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Abstract:

Assuring hard real-time characteristics of 1/0 associated with embedded software is often a
difficult task. Input-Output related statements are often intermixed with the computational
code, resulting in I/O timing that is dependent on the execution path and computational load.
One way to mitigate this problem is through the use of interrupts. However, the non-
determinism that is introduced by interrupt driven I/O may be so difilcult to analyze that it is
prohibited in some high consequence systems. This paper describes a balanced
hardware/sofhvare solution to obtain consistent interrupt-free 1/0 timing, and results in
software that is much more amenab!e to analysis.

Section 1: Background
Much of the software being developed today is for embedded systems. It is used in numerous
non-safety critical applications such as entertainment systems, kitchen appliances, and children’s
toys as well as safety critical systems such as automotive breaking systems, flight control
systems, and medical instrumentation. In most cases the underlying computer based
implementation is transparent. In order to maintain that transparency, and in most cases to be
viable at all, these systems must react to real world events as they happen. That is they must
perform in real-time. A computer can be said to be operating in real-time if it can take some
input from an external system, do some processing, and output any resulting feedback to that
system at or before the required time. A computer system that controls a chemical process that
takes place over the course of hours may not have very demanding real-time requirements of it,
but it must operate in real-time nonetheless. Conversely, an antilock breaking system must
evaluate a number of input parameters and petiorm its output in tiny fractions of a second is also
a real-time system, albeit with more stringent requirements. As the real-time requirements of a
system approach the tens of microseconds range, the ability of software to meet those
requirements becomes more difficult, even impossible.

Section 11:1/0 Timing Problems
The core requirement for a real-time system to meet its stringent 1/0 timing requirements is often
not easy to meet. A variation of a few milliseconds or a few microseconds writing or reading
some 1/0 value can mean the difference between success or failure. The following sections
ilhtstrate the source of difficulty in conforming to real-time requirements.
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Output Timing
Any software beyond the most trivial of code will have multiple execution paths. For a real-time
system to interact with the external world, inputioutput (1/0) statements are placed into the
instruction stream at the logically appropriate place in the code. Figure 1 below illustrates part of
an application where a pulse on a digital 1/0 line must be generated to some other device
connected to its output port.
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Figure 1

This simple application sets the output value to one and then continues with some other
processing and eventually sets the output back to a zero. Depending on some internal or external
state conditions, the code executed between those two 1/0 instructions will either follow path A
or path B. When path A is foIlowed only simple in-line processing is required with no branching.
If path A is always taken, the duration of the output pulse will always be the same. If path B is
taken, a function call is made, and within it a complicated series of branches and loops is
performed. It would be a very rare occasion that the code execution time of path A and path B
would be the same, as a result the duration of the output pulse would j itter with the software flow
characteristics. The pulse duration jitter may not be a problem for some external systems using
the pulse output, but for others it could be catastrophic. For simple code, analyzing and
quanti~ing the jitter characteristics maybe trivial, but the analysis grows very quickly with even
mild increases in code complexity.

Note that the code fragment illustrated in Figure 1 is shown in isolation, but will most ofien be
part of a larger software system where Time O is not likely to coincide with the start of this code.
In such cases the situation is even worse than is illustrated, because the pulse start time will jitter
with execution path variations leading to this code fragment.
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Input Timing

Figure 2 illustrates that a similar problem exists with input data.
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Figure 2

This system is similar to the previous one. However the output is only driven high, and the
external system responds by sending a pulse back in return, where the software polls the external
system until it senses the high going and then low going edges of the returned pulse arrives. We
can only be guaranteed that this system will work if the longest execution path in the software can
complete before the retfim pulse has begun, an effort that may not be trivial.

