Object Man-
agement Group [13] as a variant of classical Harel state-
charts [9]. The semantics of UML statecharts is expressed
in terms of a hypothetical machine with the following com-
ponents:

� An event queue storing events coming from the ma-
chine itself or from the environment. The internal
structure of the event queue is not specified.

� An event dispatcher selecting one event at a time from
the queue. If an event is dispatched, it will be passed to
the machine to react to it. When the machine finished
its reaction (possible state changes) and reached a sta-
ble state, a next event can be dispatched. The selection
policy of the dispatcher is not defined.

� A state machine processing the dispatched events. The
reaction of the machine is determined by its actual state
and the possible transitions triggered by the selected
event.

The operation consists of cyclic event dispatching and
state changing phases, called steps of the state machine.
Steps are characterized by run-to-completion processing of
events, i.e. there is no new event dispatched until the previ-
ous one is completely processed (the state machine reaches
a stable state configuration). During a step, several state
transitions can be executed, since the statechart may con-
tain concurrent substates.

Other peculiar aspects of the semantics are discussed in
the following sections where the particular transformation
patterns are presented.

The source models of the transformation described in
this paper are restricted to UML statecharts without history
states. Actions are restricted to generation of new events,
while events cannot have parameters.

Stochastic Reward Petri Nets (SRN) are a GSPN-like
formalism based on an independent semi-Markov reward
process [6, 12].
By definition, an SRN is a 10-tuple consisting of:

1. a finite set of places,
2. a finite set of transitions,
3. a finite set of inarcs (from places to transitions),
4. a finite set of outarcs (from transitions to places),
5. an integer weight for every arc,
6. a guard function for every transition,
7. an initial marking,



8. a distribution of the firing time for every transition (it
can be exponential, deterministic, Cox etc. or a deter-
ministic value 0 for immediate transition),

9. a priority relation (irreflexive, transitive) among the
transitions,

10. a finite set of measures.

The transitions of an SRN will be briefly referred to as
SRN transitions, in contrast to the UML transitions.

An SRN transitiont is enabled for a given marking if and
only if the guard function of the transition evaluates to true,
there is no other enabled transition with higher priority, and
in the given marking there are not fewer tokens on every
placep than the weight of the inarc from the placep to the
transitiont. When the transitiont fires, every placep has
in next marking as much token fewer, as the weight of the
inarc fromp to t, and as much token more, as the weight of
the arc fromt to p. The weight of a non-existing arc is 0.

Firing of SRN transitions has only local effects, i.e. the
firing of a transition depends only on the source places and
on the guard and timing of the transition, and modifies only
its local environment. There is no central event dispatch-
ing, and firings of transitions enabled by the same stimulus
cannot be divided into steps. Accordingly, event dispatch-
ing, the synchronization of guard evaluation, step comple-
tion etc. need extra constructions in the transformation.

The target models of our transformation are SRNs with
guarded transitions (immediate or timed). SRNs could be
defined including inhibitor arcs, and in/outarcs with mark-
ing dependent multiplicity, but our transformation does not
necessitate these extensions.

In figures, the guards of transitions will be depicted as
expressions in square brackets, placed close to their guarded
transitions. Aplace namein a guard, or a “mark(place
name)” expression is true if and only if the named place
is not empty. “!”, “&&” and “——” are logical NOT, AND
and OR operators, respectively. The guard “[guard]” means
an arbitrary guard expression.

3 Design patterns

In this section the following patterns of the transforma-
tion are outlined:

Event queue and event dispatcher: The events arriving
from the environment or from the state machine itself are
collected in the queue and dispatched by the dispatcher one
at a time. Event queues provide the interfaces among state
machines belonging to different objects. The queue and
the dispatcher can be implemented by distinguished objects
or by the services of the run-time environment (operating
system). The UML standard defines precisely neither the
policy of the dispatcher nor the number and distribution of

event queues. Accordingly, we will define patterns for sev-
eral policies and leave it to the designer to specify the details
in the UML model (e.g. by using constraints).

