
Requirements Formalization and Validat ion for a 
Telecommunication Equipment Protection Switcher 

Michele Cecconil 
SIEMENS ICN SPA,  

Localith Boschetto, 
671 00 L 'Aquila, Italy 

michele.cecconiQicn.siemens.it 

Abstract 
Using formal methods, namely model checking, we 

can automatically verify a formal model of the require- 
ments against given properties. This allows us to  de- 
tect errors early an the design process, thus decreasing 
development cost and t ime t o  market. However to  mod- 
i fy  a well established design process t o  introduce formal 
methods is not easy. 

W e  present a case study exploring the possibility of 
replacing informal functional specifications with formal 
ones in the design process of telecommunication Equip- 
ment Protection Switchers (EPSs  . 

formal specs f rom informal requirements is  comparable 
with that for  writing informal functional specs f rom in- 
formal requirements. This suggests that for EPSs re- 
placing informal functional specs in the design process 
with formal specs can be done without suffering delays 
due t o  the formalization activity. 

Key Words Model Checking, Formal Methods, 
Automatic Validation, Telecommunication Systems, 
Reactive Systems, Embedded Systems, Finite State 
Systems, Binary Decision Diagrams. 

Our finding is  that for  EPSs t R e t ime  ef fort  t o  write 

1 Introduction 
Many design errors stem from wrong interpretation of 
informal requirements. Using a traditional testing ap- 
proach such errors can only be discovered after an im- 
plementation of the system is available so that we can 
run our tests. However to correct errors at this late 
stage of development can be costly and time consum- 
ing. 

One of the goal of Formal Methods is to allow detec- 
tion of errors in the early stages of the desi n process. 
In particular by building a formal model of the infor- 
mal requirements it is possible to detect errors due to 
wrong requirement interpretation long before we reach 
the implementation stage. This decreases development 
costs and time to market. However it may not be easy 
to smoothly introduce formal methods in a design flow 
that has been around for years. Even when, as in our 
case, automatic verification via Model Checking is used. 

lThis work was done when the author was with ITALTEL 

2This research has been partially supported by MURST 
SPA 

project Tosca. 

Enrico Tronci2 
Area Informatica 

Universith di L 'Aquila 
Coppito 67100 L'Aquila, Italy 

tronciQunivaq.it,http://univaq.it/Ntronci 

Roughly speaking a typical design flow goes as fol- 

1. We are given informal requirements describing 
what the system should do. From such informal 
requirements we get functional specifications. 

2. Functional specifications describe informally how 
informal requirements are to be implemented. 

3. Finally from functional specifications an imple- 
mentation is obtained. 

The present case study explores the possibility of 
replacing item 2 in the above sketched design flow with 
formal specs. That is we ex lore the possibility of re- 
placing informal (functionalp specs with formal specs 
when informal requirements define telecommunication 
systems, namely Equipment Protection Switchers. This 
allows us to automatically verify (via model checking) 
formal specs against given pro erties. Note that, of 
course, informal requirements &em 1 above) are not 
removed from the scene. In our formal setting they are 
used to write formal specs. 

Our main concern is to check that people that are 
not expert in formal methods can write formal specs 
within a time comparable with that needed to write 
informal specs. This will ensure that the design flow 
will not be delayed by the activity of writing formal 
specs. 

Our case study has been conducted as follows. A 
student, who only took under raduate level courses on 
formal methods, carried out [$ the task of writing and 
validating (via model checking) formal specs modeling 
the informal requirements for a Tributary Equipment 
Protection Switching (TEPS) provided by ITALTEL 

TEPS is a small system (it only has 218 states). 
However it contains all the ingredients of larger switch- 
ers and well serves our goal of measuring the formaliza- 
tion effort for this kind of systems. 

The ITALTEL TEPS project was over (i.e. the sys- 
tem was implemented, tested and delivered) much be- 
fore we started our case study. This made it possible 
to compare the efforts related to both approaches (in- 
formal vs. formal). Moreover tests were available too. 
We formalized such tests as formal properties and in- 
cluded them in the properties to be verified via model 

lows. 