Note that a combination of the code fragment shown and the external device that generates a
pulse in return will likely need to be analyzed as a system. Specifically, the response time of the
external device will need to be analyzed. If that device is software based, it too is likely to have
pulse jitter times that’s dependent on its code flow. So an analysis on what appears to be a simple
system, can quickly get very complicated.
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Interrupts
As the processing requirements of a system increases between 1/0 events, the need for an
asynchronous way of controlling 1/0 timing becomes necessary. Software system may make use
of interrupts to enable a capability that would be difficult or impossible with a polling based
system as previously illustrated. Figure 3 below illustrates a system that must accept and
recognize an input pulse that may arrive at an arbitrary time. Although this is an elegant solution
for relatively simple systems, it has its own share of problems.
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Figure 3

The main code fragment in Figure 3 was designed to meet a requirement for an absolutely stable
output pulse duration with no branches or variable loops between output statements. However,
since interrupts are asynchronous events, one may occur anytime between the output statements,
violating the timing requirement for the output pulse.

A designer may choose to also control the output pulse via the interrupt system, but as the number
of interrupt handlers increase so does the complexity of managing those interrupts. Only one
interrupt can be executing at a given time, and a priority scheme may be identified to manage
such problems. Such options become complex very quickly. In fact, for some safety critical
systems, all interrupts are prohibited as they overly complicate correctness analysis.

Other Problems
The previous simple examples illustrate only a few of the many problems real-time systems can
have meeting system level requirements. Some others include:

Clock Rate Changes: the timing at the interface will change with any processor clock rate
changes, which may have been increased to provide additional processing power.

Processor Changes: a change in processor implementations may yield failure in code that once
worked. As processor design capabilities advance, the clock cycles per instruction may change
with a new version of the same processor, resulting in execution timing differences.
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Deterministic Behavior: required for high consequence systems. We must be able to predict the
behavior and timing for all inputs to assure that no sequence or variation in the timing of a
sequence can lead to an undesirable state.

iti’’stem Testing meeting requirements is difficult when the timing of a system is tightly
integrated into the architecture. Usually a custom designed tester is necessary to generate and
validate 1/0 timing, these testers are often difilcult themselves to design and build. As a result
most of the core testing capability is often not available until late in the development cycle,
increasing the risk of a design error.

Power Consumption: As embedded real-time systems are incorporated into many consumer
devices, the need for many of them to operate on battery power is a must. As such, power
consumption is a large factor that drives the processor selection, impacting the computing
throughput and 1/0 capabilities.

Volume: A number consumer devices require embedded real-time systems to be small enough
to fit in the palm of a hand. These requirements also drive processor selection, computing
throughput and 1/0 capabilities.

Section III: A Solution
Certainly there are numerous products on the market that have overcome some of the problems
described. Modems operate with approximately 20P.s bit timing and networks operate at
frequencies of 10MHZ, 10OMHZand higher. In order to meet these requirements, much of the
required functionality has been put into hardware. Hardware based 1/0 offers two main
advantages: it often provides some form of buffer memory, and it may handle some level of
feedback to control the=system. For example, a simple UART has a register that contains a byte
of data to be transmitted using some hardware handshaking scheme. When system wishes to send
information, the byte is loaded into the UART, the hardware waits until some input 1/0 reaches
an ‘okay to transmit state’, then data is shifted out another port until the entire byte has been sent.
This scheme isolates the sofhvare from control issues and reduces the software timing
requirements by a factor of eight, as eight bits are shifted out for every byte the sol%vare loads.
Of course the timing requirements can be eased further with more internal UART memory with
few changes to that UART’Scontrol hardware.

It is desired to devise a generic solution that may be reused and improved on with time without
having to design from scratch for moderate requirements changes. For domain specific problems
one such solution has already been demonstrated in the development of real-time soflware using
port based objects [2]. Although not generally used for real-time systems, the domain of the PC
based platform is another example of a generic architecture that has withstood the test of time.

The basic question becomes how the hardware/software functionality should be split to make
most effective use of the strengths of each. Often designers overreact one way or the other by
putting more functionality into the hardware or sofhvare than is required. To make matters
worse, shifting responsibility between the two often requires a change in system architecture,
heightening the risk of introducing design errors.

The Separation of Behavioral and Real-Time Components
To achieve a good hardware/sofhvare balance, lets first look at their relative strengths.
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Hardware: extremely fast, deterministic timing, immutable, low power consumption, can easily handle
simple feedback loops.

Software: straightforward algorithm implementations, flexible, can handle computationally intensive
feedback loops.

