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Abstract

We present the Scalable, Application-Space, Highly-
Available (SASHA) architecture for network-clustered web
servers that demonstrates high performance and fault tol-
erance using application-space software and Commercial-
Off-The-Shelf (COTS) hardware and operating systems.
Our SASHA architecture consists of an application-space
dispatcher, which performs OSI layer 4 switching using
layer 2 or layer 3 address translation; application-space
agents that execute on server nodes to provide the capabil-
ity for any server node to operate as the dispatcher; a dis-
tributed state-reconstruction algorithm; and a token-based
communications protocol that supports self-configuring, de-
tecting and adapting to the addition or removal of servers.
The SASHA architecture of clustering offers a flexible
and cost-effective alternative to kernel-space or hardware-
based network-clustered servers with performance compa-
rable to kernel-space implementations.

1. Introduction

The exponential growth of the World Wide Web, coupled
with increasing reliance on dynamically generated pages,
has left a large gap between the needs of high volume sites
and the ability of web servers to satisfy that need. Into
this gap have stepped a number of multi-computer solutions
which attempt to solve the problem while utilizing, as much
as possible, commodity systems. These multi-computer so-
lutions tie a pool of servers together to create aserver clus-
ter with a central coordinator, which we call thedispatcher.
The dispatcher provides a central point of contact for a clus-
ter of web servers as shown in Figure 1.

Clustering has traditionally been implemented with spe-
cialized operating systems or with special-purpose hard-
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ware. However, in this paper, we present a Scalable,
Application-Space, Highly-Available (SASHA) network-
clustered web server architecture that demonstrates high
performance and fault tolerance using application-space
software and Commercial-Off-The-Shelf (COTS) hard-
ware and operating systems. The use of COTS systems
throughout the cluster allows us to take advantage of the
price/performance ratio offered by COTS systems while
still providing excellent performance and high availabil-
ity. We combine our dispatcher with agents that execute
on the server nodes to provide the capability for any server
node to operate as a dispatcher node. This, combined with
a distributedstate-reconstructionalgorithm, instead of the
more typicalprimary-backup[2] or active replication[29]
approaches for fault recovery, provides us with the ability
to operate without a designated standby unit for the dis-
patcher. In addition to tolerating the loss of the dispatcher,
the SASHA architecture is able to detect and dynamically
adapt to the addition or removal of servers.

The rest of the paper is organized as follows. Section 2
discusses background and related work. Section 3 presents
the SASHA architecture: an application-space dispatcher
program, the TokenBeat protocol, application-space agents
on the server nodes, and distributed state reconstruction.
Section 4 examines the performance of a SASHA proto-
type under non-faulty operation, single-fault operation, and
high-fault operation. Finally, Section 5 summarizes the
SASHA architecture and our contributions.

2. Background and Related Work
All web server clustering technologies are transparent

to client browsers (i.e., the client browsers are unaware of
the existence of the server cluster). However, not all clus-
tering technologies are transparent to the web server soft-
ware. Early commercial cluster-based web servers, such as
Zeus [36] and HotBot (based on an architecture proposed
by Fox et al. [12, 13]) are, in many respects, continua-
tions of the traditional approach to cluster-based computing:
treat the cluster as an indissoluble whole rather than the lay-
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Figure 1. Conceptual View of a Typical
Network-Clustered Web Server.

ered architecture assumed by (fully) transparent clustering.
Thus, while transparent to the clients, these systems are not
transparent to the server nodes, and require specialized soft-
ware throughout the system.

For example, the architecture proposed by Foxet al.
[12, 13] has a central point of entry and exit for requests,
but nodes in the cluster are specialized to perform certain
operations such as image manipulation, document caching,
etc. There is a coordinator that organizes and controls the
nodes in the servicing of client requests, which requires cus-
tom web server software. In a similar vein, the Zeus web
server provides server clustering for scalability and avail-
ability, but each server node in the cluster must be running
the Zeus web server, a specialized server software devel-
oped for this environment.

Network-clustering technologies are transparent to the
server software. The various approaches to network-
clustering of servers are broadly classified as:OSI layer
four switching with layer two packet forwarding(L4/2);
OSI layer four switching with layer three packet forwarding
(L4/3); andOSI layer seven(L7) switching with either layer
two packet forwarding(L7/2)or layer three packet forward-
ing (L7/3) clustering. These terms refer to techniques by
which the servers in the cluster are tied together. In ad-
dition to these network layer classifications, implementa-
tions may be application-space, kernel-space, or based on
special-purpose hardware. This rest of this section briefly
describes these classifications and implementation options.
See [31] for more detailed information on these classifica-
tions.