[51. 

checking. 
We used First Order Logic on  a Boolean domain 

(BFOL) to formalize the requirements and to define 

169 
0-7695-0927-4100 $10.00 0 2000 IEEE 



the properties to be verified. Of course this is just on1 
of the many possible choices. We have an OBDD (Or 
dered Binary Decision Diagrams, [3]) based interprete 
BSP (Boolean Symbolic Programming, [7, 81) that cai 
execute BFOL specifications. 

The main results of this case study can be summa 
rized as follows. 

0 It took one person-month (indeed student-month 
to write formal specs from the informal require 
ments for TEPS. This time is comparable wit1 
the time needed to write informal functional spec, 
from the informal requirements. 

0 ITALTEL provided us with the tests [6] use( 
to test TEPS implementation. Such tests wen 
aimed at checking the presence of certain tran 
sitions in the system. Using BFOL we formal 
ized such tests as liveness properties and auto 
matically, via model checking, verified our forma 
specs against such properties. 
However by using model checking we can alsc 
check the absence of unwanted transitions in thi 
system (safety properties). To this end we wrott 
safety properties and checked our formal spec, 
against them. 
The final version of our formal specification o 
TEPS passed all of our formal properties. 

0 Our formal specifications can fully replace the in 
formal functional specifications that are the start 
ing point for the implementation. This is reason 
able since, as a matter of fact, our formal specs de 
fine functional specs using finite state automata 
This is a familiar approach to our software en 
gineers since it is essentially the same approacl 
followed by the informal functional specifications 
It is to be noted, tough, that our formal approacl 
presents automata in a textual form, whereas in 
formal functional specs use a graphical presenta- 
tion commented with some (informal) text. 

our case study suggests that for 
telecommunication equipment protection switchers it is 
easy and profitable to replace in the design flow infor- 
mal high level specs with formal high level specs. This 
results in early error detection (as it happened to us) 
thus reducing development costs and time to market. 

Summing up: 

2 Tributary Equipment Protec- 
tion Switchers 

Usual1 a telecommunication network is built out of 
units hardware or software) performin specific func- 
tions and cooperating to provide the fuyl system func- 
tionality. To reduce the time of loss of service some 
redundancy is required in the system (redundancy of 
units). A redundant unit takes the service when the 
unit that usually provides that service becomes faulty. 

A working unit is a unit which function is to provide 
service (support telecommunications traffic A protec- 
tion unit is a unit whose function is to  ta k e a service 
when a working unit becomes failed. A unit is called ac- 
tive when it is providing service (regardless of whether 

I I I 
I 

Figure 1: Automaton for group request specification 

it is a working or protection unit); it is called stand-by 
when it is not providing service (because it is a pro- 
tection unit that has no unit fault to  protect or it is a 
working unit that it is being protected). Changing from 
active to stand-by and vice versa is called switching (of 
the service). 

Generally speaking, it is possible to  protect a work- 
ing unit by means of another identical unit (in this case 
the protection is called 1:l)  or to  protect m working 
units by means of n identical units (in this case the 
protection is called m : n ). Note that in both cases the 
working and protection units are identical. For m : n 
protection usually n < m. 

The management of this protection activity is per- 
formed automatically, when the system detects a fault 
on a working unit, or manually, by commands issued 
by a human operator. 

A switching scheme is called revertive if when a 
failed unit is repaired, the protection unit becomes 
available for protecting other units. 

An apparatus implementing the protection activity 
described above is usually called a Tributary Equipment 
Protection Switcher. 

3 Informal Specifications 
In this section we sketch some of the informal require- 
ments from [5] that we used as the starting point for our 
formalization. Our case study refers to a 3:l equipment 
protection switcher. 