Priority of transitions: One important feature of state-
charts is the hierarchic structure of states. States can con-
tain substates (only one of them is active at the same time)
or concurrent sub-machines (all of them are active if their
parent state is active). Transitions of an SC may have their
source and target states at different levels of the state hier-
archy. Due to the state hierarchy, multiple transitions (trig-
gered by the same event and having source states being ac-
tive in the current state configuration) may be enabled at the
same time. Enabled transitions which have common state(s)
to exit (i.e. not in concurrent sub-machines) are in conflict.
Some conflicts can be resolved by the priority relation: a
transition having source state at lower level has higher pri-
ority. From the point of view of the priority, enabled tran-
sitions can be represented in the form of a tree according to
the state hierarchy. Transitions on different branches of this
tree can fire independently, while the conflicts of transitions
being on the same path from the root to a leaf are resolved
by the priority scheme (the transition being closer to the root
has lower priority). Conflicts among transitions emanating
from the same state are resolved non-deterministically.

Semantics of timed transitions: The standard UML does
not define the semantics of timed transitions, therefore the
relationship of guard evaluation and time progress is not
specified. We will define various patterns for the possible
combinations of timing and guard evaluation.

Synchronization: The transitions of the UML statechart
fire in steps, i.e. a stable state configuration is reached only
if the maximal set of enabled transitions has already fired.
In contrary, SRN reaches a stable state after each firing.
Since guards are evaluated in stable states, the behavior of
the UML state machine and of the SRN model may differ.
Extra constructions are required in the SRN to force consis-
tent evaluation of the guards.

3.1 Event dispatchers

Two patterns for event dispatchers are defined below.
One is selecting events from the queue non-deterministical-
ly. It is easy to implement with SRNs, and it covers all
potential behaviors. Another dispatcher is also elaborated,
selecting events in the order of their arrival (FIFO, First In,
First Out). It is the intuitive operation of an event queue (but
it is not easy to implement it by SRNs). These dispatch-
ing policies are adequate for different applications. Both
of them can be extended to support multi-level priority dis-
patching, but this is beyond the scope of this paper.

The patterns include explicit places, where tokens repre-
senting incoming events are collected, and other dedicated



places where tokens representing selected events will be
placed for further processing.

3.1.1 Nondeterministic event dispatchers

Figure 1 shows the pattern for nondeterministic event dis-
patchers. Tokens representing incoming events are col-
lected in the places on the left side, thus these places contain
the same number of tokens as the number of events of the
given kind available in the queue.

event2

event1

incoming events start new step to the leaves of the trees

event1 active

event2 active

eventn
eventn active

Figure 1. PN pattern of a non-deterministic
event dispatcher

When there is a token at the placestart new step, a to-
ken from a non-empty place on the left side is chosen non-
deterministically. It corresponds to the selection of an event
by the dispatcher (from the queue). No more events (tokens)
can be selected until a new token appears at the placestart
new step, and all non-selected events are preserved. The se-
lected event can be processed by accessing the token on the
right side.

This pattern consists ofe+l places,e transitions and 3e
arcs per per UML states, wheree denotes the number of
kinds of events handled by the system.

3.1.2 FIFO event dispatchers

Figure 2 shows the pattern for event dispatchers issuing
events in the order of their arrival (FIFO). The pattern pre-
sented on Figure 2 depicts only two kind of events, but the
concept is the same for more events. The input of the queue
structure is at the top of the figure, and the output is at the
bottom, therefore the tokens will flow downwards in the fig-
ure.

There are three columns (of the length of the FIFO) of
places: the left-most group is controlling the FIFO struc-
ture, the other two (or possible more) groups are for storing
the different events. The incoming events arrive at the top

pa

[pb empty] [pb empty]

pb

[pc empty] [pc empty]

[pa not empty] [pa not empty]

[pa empty]

queue1 beginning queue2 beginning

incoming events

[pa empty]

start new step

queue1 end queue2 endp end

event1 active event2 active

to the leaves of the trees

incoming
Places for

events

of the FIFO
n-th row

first row
of the FIFO

selected
Places for

events

event2 columnevent1 column

Operation
column

Figure 2. PN pattern of a FIFO event dis-
patcher

of the figure and the just selected one is issued at the bot-
tom. The structure of the pattern guarantees that there are
either exactly zero or two tokens in each row. If there are
two tokens in a row, one of them is placed in the left-most
(i.e. controlling) column. The tokens in this column “fall”
to the bottom.