2.1. Layer 4 Switching With Layer 2 Address Trans-
lation

The majority of the server network-clustering devices
dispatch messages to server nodes in the cluster using OSI
layer 4 switching with layer 2 address translation. Com-
mercial products in this category include IBM’s eNetwork
Dispatcher [18] and Nortel Networks’ Alteon ACEdirector
[24]. Research prototypes in this category include ONE-IP
developed at Bell Labs [11] and LSMAC from the Univer-
sity of Nebraska-Lincoln (UNL) [16].

In L4/2 clustering, the dispatcher and a set of servers are
all assigned a shared cluster address. Incoming traffic for
the cluster address is routed to the dispatcher (this may be
done via static ARP entries, routing rules, or some other
mechanism).

Upon receiving the packet, the dispatcher examines it
and determines whether it belongs to a currently established
connection or is a new connection. If it is a new connection,
the dispatcher utilizes its load-sharing policy to choose a
server to service the request and records the connection in a
map maintained in the dispatcher’s memory. The MAC ad-
dress of the packet is then rewritten to be that of the chosen
server and sent to that server.

The server receives the packet and since it has an inter-
face configured with that IP address, processes it as a packet
destined for itself. Reply packets are sent out via the default
gateway. Upon termination of a TCP session, the dispatcher
deletes the connection.

This technique is extremely simple and provides high
throughput as the two halves of the TCP stream are de-
coupled: the dispatcher processes only a small amount of
incoming data while the large volume of return data is sent
straight from the server to the client. Additionally, no TCP
checksum recomputations are required, only frame check-
sums, which are done by the network interface hardware.

2.2. Layer 4 Switching With Layer 3 Address Trans-
lation

Server clustering based on Layer 4 switching with Layer
3 address translation is also known as “Load Sharing Us-
ing Network Address Translation (LSNAT)”, and is detailed
in RFC 2391 [33]. Commercial products in this category
include Cisco’s LocalDirector [7] and research prototypes
include Magicrouter from Berkeley [3] and LSNAT from
UNL [16]. Magicrouter was an early implementation of
this concept based on kernel modifications) [3] and LSNAT
from UNL is an example of a non-kernel space implemen-
tation [16]. L4/3 clustering shares the basic layer 4 clus-
tering concept with L4/2 clusters, but differs from the L4/2
approach in many significant ways.

In an L4/3 system, each server in the server pool has a
unique IP address. The dispatcher is usually the sole ma-
chine assigned the cluster address. Incoming traffic is, as
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before, compared with a map of existing connections. If the
traffic belongs to one of these, the destination IP address
is rewritten to the address of the chosen server and IP and
TCP checksums are recomputed in software. This packet
is then sent to the particular server servicing the request.
In the event that it does not belong to an existing connec-
tion, a server is chosen using the load-sharing policy and
the packet is processed as just described.

The server chosen to service the packet then receives
the packet, processes it and sends a responseback to the
dispatcher. Without changes in the network protocol, the
server operating system, or device drivers, the packet must
be sent back to the dispatcher since the reply is sent with
a source address different from the address the client origi-
nally sent its request to. The dispatcher changes the source
address from that of the responding server to the cluster ad-
dress, recomputes checksums, and sends the packet to the
client.

2.3. Layer 7 Switching

The final dispatching method, also known as content-
based routing, operates at Layer 7 of the OSI protocol stack.
Commercial products in this category include Cisco’s CSS
11000 switch [8] and Nortel Networks’ Alteon Personal
Director (PCD) [25]. There are many research prototypes
in this category, with most of them focusing on providing
some form of Quality of Service (QoS) based on the con-
tent of the request (e.g., [1, 5, 6, 9, 21, 26, 27])

In an L7 cluster, as in L4 clustering, a dispatcher acts as
the single point of contact for the cluster. Unlike L4 clus-
tering, however, the dispatcher does not merely pass inde-
pendent packets on to the servers servicing them. Rather, it
accepts the connection, receives the client’s L7 request, and
chooses an appropriate server based on that information.

After choosing a server, either layer 2 or layer 3 packet
forwarding is used. In the event that layer 2 packet for-
warding is used, the dispatcher must have a means to inform
the target web server of the connection already established.
LARD from Rice University [26] does this using a modified
kernel that supports a connection hand-off protocol on all
of the server nodes. If layer 3 switching is chosen, the dis-
patcher essentially connects to the back-end server, makes
the request, and relays the data to the client.