Usually a Protection Switcher can be described as a 
Finite State Machine (FSM) that manages protection 
requests (from other system components as well as from 
a human operator). Fig. 1 gives the FSM summarizing 
our informal requirements. 

In what follows commands sent to  the switcher are 
also called external group requests. The switcher itself 

170 



is also called group. A state, a condition as well as the 
existing external request are all components of the full 
state of the system. 

3.1 Request Handling 
When a new External Group Request (EGR) is re- 
ceived it will be compared with the existin request 
(External Group Request, Condition or State7 . 

If the new EGR has a lower priority than the exist- 
ing group request, the new EGR will be rejected. If the 
new EGR has the same or higher priority than the ex- 
isting EGR, the new EGR will be accepted and stored. 
(Only one External Request for the protection group 
will be stored.) 

If a new EGR has been accepted and stored or it 
is issued a Condition or State with a priority higher 
than the existing (previously stored) EGR, then the 
previously stored EGR will be removed. 

The new request with the highest priority (the 
newly stored EGR or the newly issued Condition or 
State) will be executed after the request that is in 
progress (current request) has been carried out com- 
pletely, but the Wait  To Restore (WtR) timer may be 
interrupted. 

If the current group request is Unit Fail or Wait-To- 
Restore, a new Unit Fail request for another working 
unit will be accepted, but it will stay pending as long 
as the current Unit Fail condition exists or the WtR 
timer expires (during this time the protection unit is 
unavailable because it is providing the service for the 
former working unit requesting protection). 

3.2 Locking 
In addition to the active request, each working unit in a 
3:l Equipment Protection Group has either a Lock Out 
O n  or Lock Out Off request active, which provides for 
inhibiting and allowing protection on a per unit basis. 

Multiple units may have Lock Out O n  requests ac- 
tive at the same time. 

3.3 Equipment Protection Switch Re- 

The following switch requests are provided for the pro- 
tection group. Each request can be a condition, an 
external request as well as a state. Requests are listed 
in descendin order of priority. The parameter [unit] 
issued with t i e  Forced Switch or Manual Switch repre- 
sents the workin unit to which the command applies. 
For example, M$I) switches the service from the work- 
ing unit 1 toward the protection unit. 

quests 

3.3.1 Clear 

Clear is an External Request. 

request for the protection group. 
This External Request cancels the active external 

3.3.2 Lock Out 

Lock Out is an External Request as well as a State. 
This External Request, with no parameters, is a 

group request, and prevents further switches of the trib- 
utary units until a Clear is issued. If the protection unit 
is active, a switch back to  working will be issued. 

3.3.3 Forced Switch [unit] 

Forced Switch (FS) is an External Request as well as 
a State. 

This External Request switches service to (or main- 
tains service on) protection for the specified unit, which 
changes from “active” role to “standby” role after a 
Forced Switch has been executed. 

Since external requests of the same or higher priority 
are accepted, a new Forced Switch when another unit is 
already protected by a request of Forced Switch will be 
accepted. 

3.3.4 Unit Fail [unit] 

Unit Fail is a Condition as well as a State. 
The Unit Fail condition is issued when a service af- 

fecting unit failure has been detected in a unit. 
This condition will only result in a switch over to the 

protection unit if the protection unit is not failing and 
if the protection unit is not already providing service 
initiated by a request of the same or higher priority. 

The protection unit can also have a Unit Fail con- 
dition. 

The Unit Fail on protection has priority over the 
Unit Fail on working. 

3.3.5 Manual Switch [unit] 

Manual Switch (MS) is an External Request as well as 
a State. 

This external request switches service to (or main- 
tains service on) protection for the specified unit, which 
changes from “active” role to “standby” role after a 
Manual Switch has been executed. 

Since requests of same or higher priority are ac- 
cepted, a new Manual Switch when another unit is al- 
ready protected by a request of Manual Switch will be 
accepted. 

3.3.6 Wait to Restore 

Wait  t o  Restore (WtR) is a State. 
The Wait  to Restore state will be issued when the 

Unit Fail condition is no longer valid for a unit that has 
been protected. 