Events arrive to thebeginningplaces. If the queue is full,
then they will be discarded, else they are placed in the up-
permost place of the column corresponding to the type of
the event. Simultaneously a token is generated in the upper-
most place of the control (left-most) column. The pair of
tokens is running downwards to the bottommost row with a
free place in the control column. Accordingly, if there is an
event on the n-th place of the UML event dispatcher queue,
then there is a token in the n-th place (from the bottom) of
the operation column and of the column corresponding to
the type of the event as well.

Dispatching of events is modeled in the same way as in
the case of the non-deterministic event dispatcher. There
is an immediate transition for each type of events taking
one token from the placestart new step, one token from
the bottom place of the control column and one token from
the bottom place (queue end) of the corresponding column.
One token is put in a place corresponding to the placeevent



i active(Figure 2). The selection of the events is determin-
istic since there is only a single column (except the control
one) with token in the bottom place, and there is always
such a column except the queue is empty.

The size of the pattern is as follows (l denotes the length
of the FIFO, e denotes the number of kinds of events
handled by the system):

Places in this pattern: (l + 2)e+ l

Transitions: (l + 2)e
Arcs: 4(l + 1)e

3.2 Priority of transitions

One important feature of statecharts is the hierarchical
structure of states. A state of an SC can be:

� a basic state, containing no other states,
� an OR-state, containing only substates being active al-

ternatively if the state itself is active,
� an AND-state, containing only concurrent sub-

machines.

Transitions are enabled when their source states are ac-
tive, their triggering event is dispatched and the guard ex-
pressions of the transitions evaluate to true. Two transitions
are conflicting when firing of one of them inhibits the other
from firing, that is the intersection of the two sets of states
they exit is not empty.

Transitions originating from substates of the source state
of another transition have higher priority than the other tran-
sition. When several transitions are enabled, the maximal
non-conflicting set of them (with maximal priority, see be-
low) may fire at the same time in a single step. Each step
consists of the following hypothetical phases:

� dispatching an event,
� collecting the enabled transitions,
� selecting a maximal subset of them, where enabled

transitions with higher priority must not left out if an-
other transitions with lower priority are therein,

� firing the selected transitions simultaneously.

The priority relation defines a partial ordering relation
over the set of the transitions (because there can be source
states not containing each other). Partial ordering relations
are usually represented as tree structures.

The priority relation of transitions has to be implemented
by the transformation. The tree structure offers itself as a
good choice: the transitions triggered by the same event can
be arranged in a tree corresponding to the hierarchy of the
transitions. (Trees are depicted having root at the top and
leaves at the bottom, thus the directions “up” and “down”
have to be understood accordingly.) A transition with higher

priority is located closer to the leaves, and non-conflicting
transitions and conflicting ones with equal priorities are lo-
cated on different arcs of the tree. Compound transitions
are mapped to a set of simple transitions.

e

f

AB2A AB2B

a b d e f

c

h

g

c

g

h

b d

a
AB

AB1A AB1B

A
AA

AB1AA AB1AB

Figure 3. The tree structure of the priority re-
lation

Figure 3 shows a small statechart as an example. 8 tran-
sitions (a to g) are presented, all of them being triggered by
the same event. (Transitions triggered by other events are
not depicted.) The tree structure of the transitions is shown
on the bottom.

The structure of the tree strongly depends on the priority
structure of the transitions to be transformed, therefore it
is not expedient to draw a generic tree structure here. The
internal structure of the SRN patterns corresponding to the
individual nodes of the tree will be described below.

When an event is selected, the tokens representing the
selected event should run through the tree from the leaves
to the root. On parallel arcs they run simultaneously, the
arcs are synchronized only at the join points. Every transi-
tion has to know, whether the transitions with higher prior-
ity have “consumed” the event or not, because an enabled
transition may only fire if the transitions with higher prior-
ity could not fire. In the tree structure, the transitions get
the event in the order of their priorities.

