
Explicit Representation of Exception Handling in the Development of
Dependable Component-Based Systems

Gisele R. M. Ferreira
Institute of Computing

University of Campinas - Brazil
gisele.ferreira@ic.unicamp.br

Cecília M. F. Rubira
Institute of Computing

University of Campinas - Brazil
cmrubira@ic.unicamp.br

Rogério de Lemos
Computing Laboratory
University of Kent at

Canterbury - UK
r.delemos@ukc.ac.uk

Abstract
Exception handling is a structuring technique that

facilitates the design of systems by encapsulating the
process of error recovery. In this paper, we present a
systematic approach for incorporating exceptional
behaviour in the development of component-based
software. The premise of our approach is that components
alone do not provide the appropriate means to deal with
exceptional behaviour in an effective manner. Hence the
need to consider the notion of collaborations for
capturing the interactive behaviour between components,
when error recovery involves more than one component.
The feasibility of the approach is demonstrated in terms of
the case study of the mining control system.

1. Introduction
In the engineering of high assurance systems from

existing components, it is fundamental to consider the
exceptional behaviour of the components, in addition to
their normal behaviour, if trust has to be placed on the
services delivered by the system. Otherwise, the system
might fail in unexpected ways from the undesirable
combination of exceptions that might be raised from the
different components. However, if the description of
exceptional behaviour is considered not in a structured
way, this will unavoidably increase the complexity of the
system, making its understanding more difficult and thus
leading to the construction of an untrustworthy system.
Hence the need for incorporating exceptional behaviour in
a carefully structured and controlled way that would
minimise its impact on the system complexity. One
solution to this problem is to adopt a systematic approach
for including exceptional behaviour in the development of
component-based software.

Dealing with concurrent manifestations of several
faults at different phases of system development has been
recognised as a serious problem that has not received
enough attention [1]. In the context of component-based
software development, related work has been scarce, and
most of it associates exception handling with objects,

making no attempt in considering exception handling
within the software lifecycle. Although exception
handling and object-oriented languages raise some
conflicts, these conflicts exist mainly during the late
phases of the software development [10], and some of
these can be solved if exception handling is considered
right from the early phases of the software development.
In a recent work, the integration of exceptional behaviour
within the software lifecycle was supported by a co-
operative object-oriented approach that allows
representing collaborative behaviour between objects at
different phases of the software development [3]. The
approach being presented in this paper is distinct from the
co-operative oriented approach in several aspects. The
most significant aspect is the fact that our approach is
considered in the context of an existing methodology,
which allows to detail more concretely on how to
incorporate exception handling in the development of
dependable software. Another area in which new
approaches have been recently developed for specifying
and designing activities incorporating multiple parties
(objects or processes) and co-operative handling of
exceptional situations is multiparty interactions [12].

In this paper, we describe a systematic approach for
explicitly representing exception handling at all phases of
the software development. Exceptional behaviour is
identified in the use cases of the problem definition,
refined during specification and design, represented as
idealised fault-tolerant components [8] in the architectural
design of the software system, and finally implemented as
a programming language by means of a meta-object
protocol (MOP) [6]. Considering that, components alone
are not able to provide an effective means to deal with
exceptions, it is important to employ the notion of
collaborations for capturing the interactive behaviour
between components. In this paper, our approach is
presented in the context of Catalysis [4], which is a
methodology for developing object-oriented and
component-based systems where collaborations are
treated as first-class entities. Although Catalysis provides
the means for representing exceptions, it does not consider
exceptional behaviour within the software lifecycle. The

basis of our work is to incorporate in the Catalysis
methodology the representation of exceptional behaviour
in the process of developing component-based systems,
thus increasing our confidence on the quality of services
provided by a system. Although in this paper we have
considered our exception handling strategy in the context
of Catalysis, our approach could nevertheless be adapted
to other object-oriented or component-based
methodologies.

The remainder of this paper is organised as follows.
Section 2 presents an overview of the Catalysis
component-based methodology, which was adopted as a
basis for our work. Section 3 defines a dependable
software architecture based on the idealised fault-tolerant
component. Section 4 presents how the exceptional
behaviour can be integrated in the development of
dependable systems. The feasibility of this work is
demonstrated in Sections 5, 6, 7 and 8, in terms of the
mining system. Finally, Section 9 summarises this work
and provides some concluding remarks.

2. An Overview of the Catalysis Process
Catalysis is a methodology for the systematic

development of object-oriented and component-based
systems that has three primary modelling constructs:
• A set of related actions between objects are grouped

into a collaboration to indicate that they serve a
common purpose. Collaborations are often used to
model how a group of objects jointly behaves when
configured together in specific ways.