The Wait  t o  Restore state will be maintained for a 
provisioned time. 

The service will switch back to the working unit if no 
unit fail occurs for this working unit durin the provi- 
sioned time. A request of higher priority wiyl terminate 
the WtR timer and the hi her priority request will be 
executed, except for the d e a r  external command and 
for the Unit Fail condition issued by a working unit 
other than the currently protected working unit. 

171 



3.3.7 No Request 

No Request is a State. 
In this state no request is active. 

4.2 Timer 
The process teps modeling the requirements for our 
Tributary Equipment Protection Switching is the syn- 
chronous parallel of two processes: switcher (model- 
ing the transition in the switcher) and timer (modeling 
the timer used to  issue timeout signals to the switcher). 

We start by giving our modeling of the timer. Pro- 
cess timer models the timer mentioned in the informal 
requirements in state WAITTORESTORE. We do not have 
a notion of time associated with our transitions. Thus 
our timer will be a nondeterministic timer that, once 
started, can nondeterministically stay in a “waiting” 
state or can “expire”. This means that we are ask- 
ing our system te  s to work for any time assumptions. 
This is stronger t fan  needed, but it is easier to check. 

The signature for process timer is defined in fig. 
3. Process timer states values and event values are 
declared using the shorthand enum which works sim- 
ilarly to  the C enum declaration. For example enum 
2 { id le ,  waiting, expired} in fig. 3 defines idle ,  
waiting and expired to  be, respectively, the follow- 
ing boolean vectors: [0 01, [l 01, [0 11. That is 0, 1, 
2 represented with 2 bits and LSB (Least Significant 
Bit) on the left. Variables ranging on timer present 
states, next states and events are also defined in fig. 3. 
We declare them using a C-like syntax. For example 
boole timer-uC31 declares timer-u to  be an array of 
3 fresh (i.e. not previously mentioned) boolean vari- 
ables namely: t imer-uo, t imer -u l ,  t imer-uq) .  Using 

timer-u of 3 new OBDD variables. 
The transition relation for process timer is in fig. 4, 

whereas in fig. 2 is its graph as a finite state automaton. 

an OB (D D parlance: boole timer-uC31 crates a vector 

3.3.8 Lock Out [list of all the working unit spec 
(On/Off)l 

Lock Out [list of all the working unit spec (On/Off)] is 
an external request as well as a State. 

This request is not a group request; it is directed 
toward one or more units, not to  the protection group. 

The Lock Out per Unit basis external request will 
have the following structure: Lock Out [list of all the 
working unit spec (On/Off)], where the working unit 
spec parameter will be a list of working units and the 
switch on/off will be specified for each unit. 

This request acts as a toggle for each working unit, 
allowing and inhibiting protection temporarily for that 
unit, 

When the Request is issued with the switch “off” 
the unit specified in the working unit spec parameter 
shows the following behaviour. 

If the unit was locked out, the request is accepted 
and the unit is now allowed protection. Lock Out 0 is 
the only way to clear a Lock Out On request (i.e. d a r  
has no effect on the Lock Out On state). 

If the active group request has lower priority than 
Unit Fail, and if one or more of the units which have just 
been allowed protection have Unit Fail conditions, then 
the lowest numbered unit’s Unit Fail request becomes 
the new group request. Otherwise, the group request is 
not affected. 

When the request is issued with the switch “On”, 
the unit specified in the working unit spec parameter 
shows the following behaviour. If one of the units was 
in standby state, a switch back to the active state will 
be issued and a new group request will be determined 
based on the equipment conditions of the remaining 
units for whom protection is allowed. 

4 Formal Model 
In this section we give an outline of our formalization 
of the requirements in sec. 3. 

4.1 Modeling Language 
We use BFOL Boolean First Order Logic to formalize 
requirements, as well as properties. Essentially BFOL 
can be seen as (formal) scripting for C based OBDD [3] 
programming. 