Accordingly, the SRN representing the selection of UML
transitions is a tree of interconnected sub-SRNs (each of
them representing a single UML transition) with an aux-
iliary control structure. This additional structure consist
of two chains of places, where the tokens representing the
events can run through the tree. A given token runs on one
of the chains, when the event is “not yet consumed” by the
transitions on the given arc of the tree, and the token runs
on the other chain, when the event is “already consumed”.
These chains will be referred to in this paper as chains of



“unconsumed/consumed events”.

uncomsumed
event is still

t_end

successor states

consumed
event is

t_begin

predecessor states

uncomsumed
event is

enabled]
[t_begin not

Figure 4. PN pattern of a simple transition

Figure 4 shows the SRN pattern of a simple (i.e. not join)
node of the tree. It consists of places representing the fol-
lowing items:

� states to be left when the transition fires
(predecessor states),

� states to be entered when the transition fires
(successor states),

� the “chain of consumed events”,
� the “chain of unconsumed events”.

The predecessor states are the source state of the transition
and all of its parent states which are not parent states of the
target state. They can be identified by the analysis of the
structure of the SC. There are also other states to be left,
namely the active states of parallel regions of the SC. These
states cannot be identified unambiguously by the static anal-
ysis of the SC, thus exiting these states necessitates an other
construction described later in this paper. These states are
not represented in the SRN corresponding to the transition.

Accordingly, firing of an UML transition as represented
by the above SRN pattern can result in an inconsistent state.
This inconsistency vanishes before completing the step, be-
cause

� if there is a transition having (partially) common pre-
decessor (source and parent) states with the given one,
then leaving a common predecessor state inhibits the
incorrect firing of this transition;

� if there are no common predecessor states, then the re-
sult of an incorrect firing vanishes before completion
of the step (the results of firing in a parallel region will
vanish as the states in this region will be de-activated
explicitly at the end of the step).

The successor states of a transition are the states to be
entered when the transition fires. This set of states can be
unambiguously identified by analyzing the static structure
of the SC.

At the beginning of a step, the selected event is “not con-
sumed”, i.e. no transition has fired processing that event.
Accordingly, the tokens representing the event on the sev-
eral arcs of the appropriate tree structure of the triggered
transitions appear in the “chain of unconsumed events”.
They will be put on the other side immediately, if a tran-
sition fires on the given arc. The dashed arrow in the figure
represents some places and transitions corresponding to the
timing policy, as will be described in section 3.3.1. Such a
sub-SRN corresponding to an UML transition can only fire
if the token representing the triggering event appears on the
“unconsumed” side.

If there are two conflicting transitions of the statechart
enabled at the same time then the firing of the corresponding
sub-SRNs happens as follows:

� If one them has higher priority than the other one, then
it is placed closer to the leaves of the tree structure,
and the sub-SRN corresponding to the other transition
can only fire if the event was not consumed by the sub-
SRN corresponding to this transition.

� If they have the same priority, then the transitions are
placed on different arcs of the tree, and the conflict is
resolved by the guards and the firing times of the timed
UML transitions.

It can be proved that the properties of the UML SC se-
mantics are satisfied by these patterns, i.e. a sub-SRN cor-
responding to an UML transition can only fire if the prede-
cessor states of the transition are active, its guard evaluates
to true and no transition with higher priority was enabled
and triggered.

A joining node of the tree is shown at Figure 5. In these
nodes there are no sub-SRNs corresponding to the UML
transitions, they only merge the event chains of the subtrees.
All of the UML transitions in the subtree have higher prior-
ity than any transitions along the common path of the tree
above the joining node, therefore “event is unconsumed”
applies to this common path if and only if the event was not
consumed by any of the transitions of the subtree.

The “event is consumed” applies to the common path
when some of the transitions of the subtree have already
fired (they had carried over the tokens on the “consumed”
chain) and the other transitions could not fire (they passed
on the tokens along the chain). This construction ensures
that if the token representing the event reaches the root of
the tree, no more sub-SRNs corresponding to transitions of
the statechart will fire, thenextandlast places (see Section
3.3.2) can be synchronized, and the places corresponding to
some exited states can be emptied.

In the figure there is an SRN inarc with multiplicity
higher than 1. The multiplicity of that arc is equal to the
number of the joining arcs in this point. The names “still



event is consumed C

event is still unconsumed Cevent is consumed B

event is still unconsumed B

waiting A

[waiting A]
[waiting A]

2

event is unconsumed Aevent is consumed A

Figure 5. PN pattern of a joining node in the
tree structure

unconsumed”, “consumed” and “unconsumed” correspond
to the names in Figure 4.