L7 clustering has the benefit that server nodes may be
chosen on the basis of message content in the application
layer protocol. For example, it may be advantageous to
choose one or two high-performance servers to service CGI
requests while leaving the lower-performance systems to
serve static HTML content. The web document tree may
also be split into disjoint subtrees which are then assigned
to the individual servers. In this way, we can increase the
locality of the data that each server serves and thus improve
the performance of the system as a whole. Layer 7 switch-

ing is often combined with caching on the dispatcher to de-
crease the load on the server nodes.

2.4. Implementation Choices

In addition to the choice of one of three major cluster-
ing approaches, implementors are faced with the choice of
where their dispatcher should be implemented: in applica-
tion space, in kernel space, or in specialized hardware. Most
implementors have chosen either kernel-space or hardware-
based solutions for performance reasons.

With a kernel-space implementation, such as eNetwork
Dispatcher or LocalDirector, the incoming traffic does not
need to be copied in and out of application space. Addition-
ally, sending and receiving packets do not cause expensive
mode switches from user-mode to kernel-mode. The hard-
ware used, however, is more-or-less commodity hardware:
an RS/6000 in the case of eNetwork Dispatcher [18] and a
custom Pentium II PC in the case of LocalDirector [7].

Hardware-based implementations, such as the CSS1100
line of switches from Cisco, often improve performance
by an order of magnitude. This is because many of the
repetitive tasks, such as checksum recalculation and address
translation, can be handed off to specialized hardware.

To date, however, there seems to be little interest in
purely application-space solutions. We believe that this ig-
nores some of the distinct advantages of application-space
solutions: flexibility, portability, and extensibility. Thus,
work in the UNL Advanced Networking and Distributed
Experimental Systems (ANDES) laboratory has focused on
application-space solutions [15, 16, 28, 31, 35].

Recently, we have begun to address the issue of fault-
tolerance in network-clustered servers. Almost all of the
network-clustering dispatchers referenced here support the
loss of server nodes in the cluster. They simply quit sending
new requests to faulty server nodes. All connections that
had been active on the server node at the time of the fault are
lost, but the cluster itself remains operational. It is usually
assumed that the client will simply send the request again
and the dispatcher will assign the request to a healthy server.

In this work, we address the more difficult problem of
tolerating benign faults in the dispatcher by developing
the SASHA architecture for network-clustered web servers
based on Layer 4 switching. It provides the unique capabil-
ity of operating without dedicated standby units while still
providing high availability and high performance.

3. The Architecture
The Scalable, Application-Space, Highly-Available

(SASHA) architecture for network-clustered web servers
consists of the following components: an application-space
dispatcher program, the TokenBeat protocol, application-
space agents on the server nodes, and distributed state
reconstruction. Our use of COTS systems throughout
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the cluster allows us to take advantage of the excellent
price/performance ratio offered by COTS systems while
still providing excellent performance and high availability.
We combine our dispatcher with agents that execute on the
server nodes to provide the capability for any server node
to operate as a dispatcher node. All components of the
SASHA architecture execute in application-space and are
not tied to any particular hardware or software. At any
given time, one computer operates as a dispatcher and the
rest as server nodes. While it is possible that some nodes
might be specialized (i.e., lacking the ability to operate as
a dispatcher or lacking the ability to operate as a server),
we assume any computer can be either a server node or the
dispatcher for this presentation.

By choosing an application-space solution, we can take
advantage of low-cost commodity hardware and software to
build ann fault-tolerant system with enough performance
to satisfy the demands of most commercial sites. The use
of COTS systems also provides a degree of freedom and
heterogeneity that non-commodity (software or hardware)
cannot provide.

The SASHA architecture is capable of providing com-
parable performance to in-kernel software solutions while
simultaneously allowing for easy and inexpensive scaling
of both performance and fault tolerance. Moreover, un-
like commercial network-clustering products, the SASHA
architecture does not require a hot-standby node to tolerate
the fault of the dispatcher. In the SASHA architecture, one
of the server nodes takes over the role as dispatcher when
the loss of the previous dispatcher is detected. Thus, the
SASHA architecture provides graceful performance degra-
dation in the loss of any node in the cluster, including the
dispatcher.