Our interpreter from BFOL to OBDD is called BSP 
(Boolean Symbolic Programming) [7]. 

We define a process (i.e. a Finite State System, FSS) 
with its transition relation. Thus,for each process p we 
have a boolean function (also named p defining the 

ppx,  p-nx, p-U the arrays of boolean variables rang- 
ing, res ectivel on p present states, p next states, p 
events [actionsf: We denote with x the array of all 
boolean variables used in our formalization. 

transition relation of process p .  We wi 1‘ 1 denote with 

4.3 Switcher 
In this section we show our model of the switcher. 

Process switcher has 6 macro states. They are de- 
fined using enum in fig. 5. 

The switcher transitions are triggered by 12 external 
requests (events). They are defined using enum in fig. 
5 .  

The process switcher is defined by givin its transi- 
tion relation. To this end we need to  define ?vectors of) 
boolean variables ranging on switcher present states, 
next states and events (actions). 

In fig. 5 are listed the declarations for the variables 
ranging on process switcher events. In fig. 7 are listed 
the declarations for the variables ranging on process 
switcher present states and next states. 

To define process switcher it is useful to define a 
few boolean functions that occur many times in the 
switcher definition. Some of these functions are listed 
in fig. 6 

8 we show part of the definition for the 
process switcher-clear defining all transitions of pro- 
cess switcher that are triggered by the external request 
(event) clear. Function framei (i = 1 , 2 , .  . .) IS au- 
tomatically added by our interpreter to (the definition 
of) each transition. It formalizes the frame condition, 
i.e. framei says that all state variables for which no 
update has been defined in transition i will not change 
their value. 

In fig. 

172 



start-timer 

reset-timer tq-------- 
wai t-timer 

Figure 2: Automaton for process t i m e r  

/* timer states */ enum 2 {idle, waiting, expired}; 
/* timer events */ 
enum 3 {nop, start-timer, wait-timer, reset-timer, expire-timer}; 
/* variable ranging on timer events */ book timer-u[3]; 
/* variables ranging on timer (present C-px] and next [nxl) states */ book timer_px[2], timernx[2]; 

Figure 3: States and events for process t i m e r  

timer(x) = ( 
( 

V ( 
V ( 

V ( 

V ( 

V ( 
V ( 

(timer-u == nop) A ( t imernx  == timer-px)) 
(timer-u == resethimer) A ( t imerax  == timer-px)) 
(timer-px == idle) A (timer-u == start-timer) 

(timer-px == waiting) A (timer-u == reset-timer) 

(timer-px == waiting) A (timer-u == wait-timer) 

(timer-u == waitfimer) A (timer-nx == timer-px)) 
(timer-px == expired) A (timer-u == expire-timer) 

A ( t imernx  == waiting)) 

A ( t imernx  == idle)) 

A ( t imernx  == expired)) 

A ( t imernx  == idle))) 
L 

Figure 4: Process t i m e r  

/* State values for process switcher */ 
enum 3 {LOCKOUT, FORCED, UNITFAIL MANUAL, 
WAITTORESTORE, NOREQUEST}; 
/*  External Requests (extreqs) values for process switcher */ 
enum 4 {clear, lockout-prot, lockout, unitfail-prot, unitfail, forced, manual, waittimer, starttimer, expire- 
timer, unit f ixed,  protection-fixed}; 
/* Variable ranging on external requests sent (from environment) to process switcher (i.e. 
repaired) */ 
book extreqname-u[4]; 
/* Defines unit addressed by a unitfail, manual or forced extreq */ 
book extreq-unit-index-u[2] ; 
/* extreqJockout-unit-u[i] is 1 if unit i (i = 1,2,3) is not in the protection group, 0 otherwise */ 
book extreq-lockout -unit -u[4] ; 

clear, . . .  