• A type defines a specification of the externally visible
behaviour of an object, abstracting from details of its
internal representation, algorithms, and data structures.

• Refinement supports multiple levels of description
related to the same phenomenon.
Similarly to other object-oriented methodologies,

Catalysis defines three major phases for developing
software systems: requirement analysis, component
specification and design, and implementation. What
differs Catalysis from traditional methodologies are its
collaborations, which are considered as first-class entities
because Catalysis assumes that decisions about the
interactions between objects are the key for good-coupled
design. In the following, we present an overview of the
Catalysis approach, in terms of its phases and objectives.

The requirement analysis aims to understand the
problem at hand, and capture the user needs, i.e., find out
what is to be built.

During component specification and design the aim is
to provide a design for the software system in terms of
collaborations. This phase supports three levels of
description, or steps:
• Type specification: this level defines the external

behaviour required from a system/component
described as a type specification. Defining the type

involves describing its internal components and its
external behavior. For that, each action the system
participates is specified as an operation of the type.

• Architecture design: this level enumerates the
components and the ways they are integrated.

• Collaboration design: this level effectively “opens the
box” for a given component, and describes how it will
be designed internally to provide its externally
specified behaviour. The design is described in terms
of collaborations, where the use cases are implemented
as a set of actions with their pre- and post-conditions.
This process is recursive as far as necessary or useful.

We would typically stop once components can be made
available; that is, when they can either be bought or built.

During implementation the purpose is to convert the
design components into source code with an object-
oriented programming language. Each file component
(source code) may implement several design classes that
correspond to a C++ or a Java class. A component is a
replaceable part of a system that conforms to and provides
the realisation of a set of interfaces.

3. A Dependable Software Architecture
Following the terminology adopted by Lee and

Anderson [8], a system consists of a set of components
that interact under the control of a design. Software
components receive service requests and produce
responses when the service has been completed. The
responses from a component can be separated into two
distinct categories, namely normal or abnormal responses.
Normal responses correspond to those situations where
the component has provided its normal service
satisfactorily. Abnormal responses or exceptions are
usually signalled when there is a fault leading to an error
in the system and this component cannot provide the
requested service. As shown in Figure 1, the activity of
the component must be separated into two parts: a normal
part, which implements the component's normal service,
and the abnormal or exceptional handling part, where the
component's measures for fault tolerance are
implemented.

Exceptions can be classified into two different
categories: (i) internal exceptions that are raised by the
component in order to invoke its own internal fault
tolerance activity and (ii) external exceptions signalled if a
component determines that for some reason it cannot
provide its specified service. Thus, when an exception is
internally signalled by the component, we assume that the
exception handling part of the component is automatically
invoked. If this exception is handled successfully, the
component can return to providing its normal service.
However, if the component does not succeed in dealing
with such an exception, it should signal an external
exception. In this sense, exceptions and exception

handling provide a suitable framework for structuring the
fault tolerance activities incorporated in a system.

 Normal
responses

Normal
Activity

Return to normal
operation

Abnormal
Activity

Internal
exception

Service
requests

Service
requests Normal

responses
External

exceptions

External
exceptions

Figure 1 - Idealised fault-tolerant component

4. A Systematic Approach for Representing
Exceptional Behaviour
Exception handling has been traditionally associated

with the implementation phase of the software lifecycle,
during which all the effort is made to protect the
application software from faults that may be introduced
during requirements analysis, design, and implementation,
or can occur at the support level. The consequence of such
approach is that the appropriate context in which errors
should be detected and recovered is lost. Also it is lost the
potential correlation that might exist between the error
states of the different contexts and how these should be
recovered in an optimised way [3]. Hence the need for
each identified phase of software development, to define a
class of exceptions depending on the abstraction level (or
context) of the software system being modelled and
analysed. As the software development progresses, new
exceptions are identified and their respective handlers
specified. However, the exceptions identified at the
different phases can be causally and timely related, which
might constraint the specification of their respective
handlers. Moreover, it might be the case that the
rationalisation of exceptions might enable the usage of a
single handler for different classes of exceptions.

The purpose of this section is to provide an overview
of the proposed systematic approach for incorporating
exceptional behaviour in the process of software
development. This approach was integrated into Catalysis
(see Section 2), and based on the idealised fault-tolerant
component architecture (see Section 3). The
representation of exceptional behaviour begins during the
requirement analysis and continues until implementation.
The following features form the basis of our exception
handling strategy:
• Precise specification: a precise specification of actions

and collaborations turns natural language statements
into a less ambiguous specialised notation, for that
they are expressed in terms of pre- and post-
conditions. The pre-condition specifies the condition
that must be satisfied at the time that the action or

collaboration is initiated. The post-condition similarly
tells us what conditions must be satisfied for the action
or collaboration to finish. The pre- and post-
conditions specifications embody the principle of
design by contract [9]. Although there is extra effort
involved, it saves work later in the phases of
development and also during maintaining by focusing
attention on the important issues, earlier in the
development phases, such as, gaps and inconsistencies.
Furthermore, the principle of design by contract
facilitates the identification of those exceptional
situations that are violations of contracts.