The rest of this section describes the SASHA dis-
patcher; TokenBeat, a network protocol developed to pro-
vide group messaging capabilities along with basic fault de-
tection; server or cluster fault detection and recovery using
application-space agents; state reconstruction, an alterna-
tive to traditional active state replication or primary-backup
approaches; and the flexibility that SASHA offers in high-
fault scenarios.

3.1. The Dispatcher

The SASHA dispatcher is an application level program
running on a commodity system. More specifically, it is
a Layer 4 switch using layer 2 or layer 3 address trans-
lation. (We have also implemented a layer 7 application-
space dispatcher that uses the TokenBeat protocol to detect
and recover from faults. However, our distributed state re-
construction algorithm will not work with layer 7 dispatch-
ers since the server nodes do not know the identity of the
clients.) In this work, we present and evaluate an L4/2 in-
stance of the SASHA dispatcher.

In developing the SASHA architecture, one of our chief
goals was portability. This allows the end-user maximum
flexibility in designing their system. Anything from a low-
end PC to the fastest SPARC or Alpha systems may be used.
Our instance of the SASHA architecture is written using the
packet capture library,libpcap [20], the packet authoring
library, Libnet [10], and POSIX threads [19]. This pro-
vides us with maximum portability, at least among UNIX
compatible systems. As an added benefit, the use oflibp-
cap on any system which uses the Berkeley Packet Filter
(BPF) [20], eliminates one of the chief drawbacks to an
application-space solution. BPF only copies those frames
which are of interest to the user-level application and ig-
nores all others, reducing frame copying penalties and the
number of times we must switch between user and kernel
modes.

The L4/2 SASHA dispatcher prototype we developed
operates largely as described in Section 2.1 and summarized
in Figure 2. We create avirtual IP (VIP) address for the
cluster that is shared by all nodes in the cluster. We also
create avirtual MAC (VMAC) address for the cluster and
configure the router to forward all cluster addressed pack-
ets to the subnet shared by the dispatcher and server nodes.
When the SASHA dispatcher begins, it places the NIC in
promiscuous mode and useslibpcap with a filter to re-
trieve all L4/2 messages destined for the VMAC address.
Once received, the messages are processed and forwarded
to a server node, as described in Section 2.1.

The use of a VMAC address simplifies recovery from
a dispatcher fault. When one of the SASHA agents ex-
ecuting on the server nodes detects a crash of the dis-
patcher, it calls for a TokenBeat ring purge (described in
Section 3.2), which automatically triggers a TokenBeat ring
reconstruction around the faulty dispatcher. After a healthy
node is elected (as described in Section 3.3) to be the
new dispatcher, the SASHA agent reconstructs the cluster
state using the algorithm described in Section 3.4. Next,
the SASHA agent launches the dispatcher program, which
places the NIC in promiscuous mode and listens for packets
addressed to the VMAC (just as the original dispatcher did).

3.2. The TokenBeat Protocol

To provide fault-tolerant operation, we developed the
TokenBeat protocol [30]: an extremely lightweight, non-
reliable, token-passing, group messaging protocol. This is
in contrast to protocols such as Totem [23] or Horus [34]
which are designed to be general purpose, reliable, large-
scale token-passing group messaging protocols. We wanted
a protocol that requires very few network, processing, or
memory resources. Moreover, the protocol needed to be
easily and closely integrated into an application specific role
(to remain simple and lightweight).

TokenBeat is not a general-purpose network protocol,
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Figure 2. SASHA dispatcher implementation in a LAN environment.

such as IP, but rather designed to be modified and extended
to support specific applications. Its emphasis is on simplic-
ity and low bandwidth. The simple nature of the protocol
minimizes the impact in terms of application complexity
and computational expense. The low bandwidth require-
ment of TokenBeat supports deployment in bandwidth-
constrained environments, such as embedded systems or—
as in SASHA’s case—a high utilization network. The re-
mainder of this section provides a high-level overview of
the TokenBeat protocol. See [30] for a detailed description
of the protocol.

The SASHA dispatcher node and the server nodes com-
pose a logical ring, which we refer to as the TokenBeat
ring. The TokenBeat ring master, typically the dispatcher,
circulates a self-identifying heartbeat message. As long as
this message circulates, the TokenBeat ring is assumed to
be whole and thus the system is assumed to be fault-free.
As we will see in the next section, this greatly restricts the
typesof faults which we can tolerate. With a few excep-
tions, no TokenBeat messages are sent directly to the recip-
ient. Rather, they are relayed through intermediate nodes.
This is similar to most token-passing protocols, and is done
to provide constant fault detection and quick recovery. Un-
like most token-passing protocols, TokenBeat allows nodes
to create new tokens (packets) and send them on with their
own message payloads rather than waiting to receive the
current token (packet). This allows for out-of-band messag-
ing in critical situations such as node failure.