I 
Figure 5: Events for process switcher 

/* A(x) is 1 iff for all i = 1, 2,  3 it holds: 
is not working */ 
A(x) = V i E {1,2,3} ((+dcout-unit-pzi A unitfail-pz,) + lwork ing-pz i )  

if unit i is not locked out and is failed then unit i 

Figure 6: Auxiliary Functions 

173 



/* State vars rangin6 on process switcher state values (i.e. 
book switch_px[3], switch_nx[3] ; 
/* 1 if protection unit is in state LOCKOUT (because of a lockout-prot extreq); 0 if protection 
unit is not in state LOCKOUT */ 
book lockout~protection~px[l], lockout~protection~nx[1]; 
/* 1 if unitfail-prot extreq has been received (protection unit is not working); 0 otherwise 
(protection unit is workin ) */ 
book unitfail-protection-pxfl], unitfail-protectionnx[l]; 
/* Range: 0, 1. 2,  3 .  Tells which unit (1, 2,  3) is being replaced by the protection unit. Value 0 
means that no unit is being replaced by the 
book unit-protected-px[2], unit.-protectednx[2~; 
/* lockout-unit-px[i] is 0 when unit i (i = 1, 2 ,  3) can be protected by the protection unit, 1 
otherwise */ 
bode lockout -unit -px[4], lockout-unitnx[4]; 
/* unitfail-px[i] is 1 when unit i (i = 1, 2,  3) is not working, 0 otherwise */ 
book unitfaiLpx[4], unitfailnx[4]; 
/* working-px[i] is 1 when unit i (i = 1, 2,  3) 
is used, 0 otherwise */ 
book working_px[4], working-nx[4]; 

LOCKOUT . . .NOREQUEST). */ 

rotection unit. */ 

Figure 7: States for process switcher 

Functions C1, BASE-SWITCH, PRCT are auxiliary functions along the lines of A in fig. 6. 

switcher-clear(x) = ( 
( (switch-px == FORCED) A lA(x) A BASE-SWITCH(x) 
A (extreqname-u == clear) A (switchax == UNITFAIL) 
A PRTC(x) A frame,(x)) 

(extreqname-u == clear) A (switch-px == FORCED) 
A i(lockout-protection-px == unitfail-protection-px) 
A i(unit-protected-px == 0) A (switchnx == UNITFAIL) 
A (unit-protected-nx == 0) A frame2(x)) 

(switch-px == MANUAL) A A(x) A BASE-SWITCH(x) 
A (extreqname-u == clear) A (switch-nx == NOREQUEST) 
A (unit-protected-nx == 0) A frame,(x)) . . . )  

V ( 

V ( 

I 

Figure 8: A glimpse of process switcher-clear 

swztcher(x) = (switcher-cZear(x) A switcher-lockout-prot(x) A 
switcher-lockout(x) A switcher-unitfail-prot(x) A switcher-unitfail(x) 

A switcher-manual(x) A switcher-waittimer(x) A switcher-starttimer(x) 
A switcher-expiretimer(x) A switcher-unit-~xed(x) 
A switcher-protect ion-~xe~(x)  ) 

Figure 9: Process switcher 

/* syncbr nizatio 
sync-swztcRer-tzmerpx) = 7 

switcher(x) A timer(x) 
A ((extreqname-u == waittimer) t) (timer-u == wait-timer)) 
A ( ( (switch-px == WAITTORESTORE) 

A ( (extreqname-u == lockoutprot) 
v (extreqname-u == unitfail-prot) 
v (extreqname-u == unitfail) 
V (extreqname-u == forced) 
V (extreqname-u == manual))) 

bet een switcher and timer */ 

+ (timer-u == reset-timer)) 
A ((extreqname-u == starttimer) c) (timer-u == start-timer)) 
A ((extreqname-u == expiretimer) t) (timer-u == expiredimer))) 

/* Tributary Equipment Protection Switcher */ I teps(x) = 3 t imernx  3 timer-px 3 timer-u sync-switcher_timer(x) 
Figure 10: Process t eps  