Basically, software is best at behavioral functionality and hardware is best at deterministic real-
time 1/0. These observations imply a division point in the hardware/sotlware architecture. We
would like to develop an architecture where the basic behavioral/real-time components could be
re-instantiated in either hardware or sofisvare with minimal changes to the overall system. We
would also like to eliminate the need for interrupts, if possible.

A Flexible Architecture
Let’s consider the architecture illustrated below:
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Behavioral
System

Figure 4

This illustration is basically a high level of abstraction for a generic embedded real-time system.
This high level of abstraction provides a framework for mapping the requirements to potential
implementations as well as numerous other benefits [I].

The round objects represent functionality implemented in software, and the rectangular objects
represent functionality implemented in hardware. The real-time 1/0 is controlled by the hardware
components. Each of these hardware components is memory mapped to the controlling processor
and has internal configuration and status registers to allow the software to tailor its functionality
and monitor its state. The functionality of these components alleviates much software real-time
requirements by handling lower level 1/0 functions directly. Depending on the system
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throughput characteristics, these requirements may be further reduced by incorporating embedded
queuing memory into the hardware components. This internal memory may be used to smooth
out peak throughput situations, and its effectiveness may be analyzed with standard queuing
theory methodologies.

The event queue component is the key element that assists in eliminating a requirement for
interrupts. All asynchronous input events are intercepted and handled by the hardware
components. Any external event or hardware component condition that requires attention by the
software will generate a unique event ID that will be placed in the event queue. Events are read
out by the software system and the appropriate action is taken. The software system becomes
event driven, and the only software polling allowed is to wait on an event to arrive in the event
queue. A system may require that some external events be handled before others. This form of
prioritization may be handled by an event queue implementation that has multiple internal
queues, one for each priority.

As the system requirements increase to handle larger numbers of 1/0 ports, the number of
hardware components grows. To minimize the design effort of these hardware modules, it is
good practice to identifJ common functionality between the real-time hardware modules in order
to maximize the opportunity for design reuse. In fact, a standard sub-component architecture is
recommended. The following figure represents such an architecture.

J.lP

Hardware

Figure 5

Components

The hardware sub-components are described as:

Bus Interface: is used to interface to the processor executing the behavioral software. If the processor is
changed to one with a different bus protocol e.g. non-multiplexed to multiplexed, only this module will be
affected.

Internal Memo~ defines a parameterized internal configuration and status register design. Some of the
status registers may be configured to generate events to the event queue as desired. This sub-
component also contains a parameterized design of a queuing memory cell as needed.

Functional Module: is the sub-component that contains the circuitry to interface with the external 1/0 port
and handles the high speed l/O protocol and timing.

This architecture simplifies the addition of new 1/0 components and isolates the process into
three steps:

1. Reuse the existing bus interface verbatim.
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2. Reuse the internal memory sub-component by instantiating the parameterized variables that define
the internal queuing memory size and the number of configuration and status registers.

3. Design the functional component necessa~ to meet the low level 1/0 requirements.

Since much of the design complexity in 1/0 circuits is dealing with configuration and status
registers, the design of the functional component is made much easier by having a standardized
interface to the internal memory unit.

The event queue is the only component with a slight variation on the component architecture
since it has numerous internal queues. Figure 6 illustrates its internal architecture.

+

Figure 6

The bus interface is reused and the priority router may be thought of as the functional sub-
component. The internal memory module is modified to handle more than one queuing memory
unit, and another functional sub-component must be developed to read from the appropriated
queue at the appropriate time.

Software Components
The software components illustrated in Figure 4 may be thought of as four basic types.

E1-!W@CI’eads events from the event queue and calls appropriate functions. This is tie only so~are
component in the system that is allowed to poll an 1/0 device. Note however, that the event queue
hardware could be implemented to provide a hardware ‘wake up’ signal to bring the processor out of a
sleep mode. Such an implementation would allow for a fairly transparent power consewe mode.

[B] Behavioral: is the high level system controller. Since the software is basically an event driven system
this is likely to be a state machine model. Note that there maybe one or more behavioral systems. Such
an implementation effectively allows for cooperative multitasking.

[S] Service Object: services are those other functions/objects that are required so support the behavioral
system.