If a new server comes online, it broadcasts its intention to
join the ring. It is then assigned an address and inserts itself
into the ring. If a server crashes, the logical ring is broken.
Messages do not propagate down stream from the crashed
node. This break is detected by the lack of messages, as
mentioned before, and aring purgeis forced, which causes
all nodes to leave the ring and reenter just as they did upon
starting up. The ring purge and reconstruction allows the
ring to re-form without the faulty node. Figure 3 shows a
logical representation of this. On the left, we see a four
node ring operating normally. In the middle, node four has
crashed, breaking the ring. Finally, node one declares a
purge and the ring reforms without node four, as seen on
the right.

The TokenBeat messages may be sent using the LAN
carrying the client/server traffic being processed by the clus-
ter. Alternatively, a separate LAN can be used just for fault
detection and recovery. The former configuration allows for
easy integration into existing systems while the later config-
uration provides for faster fault detection and reconfigura-
tion. In this work, we evaluate the performance of a SASHA
web server in which the TokenBeat messages must com-
pete with client/server traffic on the same LAN—providing
a worst case evaluation.

3.3. Fault Detection and Recovery using
Application-Space Agents

In this work, we assume that all faults arebenign. That
is, we assume that all failures cause a node to stop respond-
ing and that this failure manifests itself to all other nodes on
the network. This behavior is usually exhibited in the event
of operating system crashes or hardware failures. Note that
other fault modes could be tolerated with additional logic,
such as acceptability checks and fault diagnoses. For ex-
ample, all HTTP response codes other than the 200 family
imply an error and the server could be taken out of the active
pool until repairs are completed.

It is important to note that when we speak of fault-
tolerance, we are speaking of the fault-tolerance of theag-
gregate system. When node failures occur, all requests in
progress on the failed node are lost. No attempt is made to
complete the in-progress requests using another node. For
most HTTP traffic, this is too much overhead for the value
returned.

In the event that a server (including the dispatcher) goes
off-line, the TokenBeat ring is broken, heartbeat messages
stop circulating, the break is detected by application-space
agents on the server nodes, and a ring purge is forced. This
detection is based on a configurable timeout interval. With-
out the ability to bound the time taken to process a message,
this interval must be experimentally determined. Our expe-
rience shows that at extremely high loads, it may take an
application-space agent more than a second to receive, pro-
cess, and pass on TokenBeat packets. (This time can be re-
duced if we run the SASHA agents at a higher priority, but
we wanted to evaluate the architecture with an unmodified
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Figure 3. TokenBeat ring: normal operation, error detection, and the newly formed ring after ring
purge (recovery).

system configuration running the application programs at
default levels.) For our tests, the timeout threshold was set
to 2,000 ms. Upon detecting the ring purge, the dispatcher
marks all servers as ‘dead’. As the servers reinsert them-
selves into the ring, their status is changed to ‘alive’ and
they are once more available to service client requests. In
this fashion, we automatically detect and mask server fail-
ures.

In the event that the dispatcher goes off-line, the Token-
Beat ring is, as before, broken and a ring purge is forced.
After the ring has been reconstructed (the ring is deemed
reconstructed after a certain interval has expired, 2,500 ms,
in this case), the agent on the server with the smallest To-
kenBeat address will notice the absence of the dispatcher’s
self-identification messages. It will then elect a new dis-
patcher from among eligible nodes. Any of the various
election algorithms from the literature may be used for the
election (e.g., [14, 17, 32]). However, in the SASHA ar-
chitecture, we prefer to use a less dynamic algorithm. For
example, in a homogeneous system, the machine with the
lowest address, the ring master, is ‘elected’ to be the dis-
patcher. In a heterogeneous environment of nodes with dif-
ferent capabilities, the ring master might not have the capa-
bility to act as a dispatcher. In such a case, we choose the
machine with the lowest addressand the capability to act
as the dispatcher. If the old dispatcher rejoins the ring at
a later time, the two dispatchers will detect each other and
the one with the higher address will abdicate and become
a server node. Of course this mechanism may be extended
to support scenarios where more than two dispatchers have
been elected, such as in the event of network partition and
rejoining. We assume that in the case of network partition-
ing, only one of the partitions will receive messages from
the router. Thus, the election of two dispatchers in a parti-
tioned network will not result in packets being processed by
two different servers.