The size of the tree pattern is as follows (the duplicated
places representing the states of the SC are not counted):

Transitions of the statechart: t

Joining points of the tree: j

Joining arcs in a given point: ji
Sub-SRNs described in 3.3.1:t
Additional places: 3t+ j

Additional transitions: t+
Pj

i=1(2 + 2ji)

Additional arcs outside: 6t+
Pj

i=1(3 + 3ji)

3.3 Semantics of transitions

There are differences between the semantics of UML
statecharts and of SRNs. First, the relationship of timing
and guard evaluation is not specified in standard UML. Sec-
ond, the execution step of UML semantics requires some
synchronization of firings, while in SRN the transitions fire
independently.

Below we describe some possible semantics for timed
and guarded UML transitions and their transformation pat-
terns. At first, the problems of combining guard evaluation
and timing are discussed.

3.3.1 Guards and timing

In our approach, time delay is associated with UML transi-
tions, assuming that this delay is produced e.g. by program
code execution or communication delay. Accordingly, the
guard expressions have to be evaluated before the firing of
the (timed) transitions. Another possible way is to associate
the delays to the states, where the evaluation of the guards
and the selection of the transitions is preceded by some de-
lay. In our opinion, the former approach fits better to the
majority of practical problems.

Figure 6 shows three different (alternative) implemen-
tations of the combination of timing and guard evaluation.

They may fit to different applications. Since only enabled
UML transitions can be selected for firing, the first transi-
tions of each pattern below must be guarded. This guard
contains the guard of the appropriate UML transition ex-
tended by a conjunctive term to express that the transition
can only fire if the appropriate state was active before the
actual step.

[guard]

[guard]

[guard][!guard]

predecessor states predecessor states predecessor states

[guard]

successor statessuccessor statessuccessor states

a. b. c.

Figure 6. Models for combining guards and
timing

The three alternatives are as follows:

� The selection of the transitions is irrespective of tim-
ing. (a.)

� The guard has to be true during the delay else the tran-
sition will be deselected. (b.)

� The “fastest” enabled transition wins. (c.)

The three figures show sub-SRNs corresponding to the tran-
sitions of the statechart, as introduced in the previous sec-
tion. The predecessor and successor states are shown, but
the event chains are not.

The types and parameters of the timed SRN transitions
correspond to the types and parameters of the correspond-
ing SC transitions. No other timed transitions are in the
patterns, since according to the UML semantics, the event
selection, guard evaluation and the selection of the fire-
able subset of the enabled transitions happen immediately,
i.e. in zero time. The timing policy (resampling, race with
age/enabling memory, ...) is determined by the designer
(and must be implemented by the SRN-tool used for the
analysis).

Event sending by the transitions is implemented by out-
arcs from the timed SRN transitions to the appropriate
places of the event dispatcher.

The number of model elements in the pattern is as
follows (the duplicated places representing the states of
the statechart are not counted to the size of the patterns,tp



denotes the number of predecessor states,ts denotes the
number of successor states of the given transition):

Model Places Transitions Arcs
a 1 2 tp + ts + 2
b 1 3 2tp + ts + 3
c 0 1 tp + ts

3.3.2 Synchronization

The UML semantics requires the evaluation of the guards
of the transitions at the beginning of a step, before firing of
any transition. There is no doubt that the guards refer to
the consistent state configuration before the actual step. In
SRNs, the guard of a transition will be evaluated just before
the given transition fires, the evaluation is not scheduled to
the beginning of a “step” and the results are not stored. In
SRNs it is possible, that some transitions have already fired
before the guard expressions of another transitions are eval-
uated. To the correct evaluation of guards the last stable
state configuration of the state machine (i.e. the state before
the actual step) must be recorded. To do that, the places
representing the states of the SC are duplicated. For a state
A there is a placeA containing a token if and only if the
stateA was active just before the actual step (called in the
following last place), and there is an other placeA0 con-
taining a token if and only if the stateA will be active after
the actual step (callednext placein the following).

The places “predecessor states” and “successor states” in
Figure 4 depict thenextplaces, while the guards of the ap-
propriate transitions in the sub-SRNs corresponding to the
UML transitions are expressions over marking of the places
recording the last stable state of the system (i.e.lastplaces).
The contention is for the tokens of thenextplaces, while the
last places provide a consistent guard evaluation during the
firing of the guarded transitions.