II] Interface Driver are use to get information in and out of the hardware components.
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An object oriented software implementation is desired as it allows for a plug and play like
capability, and well defined and standardized interfaces will provide for effective testing
techniques [3,4]. It will also prove to be important in supporting the capability to migrate
functionality between hardware and sofhvare.

Hardware/Software Implementations

A key advantage of this architecture is that it will also support the notion of migrating component
implementations between hardware and software without an architectural change. The
architecture as described is an implementation of both hardware and software components. This
same architecture, however, could be implemented entirely in hardware or entirely in software.
In fact, our initial implementation of this real-time architecture was a software-only
implementation.

A Hardware-Only Implementation

If a system were such that only simple computational requirements are necessary on the input
data, a hardware implementation of the behavioral system would be straightforward. Since the
behavioral system is event driven, a hardware based state machine could supply the control
sequencing. Hardware implementations of state machines are well known, so the design and
implementation should be relatively straightfonvard. In fac~ the hardware 1/0 components could
be used unchanged. Only a bus interface driver would need to be developed as an interface
mechanism between the behavioral hardware and the 1/0 hardware.

A desire for such a system could be driven by power and volume constraints in the requirements.
A hardware implementation of a simple behavioral system would likely be far fewer gates than a
complete processor needed to execute the same behavior in software. This may result in much
lower power consumption and smaller volume than its processor based cousin. Another benefit,
would be a homogeneous development, testing, and maintenance environment. The drawbacks to
such an implementation would be the risk of a requirement changing to include some processing
that could result in a complex hardware design to support.

A Software-Only Implementation
Not all real-time systems are small embedded implementations. They may also be implemented
in desktop PC’s, workstations, and even mainframes. Generally in these cases, the real-time
requirements are not quite as restrictive and often there is no need for custom hardware
development to support fast and/or complicated bit 1/0. However, the basic architecture can still
be used. The only change is that what used to be hardware components must now be
implemented as software components. In such an implementation, the asynchronous inputs must
be handled via interrupts, or separate threads of execution that emulate the hardware’s
functionali~. Of course, the internal architecture of these software 1/0 components probably
should not reflect that of the hardware, but the basic configuratiordstatus and behavioral elements
would be the same.

Some of the benefits of this approach are a homogeneous development, testing, and maintenance
environment. The drawbacks of a software-only solution: the inability to meet tight timing
requirements, and it will run into interrupt related timing analysis problems as described earlier.
It’s most valuable contribution is scalability and the decoupling of behavioral and temporal
design elements.
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Component Migration
A major strength of this architecture is the ability for functional components to be easily
implemented in either hardware or software with no change in the architecture. Let’s take for
example a system that must compute a complex but repetitious mathematical algorithm on some
data. As a functional software object, the calculations required may work but require a large
amount of computation time. If this function could be moved to hardware, the computation is
likely to be much faster. Figure 7 illustrates how the component is moved to hardware.

I I

Figure 7
.

The component begins as a software service object with some interface functions to its behavior.
Any requests made to it requiring a time consuming operation will receive a completion notice
through the event queue. When the functionality is migrated to hardware, a software driver for
the hardware must be developed with the same interface functions, and the hardware design will
be such that it too places completion notices to the event queue. This allows for complete
transparency of the computational functionality with respect to the rest of the system. The only
change in the system is that its 1/0 handling capabilities have now been increased since the
computation time has been decreased.

Solution as Applied to //0 Timing Problems
Figure 8 below illustrates the impact on the 1/0 timing code fragment discussed at the beginning
of this paper that generates a simple output pulse.

-1o-



.

A Flexible Real-Time Architecture 05/30/00

I I

*

H
‘“ Erid “; ‘

Figure 8

The primary difference is an 1/0 control element between the behavioral code and the 1/0 pin.
On entry to the code fragment that element is configured with the starting and ending time of the
pulse, and from that point on the system processing time has no effect on the pulse duration. The
block of code setting the pin low is no longer needed.