3.4. State Reconstruction
To date, the most popular method to provide fault toler-

ant operation in a network-clustered server has been to use

hot-standby units with either active replication [29] or the
primary-backup [2] method of achieving state replication in
the standby unit. In the active replication approach, the sec-
ondary unit is at all times, an exact replica of the primary
unit. In the primary-backupapproach, the primary sends pe-
riodic state updatemessages to the standby (backup) unit.
The length of the periodic update interval determines the ac-
curacy of the state in the standby unit. In both sate replica-
tion approaches, communication between the primary and
standby units is typically achieved with a special out-of-
band interconnect, such as LocalDirector’s failover cable
[7]. Under normal (i.e., non-faulty), operation, the sec-
ondary unit performs no useful function. Instead, it merely
tracks the setup and teardown of (potentially) thousands of
connections per second.

By contrast, SASHA utilizes a novel distributed state re-
construction algorithm based on two observations.

1. The state of web servers is relatively small but ex-
tremely dynamic. At any given time there are only a
few thousand connections established to the back-end
servers.

2. Each of the server nodes in an L4/2 or L4/3 network-
clustered server know the identity of the client they are
serving.

Under these conditions, it is only marginally slower tore-
constructthe stateduring failure recoverythan to use repli-
cated state. Our state reconstruction approach is very dif-
ferent from both the traditional approaches of replicating
state and thesoft statereconstruction approach employed
by Fox et al. [12, 13] where cached state information is
periodically updated with state update messages. Accord-
ing to [12], “cached stale state carries the surviving compo-
nents through the failure. After the component is restarted,
it gradually rebuilds it soft sate . . . ”

When a dispatcher comes online, it uses the messaging
services provided by TokenBeat to query the SASHA agents
executing on the server nodes for a list of active connec-
tions. These are then entered into the dispatcher’s connec-
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tion map toreconstruct the state of the cluster. The new
dispatcher then continues operation as normal. Addition-
ally, when a new server joins (or a previously dead server
comes to life), it is queried for connection state information.
In this fashion, we avoid the need for active state replication
and dedicated standby units.

3.5. Flexibility In High Fault Scenarios
SASHA’s architecture provides a very important advan-

tage over traditional network-clustered servers: flexibility
in high fault scenarios. While specialized (kernel or hard-
ware) solutions may provide fault tolerance (usually one
dispatcher fault and multiple server faults), it is at the ex-
pense of cost efficiency. The introduction of a standby dis-
patcher unit increases the cost of the cluster but does not
improve the performance of the system.

The SASHA architecture is more efficient in that it pro-
vides the capability of adding a high degree of fault tol-
erance without requiring dedicated standby units. The po-
tential for each server to act as a dispatcher means that the
available level of fault tolerance can be equal to the number
of server nodes in the system. Under normal operation, one
node is the dispatcher and other nodes operate as servers to
improve the aggregate performance of the system. In the
event of a fault, even multiple faults, a server node may be
elected to be the dispatcher, leaving one fewer server nodes.
Thus, increasing numbers of faults gracefully degrades the
performance of the system until all units have failed.

The fault tolerance and recovery model of the SASHA
architecture is in marked contrast to the behavior of hot-
standby-based models where the system maintains full per-
formance until the primary and all standby dispatcher units
fail (at which point the entire system fails, even though there
may be server nodes still operating). Increasing the relia-
bility of our system also increases the performance of the
system. In the event that all nodes but one has failed, this
node may detect it and rather than becoming the dispatcher,
operate as a stand-alone web server.

4. Experimental Results
This section evaluates experimental results obtained

from a prototype of the SASHA architecture based on an
L4/2 dispatcher. We consider the experimental setup as well
as the results of tests in various fault scenarios under vari-
ous loads. The reader will note that the experiments were
done on “relatively old computers.” This was intentional.
We have found that the performance of SASHA clusters is
limited by 1) the dispatcher, 2) the number and capability
of the servers, and 3) LAN bandwidth. We have shown that
even with “old” computers, LAN bandwidth is the limiting
factor in performance with some client access patterns [16].
We have compared performance experiments in which the
dispatcher was the bottleneck and found that the cluster per-
formance increased linearly with respect to the increased

capability of the dispatcher. In the results presented here,
the dispatcher was not the bottleneck; the servers were. We
think this experiment best highlights both the strengths and
the weaknesses of the SASHA architecture.