This concept necessitates a synchronization of the dupli-
cated places at the end of each step. The SRN pattern of the
synchronization is shown in Figure 7.

[mark(A’)&&
!mark(A)&&
mark(SA)]

[!mark(A’)&&
mark(A)&&
mark(SA)]

A

(mark(A)&&
!mark(A’)||

[(!mark(A)&&

mark(superA))]
mark(A’)&&

[!mark(superA)]

SB

SA A’

Figure 7. Synchronization of the duplicated
places

The pattern shows the synchronization of the places rep-

resenting the stateA of a statechart. There must be such a
pattern for each state.

The placesA andA0 represent the given state. There
is a token inA if and only if the stateA of the SC was
active just before the actual step, and there is a token in
placeA0 if and only if the stateA of the SC will be active
after the actual step. The placesSA andSB are places of
a synchronization chain described below. The place name
superAshould be replaced by the place name according to
the SC state directly containing the stateA.

This pattern not only synchronizes the duplicated places,
but also corrects transient inconsistencies in the markings.
Due to the incompleteness of identifying the dynamically
changing set of active states when an SC transition fires,
the tokens must be removed from places representing states
considered to be inconsistently active, since their parent
states are inactive (see an example below).

Remember that the predecessor states on Figure 4 are
only the source and parent states of the SC transition, which
are to be exited. However, there are other states also to be
exited, namely the active substates, and the active states of
parallel regions of states to be exited. Since they cannot
be identified statically, these states were not emptied when
the predecessor states were exited. This inconsistency must
be resolved at the end of the step. Note that this vanishing
problem does not affect the result of the step.

Example: On figure 3 a small statechart is presented. The
predecessor states of the transitiona areAB1AA, AB1A
andAB. If a is enabled then eitherAB2Aor AB2Bmust
be active (since their parent stateAB is active). It can-
not be identified statically, which of them is active at
the given situation, therefore they do not appear in the
set of predecessor states ofa. Before the end of the
step whena fires, the active one of them must be ex-
ited, because their parent stateABwas exited.

When the token representing the selected event reaches the
root of the tree of the triggered transitions, it is passed to
a synchronization chain. This chain controls the synchro-
nization of the duplicated places. All states of the SC are
included in this chain, where every state precedes all of
its substates, otherwise the order is arbitrary. In the SRN
model, the synchronization chain is the chain of places cor-
responding to the SC states.

The synchronization of the duplicated places could hap-
pen independently, but this non-deterministic order would
produce a large state space of the SRN without any fur-
ther advantages. The fixed ordering avoids this kind of state
space explosion.

Figure 7 shows the synchronization pattern of stateA.
Until there is no token in the placeSA, nothing can happen.
When there is a token in this place, it cannot be removed
until:



� There is a token in both placesA andA0 but there is no
token in the place representing the direct parent state
of stateA (the place pair corresponding to that state
is already synchronized). In this case bothA andA0

will be emptied, and the token from the placeSA will
be passed to the placeSB (for synchronizing the next
state in the order of the synchronization chain).

� The markings of the placesA andA0 are the same,
with respect to that both of them can have a token if
and only if there is a token in the place representing
the direct parent state ofA.

Note that the places corresponding to SC states never have
more than one token in these SRN patterns.

The synchronization of the placesA andA0 can happen
by the help of the two transitions on the right side of the
figure, if there is a token inSA.

In the synchronization subnet belonging to the last state
of the chain,SB is replaced bystart new step.

This pattern consists of 1 place, 4 transitions and 8 arcs
per per UML states.

4 Composition of subnets

By analyzing the structure of a given statechart the above
mentioned subnets are constructed based on the design pat-
terns. The subnets are connected with each other according
to the interface places identified by the same name in the
patterns.

The necessary number of patterns is the following:

� The number of event queues and the type of the event
dispatcher(s) is defined by the designer (additional in-
formation is attached to the UML model).

� There are as many transition hierarchy trees as the
number of events handled by the transitions of the stat-
echart.

� The number of sub-SRNs representing transitions is
the same as the number of transitions in the model.

� Each state of the statechart is represented by a pair of
places in the SRN.

� For each state of the statechart, there is a synchroniza-
tion subnet.