Figure 9 below illustrates the effect this architecture has on the input signal code fragment.
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Figure 9

The first portion of the code fragment need not change (however to be pure, there would be an
1/0 component as in Figure 8). In this system the responding pulse may arrive at any time during
the processing, because the event will be queued up by the input component which would then be
processed by the CRead Pulse’ code. Note that the pulse reader is now implemented as a
completely separate processing element to handle the event independently. It would be called by
the event queue reader when appropriate.
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Section IV: Advantages and Limitations
There are several advantages to this architecture:

Abstraction: this approach provides a framework to describe a system
abstraction. As such, it may aid in identi~ing the elements required by a
implementation.

at a high level of
system and the best

Isolation: it is conductive to object oriented design approaches and leverages those techniques for
data abstraction and well defined functional interfaces into the very architecture itself.

Implementation Independence: each of the components may be implemented in hardware or
software, or be freely intermixed depending on the timing, power, and volume constraints.

- the comPonent ‘ature of the sYstem lends itself well to testing thoroWhlY at the
component level to mitigate the risks of integrating the components at a later stage. Also, the
behavior of a system can be fully tested entirely independent of the real-time 1/0 environment,
since it has been decoupled from the timing of the system. Finally, this same architecture could
be used in the design of a custom tester, as the tester itself is likely to have similar timing
requirements.

No Interrupts: the system handles asynchronous input without interrupt processing, allowing it to
be deterministic and more easily analyzed. As such, it may potentially be used in a number of
high consequence systems.

Some of the disadvantages of this architecture are:

Event Processing Loop ~ime: although no interrupts are needed in the system, this does not mean
that there is no latency to handling processing intensive asynchronous input events. The events
must stil 1be read and the appropriate function(s) must be called to handle it. As interrupt systems
in microprocessors are hardware based, they can usually be executing interrupt relevant code in a
few clock cycles. An implementation of this architecture with a software based event router will
take longer to begin processing an input event that than an interrupt handler. However, if this
latency proves to be a problem there is the possibility that some additional functionality could be
handled in a hardware component.

Priority Inversion: the event queue contains a separate queue for events at each priority level.
When an event comes into the event queue it will be placed into the appropriate internal queue. If
the event reader reads a low priority event, it means no higher priority event existed at the time of
the read. However during the processing of that low priority event, a high priority event may
enter the queue but it will not be serviced until the current low priority event is completed being
processed. This problem may be made more tolerable if any long duration process periodically
invokes the event reader.

Section V: The Architecture in Practice
The general architecture was originally implemented entirely in software for a number of
simulation systems requiring real-time performance in the millisecond range. The complexity of
the implemented systems ranged from low to medium (from 5,000 to 20,000 lines of code) and
performed as expected. Each of the systems was developed in a environment of changing
behavioral and timing requirements, and all of the changes were made with only localized effects,
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i.e. significant behavioral changes were made without affecting timing, and timing changes were
made without affecting the behavior.

The hardware components described in Section III have been developed in the VHDL language,
simulated, and fabricated in Field Programmable Gate Arrays (FPGA’s) as well as an Application
Specific Integrated Circuit (ASIC). With these implementations we have been able to target
several applications with timing requirements in the microsecond range. Again we have been
able to make changes with only local effects, and the complexity of these systems roughly the
same as those for the software-only solution.

In addition to having the ability to easily make changes, we have targeted two vastly different
processors with similarly encouraging results. Initially, we executed our behavioral simulation
code on a 400MHz Power PC 604 communicating with the real-time FPGA based 1/0 hardware
over a VMEbus backplane. Then recompiled the same source code for a 8031 microcontroller
with a 2MHz clock. The microcontroller was part of a core based ASIC connected directly
connected to IC logic implementing the same design as the FPGA hardware. Analysis with a
logic analyzer revealed that the behavioral and timing differences between the two
implementations are indistinguishable.

Section W: Summary and Conclusion
In the design of embedded real-time systems, there is rarely an obvious solution to handle timing
related problems. The available solutions diminish rapidly as the timing requirements become
tighter, and quickly become impossible to meet with a software-only solution. When designing a
system that has a hardware/software mix, the divisions of labor is also not always an obvious one.
The architecture presented in this paper provides a design framework that aids in the definition of
a system and provides a consistent methodology for handling a wide range of real-time
applications.
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