4.1. Experimental Setup

The experimental setup is as follows.

� Clients: Each client node was an Intel Pentium II 266
with 64 or 128 MB of RAM running version 2.2.10 of
the Linux kernel. In all test cases, there were 5 client
machines.

� Servers: Each of the five server nodes was an AMD
K6-2 400 with 128 MB of RAM running version
2.2.10 of the Linux kernel.

� Dispatcher: The dispatcher was configured the same
as the servers.

� Infrastructure: The clients all used ZNYX 346 100
Mbps Ethernet cards. The servers and the dispatcher
all used Intel EtherExpress Pro/100 interfaces. All sys-
tems had a dedicated switch port on a Cisco 2900 XL
Ethernet switch.

� Software: The servers ran version 1.3.6 of the Apache
web server [4] while the clients ranhttperf [22],
a configurable HTTP load generator from Hewlett-
Packard.

4.2. Httperf

Httperf [22] is a configurable HTTP load generator
from Hewlett-Packard. While WebStone is also a very
popular tool for web server benchmarking, we feel that
httperf provides some additional features that WebStone
does not. Most notably, we feel thathttperf employs a
more realistic model of user behavior. WebStone relies ex-
clusively on operating system facilities to determine con-
nection timeout, retries, etc. In contrast,httperf pro-
vides the user the ability to set a timeout. Just as a real user
would, in the event that the web server has not responded
within a reasonable amount of time (2 seconds in our tests),
httperf will abort the connection and retry.

Additionally, WebStone attempts to connect to the web
server as quickly as possible.Httperf on the other hand
allows the user to select the connection rate manually. This
provides the ability to examine the effect of increasing load
on the web server in a controlled fashion.

Finally, the duration of WebStone tests are less con-
trolled thanhttperf ’s. As the deadline for the test ex-
pires, WebStone stops issuing new requests. However, out-
standing requests are allowed to complete. With no timeout,
this may be several minutes on some machines.Httperf
terminates the test as soon as the deadline expires.
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4.3. Results

Our results demonstrate that in tests of real-world (and
some not-so-real-world) scenarios, our SASHA architecture
provides a high level of fault tolerance. In some cases, faults
might go unnoticed by users since they are detected and
masked before they make a significant impact on the level of
service. As expected, a dispatcher fault has the greatest im-
pact on performance during fault detection and recovery. In
the worst case, it took almost 6 seconds to detect and fully
recover from a dispatcher fault; in the best case, it took less
than 1.5 seconds.

Our fault-tolerance experiments are structured around
three levels of service requested by client browsers: 2500
connections per second (cps), 1500 cps, and 500 cps. At
each requested level of service, we measured performance
for the following fault scenarios: no-faults, a dispatcher
fault, one server fault, two server faults, three server faults,
and four server faults. Figure 4 summarizes the actual level
of service providedduring the fault detection and recovery
interval for each of the failure modes. In each fault sce-
nario, the final level of service was higher than the level of
service provided during the detection and recovery process.
The rest of this section details these experiments as well as
the final level of service provided after fault recovery.

4.3.1. 2,500 Connections Per Second
In the first case, we examined the behavior of a cluster con-
sisting of five server nodes and the K6-2 400 dispatcher.
Each of our five clients generated 500 requests per second.
This was greater than the maximum sustainable load for our
servers, though other tests have shown that a K6-2 400 dis-
patcher is capable of supporting over 3,300 connections per
second. Each test ran for a total of 30 seconds. This short
duration allows us to more easily discern the effects of node
failure. Figure 4 shows that in the base, non-faulty, case the
cluster is capable of servicing 2,465 connections per sec-
ond.

In the first fault scenario, the dispatcher node was un-
plugged from the network shortly after beginning the test.
We see that the average connection rate drops to 1,755 con-
nections per second (cps) during the fault detection and re-
covery interval. This is to be expected, given the time taken
to purge the ring and detect the dispatcher’s absence. Fol-
lowing the startup of a new dispatcher, throughput returned
to 2,000 cps, or4

5
of the original rate. Again, this is not sur-

prising as the servers were operating at capacity previously
and thus losing one of five nodes drops the performance to
80% of its previous level.

Next we tested a single-fault scenario. In this case,
shortly after starting the test, we removed a server from the
network. Results were slightly better than expected. Fac-
toring in the connections allocated to the server before its

loss was detected and given the degraded state of the sys-
tem following diagnosis, we still managed to average 2,053
connections per second.