174 



/* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Automatic switching caused by a “Unit Fail” on a working unit. 
Initial Conditions: 
active. 
Test Sequence. 
1. Switch causing conditions leading to declare “Unit Fail” on a working unit which is currently 
guaranteeing service. 
2 .  Check switching action and that service stops and then restarts regularly. 
carried out by the protection unit. 
3.  The switcher state must be “Unit Fail”. 
4 .  The system is driven back to the starting state by removing the failure on the working unit that 
triggered the switching (to “Unit Fail”). 
5 .  The switching schema is revertive. Thus the system enters state “Wait to Restore” and service 
is carried out by the protection unit until the WtR timer expires (default: 
6. 
again in normal operating conditions and service is being carried out by the working unit that was 
declared failed in step 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  * /  
regularl(x) = ( llockout-protection-px A -mnitfail-protection-px 
A llockout-unit-px, A Tunitfail-px, A -working-px,) 
testl-l(x) = ( ( A(x) A regularl(x) A 

Normal Operating Conditions. That is regular service is offered and no alarm is 

However service is now 

5 min.). 
After the WtR timer expires service is interrupted and then resumed regularly. The system is now 

((unit-protected-px == 0) e (extreq-uname == unitfail))) 
(switchnx == UNITFAIL) A (unit-protected-nx == 1) + ( 

testl_2(x) = (regularf (x) A (switch-px == UNITFAIL) 
A unitfail-nx-1) ) 

A (unit-protected-px == 1) 
A (((-lockout-unit-px,) A unitfail-px,) + (-working-px,)) 
A (((llockout -unit-px,) A unitfail-px,) + (lworkingpx,)) 
A (extreqname-u == unit-fixed)) 

+ (switchnx == WAITTORESTORE)) 
testl_3(x) = ( ( A(x) A regularl(x) A (switchpx == WAITTORESTORE) 

A (unit-protected-px == 1) A (extreqname-u == expiretimer)) 
(switchnx == NOREQUEST) A (unitprotected-nx == 0))) + ( 

testl(x) = (teps(x) + (testl-l(x) A testl-d(x) A testL3(x))) 
Figure 11: Liveness property formalizing test l p  

For each external request we have one process de- 
fined analogously to switcher-clear. The transition 
relation for process switcher (fig. 9) is the logical and 
(A) of the transition relations for such processes. 

4.4 Tributary Equipment Protection 

The definition of the transition relation for process teps 
modeling the Tributarg Equipment Protection Switcher 
defined in the informal requirements is obtained from 
the synchronous parallel of processes switcher and 
timer. This is shown in fig. 10. Note the synchro- 
nization with process timer to model the requirements 
in state WAITTORESTORE. 

Switcher 

5 Verification 
To validate our formal model teps of the informal re- 
quirements we carried out automatic verification (via 
model checking) of two kind of properties: liveness 
properties (stating that certain transitions must be in 
teps) and safety properties (stating that certain tran- 
sition should not be in teps). 

5.1 Liveness Properties 
Liveness properties aim at checking the presence in our 
formal model teps of transitions that are present in 
the requirements. We obtain our liveness properties by 
formalizing the tests used by ITALTEL to test their 
implementation of TEPS [6]. 

For example the informal statement for test l p  is 
in fig. 11. Test l p  can be formalized with boolean 
function t e s t l  in fig. 11 (function A has been defined 
in fig. 6 ) .  

Our BSP interpreter checks if formula t e s t l  is iden- 
tically 1 (true). That is if property t e s t l  is true for all 
assignments of the boolean variables from which t e s t  1 
depends. If this is the case then teps satisfies property 
t e s t l  (i.e. teps passes test lp ) .  

It took just a few days to formalize all tests, and 
a few seconds to verify (via model checking) all of our 
system properties. 