The initial state of the SRN is defined as follows. If the
event queue contains events in the initial state then these
events are represented by the initial marking of the appro-
priate places. The initial state configuration of the SC has
to be mapped to the SRN by inserting tokens into the corre-
sponding place-pairs. The initial marking of the placestart
new stephas to be one.

The external environment can be modeled (in closed sys-
tems) by separate UML statechart(s) which will be trans-
formed to SRNs with outarc(s) to the appropriate places of
the event queue(s).

5 Model analysis

The model can be analyzed by standard SRN tools. In
certain cases analytic solution is possible, otherwise sim-
ulation has to be performed. If a steady state exists then
steady state measures can be computed, otherwise transient
analysis can be executed.

The results of the analysis of the SRN (and so of the
transformed UML model) are, for example,

� the reachable state and state configurations of the sys-
tem,

� the expected probability that a state is active,
� the expected value of the throughput of a transition,
� the expected probability that a transition is enabled,
� the expected probability that a transition fires.

These results can be utilized to gain both performance and
dependability measures of the model.

Simple performance measures (throughput, utilization)
can be derived directly from the above presented results.
In more complex cases, user-defined reward functions can
also be used (expressed in the UML model in the form of
structured comments).

Dependability-based analysis in this framework requires
explicit modeling of faulty behavior. The approach pre-
sented in [7] can be followed. The error model based
on state perturbations (unintended state transitions, loss of
messages) can be applied. Erroneous states can be included
explicitly in the model. The duplication of places repre-
senting SC states (Section 3.3.2) can be directly utilized
for modeling of failures (loss of synchrony). The possibil-
ity of event processing enables to model error propagation,
communication errors, external erroneous messages reach-
ing the system etc. The corresponding states and events can
be distinguished in the UML model by stereotypes, the nec-
essary probabilistic information can be included in the form
of tagged values (corresponding to transition firing times in
the SRN model). The enriched SC can be transformed to
an SRN as described in the previous sections. The resulting
SRN can be analyzed in special consideration of the distin-
guished (erroneous) states.

The analysis of the probability of erroneous states leads
to reliability (if no repair is modeled) and availability fig-
ures (if repair is modeled). Analogously, safety figures can
be derived by distinguishing the unsafe states in the model.
Performance and dependability characteristics can be com-
bined e.g. by comparing the performance in fault-free and
erroneous cases.

6 Examples

To give a formal proof of the equivalence of the arising
SRN and the original SC is beyond the scope of this paper.



In this section only an illustrative example is presented: a
small system, several statechart models of it and the SRNs
representing them.

The example is a variation of a production cell model
[11]. The system contains a press that processes metal
blanks, a robot with two arms for loading and unloading
the press, and a rotary table for positioning the blanks for
the robot. A UML-model of an extended version of this
example is given in [5].

A high-level model of the production cell consists of
6 statecharts. Each of them has its own event queue and
event dispatcher with non-deterministic dispatching policy.
The statecharts have 4,2,2,2,2,2 states, 9,2,2,2,2,2 transi-
tions and 5,2,2,2,2,2 events, respectively. The SRN rep-
resenting this statechart model consists of 103 places, 112
transitions (82 guarded, 20 timed), 142 inarcs and 144 out-
arcs.

A more detailed model consists of one single statechart
with 15 concurrent states containing 50 substates, and 68
transitions triggered by 42 events (14 timer events). A sin-
gle global event queue is supposed with non-deterministic
dispatching policy. This statechart was transformed to an
SRN with 373 places, 472 transitions (304 guarded, 82
timed), 547 inarcs and 558 outarcs.

7 Conclusion

We presented a method which allows quantitative perfor-
mance and dependability analysis of systems modeled by
using UML statechart diagrams. Our transformation from
statecharts to Stochastic Reward Nets covered a large sub-
set of model elements including event processing, state hi-
erarchy and transition priorities. By using the transforma-
tion and analyzing the resulted SRN performance and de-
pendability measures can be computed. Since the analysis
is based on a detailed model of the system, in the case of
complex systems this kind of analysis should be restricted
to core critical parts of the system.

The transformation was presented in the form of design
patterns. The properties of the resulting SRN satisfy the
requirements defined in the UML standard. The number
of places and transitions in the generated model is propor-
tional to the number of model elements in the statechart.
The generated number of states (state space of the underly-
ing Markov chain) corresponds to the number of state con-
figurations of the UML model.
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