In the next scenario, we examined the impact of coinci-
dent faults. The test was allowed to get underway and then
one server was taken off line. As the system was detecting
this fault, the next server was taken off line. Again, we see
a nearly linear performance decrease in performance as the
connection rate drops to 1,691 cps.

The three fault scenario was similar to the two fault sce-
nario, save that performance ends up being 1,574 cps. This
relatively high performance–given that there are, at the end
of the test, only two active servers–is most likely due to the
fact that the state of the server gradually degrades over the
course of the test. We see similar behavior with a four fault
scenario. By the end of the four fault test, performance had
stabilized at just under 500 cps, the maximum sustainable
load for a single server.

4.3.2. 1,500 Connections Per Second

This test was similar to the 2,500 cps test, but with the
servers less utilized. This allows us to observe the behav-
ior of the system in fault-scenarios where we have excess
server capacity. In this configuration, the base, no-fault,
case shows 1,488 cps. As we have seen above, the servers
are capable of servicing a total of 2,465 cps, therefore the
cluster is only 60% utilized.

Similar to the 2,500 cps test, we first removed the dis-
patcher midway through the test. Again performance drops,
as expected–to 1,297 cps in this case. However, owing to
the excess capacity in the clustered server, by the end of the
test, performance had returned to 1,500 cps. For this reason,
the loss and election of the dispatcher seems less severe, rel-
atively speaking, in the 1,500 cps test than in the 2,500 cps
test.

In the next test, a server node was taken off line shortly
after starting the test. We see that the dispatcher rapidly
detects and masks this. Total throughput ended up at 1,451
cps. The loss of the server was nearly undetectable.

Next, we removed two servers from the network, similar
to the two-fault scenario in the 2,500 cps environment. This
makes the system into a three-node server operating at full
capacity. Consequently, it has more difficulty restoring full
performance after diagnosis. The average connection rate
comes out at 1,221 cps.

In the three fault scenario, similar to our previous three
fault scenario, we now examine the case where the servers
are overloaded after diagnosis and recovery. This is re-
flected in the final rate of 1,081 cps. Again, while the four
fault case has relatively high average performance, by the
end of the test, it was stable at a just under 500 cps, our
maximum throughput for one server.
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Figure 4. System performance, in requests serviced per second, during fault detection and recovery
for three levels of requested service: 2500 connections per second (cps), 1500 cps, and 500 cps.

4.3.3. 500 Connections Per Second
Following the 2,500 and 1,500 cps tests, we examined a 500
cps environment. This gave us the opportunity to examine
a highly under utilized system. In fact, we had an “extra”
four servers in this configuration since one server alone is
capable of servicing a 500 cps load.

This fact is reflected in all the fault scenarios. The most
severe fault occurred with the dispatcher. In that case, we
lost 2,941 connections to timeouts. However, after diag-
nosing the failure and electing a new dispatcher, throughput
returned to a full 500 cps.

In the one, two, three, and four server-fault scenarios,
the failure of the server nodes is nearly impossible to see on
the graph. The final average throughput was 492.1, 482.2,
468.2, and 448.9 cps as compared with a base case of 499.4.
That is, the loss of four out of five nodes over the course of
thirty seconds caused a mere 10% reduction in performance.

5. Conclusion

There is a need for high performance web clustering so-
lutions that allow the service provider to utilize standard
server configurations. Traditionally, these have been based
on custom operating systems and/or specialized hardware.
While such solutions provide excellent performance, we
have shown that our Scalable, Application-Space, Highly-
Available (SASHA) architecture provides arbitrary levels
of fault tolerance and performance sufficient for the most

demanding environments. Moreover, the use of COTS sys-
tems throughout the cluster allows us to take advantage of
the price/performance ratio offered by COTS systems while
incrementally increasing the performance and availability
of the server.

Our SASHA network-clustered server architecture con-
sists of

� an application-space dispatcher, which performs layer
4 switching using layer 2 or layer 3 address translation;

� agent software that executes (in application space) on
the server nodes to provide the capability for any server
node to operate as the dispatcher;

� a novel distributed state-reconstruction algorithm, in-
stead of the more typical state-replication approach for
fault recovery; and

� a token-based communications protocol, TokenBeat,
that supports self-configuring, detecting and adapting
to the addition or removal of servers.

The SASHA architecture of clustering supports services
other than web services with little or no changes to the
application-space software developed for our prototype web
server. It offers a flexible and cost-effective alternative to
kernel-space or hardware-based solutions.
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