Our first requirement formalization of t e  s passed 
all liveness properties but three of them. Euch fail- 
ing properties pointed out misinterpretation of a few 
points in the informal requirements. Using the feed- 
back from our attempt to verify such failing properties 
we corrected our teps modeling. The resulting version 
of teps passed all of the liveness properties we ran (via 
model checking). 

175 



/* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Check priority of “Unit Fail” on protection unit w.r.t. “Unit Fail” on group unit. 

Conditions. 
1. The protection unit is not working, i.e. the switcher is in state UNITFAIL. 
2. 
3. 
unit without using a “forced” external request. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  */ 

The protection unit cannot offer protection to any failed group unit. 
Under the above conditions service cannot be switched from a group unit towards the protection 

testneg2(x) = 
( ( teps(x) A (switch-pz == UNITFAIL) 

A (-lockout-protection-px) A unitfail-protection-px 
A (unit-protected-px == 0) A (-(extreqname-u == forced)) 
A (T(extreqname-u == lockout-prot))) 

((unit-protected-nx == 0) A (switchax == UNITFAIL))) 
I 

Figure 12: Safety property formalizing test 2n 

5.2 Safety Properties 
Safety properties aim at checking that behaviours that 
are ruled out (explicitely or implicitely) by the require- 
ments are not in our formal model teps. 

For example the informal statement for property 2n 
is in fig. 12. Property 2n can be formalized as in fig. 
12. 

It took just a few hours to write such safety prop- 
erties and a few seconds to model check all of them. 

Some safety properties (among which is property 
2n) were not passed by our teps model, even when all 
liveness properties were passed. 

This required minor modifications in our teps 
model as well as in the formulation of our safety proper- 
ties. For example many of our safety properties initially 
failed just because we did not ruled out the external re- 
quest forced. 

Our present formulation of teps passed all of our 
liveness as well as safety properties. 

5.3 Experimental Results 
Process teps has only 2lS states, so it is quite small. It 
takes less than 3 seconds to build the OBDD represent- 
ing teps and to verify all properties we were interested 
in. So, as we said, modeling effort was our main concern 
here rather than state explosion. 

6 Conclusions 
We presented a case study about requirement formal- 
ization for telecommunication Equipment Protection 
Switchers (EPSs). 

Our main concern was to compare, for EPSs, the 
effort needed to write formal specs from informal re- 
quirements with that needed to write informal func- 
tional specs from informal requirements. 

The time spent writing formal specs (1 person- 
month) turns out to be comparable with that spent 
writing informal functional specs. Thus, at least for 
the kind of systems we studied, replacing informal specs 
with formal specs in the design cycle appears to be eas- 
ily accomplishable without major time delays or per- 

sonnel retraining. Moreover using a formal approach 
it is also possible to validate (the formalization of the) 
requirements against liveness and safety properties. 

References 
C. Antonelli, Us0 di Metodi Formali per la Val- 
idazione Automatica di Specifiche, Master’s The- 
sis in Computer Science, University of L’Aquila, 
L’Aquila, Italy, July 1998 
J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. 
Dill, L. J. Hwang, Symbolic model checking: lo2’ 
states and beyond, Information and Computation 
98, (1992) 
R. Bryant, Graph-Based Algorithms for Boolean 
Function Manipulation, IEEE Trans. on C., Vol. C- 
35, N.8, Aug. 1986 
E. A. Emerson, Temporal and Modal Logic, Hand- 
book of Theoretical Computer Science, Elsevier 
1990 
ITALTEL, 2.0Mbit/s Tributary Equipment Protec- 
tion Switching: System Requirements, 1994 
ITALTEL, 2.0Mbit/s Tributary Equipment Protec- 
tion Switching: System Verification, 1994 
E. Tronci, Hardware Verification, Boolean Logic 
Programming, Boolean Functional Programming, 
Proc. 10th IEEE Conf. on “Logic In Computer Sci- 
ence” 1995, San Diego, CA, USA 
Tool available at  url: 
http://univaq.it/-tronci/bsp.html 

176 

http://univaq.it/-tronci/bsp.html