• Separation of normal and exceptional activities: the
proposed approach was primarily designed to facilitate
the development of dependable software components.
As discussed before, when building reliable
components it is necessary to keep its complexity
under control. Hence, it is important to separate
exceptional behaviour from normal behaviour
specifications. The idealised fault-tolerant component
provides an architecture that separates the normal from
the exceptional activities.
In the following, we proceed to describe the features

that identify our approach when incorporating exception
handling in the Catalysis methodology.

4.1. Requirement Analysis
In this phase the functionality of the system is

described by use cases. A use case is a description of a set
of sequence of actions, including variants that a system
performs to yield an observable result of value to an actor
[2]. An actor represents a coherent set of roles that users
of use cases play when interacting with them. In the
systematic approach proposed in this paper, the textual
description of use cases is expanded. In addition to the
description of normal behaviour, we have also included
the description of failure behaviours. The description of
normal behaviour is detailed by defining the use case in
terms of its pre- and post-conditions, invariants that
should hold, and the basic operations performed by the
use case. The exceptional description for the use case is
related to the violation of the contract defined by its pre-
and post-conditions, and its invariant. Just as use cases are
introduced in a narrative-style, the exceptional behaviour
is also incorporated into a narrative form. The post-
conditions for the various identified exceptional
behaviours might not be identical because of the different
degraded outcomes of a use case, as a result of an
exception occurring. The template employed for the
specification of use cases is described in the Figure 2

.

Use Case Name
Actors: List of components participating in the use case;
Description (Normal behaviour):

A brief description of the normal behaviour of the
use case;

Pre-condition: The set of conditions that have to be
valid for the use case to start;

Invariant: The conditions that should hold in the use
case;

Operation: The activity that has to be performed by the
use case;

Post-condition: The set of conditions that have to be
valid for the use case to finish;

Description (Exceptional behaviour):

A brief description of the exceptional behaviour of
the use case;

Signal: The error state or event that identifies an
exception;

Handler: The activity for bringing the system to an error
free state;

Post-condition: The set of conditions that have to be
valid for the use case finish, after the occurrence of
an exception;

Figure 2 - Descriptive template for exceptional
behaviour of robust use cases

The extend relationship between use cases is employed
to represent that the base use case implicitly incorporates
the behaviour of another use case. The base use case may
stand alone, but under certain conditions, its behaviour
may be extended by behaviour of another use case. It is a
way to separate subflows that are executed only under
certain conditions.

The description of exceptional behaviour in the
specification of use cases allows at the initial phases of
software development to establish the relationships
between failures that might affect either the use cases or
the actors. This allows impact analysis of failures to be
performed at higher levels of abstraction, thus enabling,
for example, to check the consequences on the rest of the
system if a particular use case fails to behave as required.
Once failure behaviours and their impacts are specified,
this provides the basis for obtaining robust specifications,
since protection mechanisms against failures and their
relationships, can be incorporated from the initial phases
of software development. The specifications should
consider the propagation of exception between use cases
until the appropriate context is found for handling an
exception, if the use case in which the exception has
originally occurred does not provide the necessary
redundancies for handling it.

The outcome of this phase is a textual description of
the use cases of the system in terms of their normal and
abnormal behaviour following the use case template
illustrated in Figure 2. The latter would include the
specifications of exceptions that occur in the context of

the use case, or those exceptions that have been
propagated from other use cases. Also it should include
the specification of the handlers if the context of the use
case is appropriate to handle the exception, or provide a
reference to another use case to which the exception
should be propagated.

4.2. Component Specification and Design
The phase of component specification and design

follows the three steps of Catalysis presented in Section 2:
type specification, architecture design and collaboration
design. Collaborations implement the uses cases
previously specified and represent the use case
exceptional behaviour in terms of exceptions and
handlers, with the latter incorporating the exception
treatment. Exceptional behaviour, in addition of being
associated with the failure of uses cases, it should also be
considered in the context of invalid interactions between
two or more components of the system, or the
combination of component failures. At this point, the
black-box abstraction of the system is refined to show the
internal software components that compose the system.
The exceptional behaviour identified by collaborations
should be reflected in system type and architecture. In the
following, we describe how to incorporate the description
of exceptional behaviour at each step of component
specification and design.

4.2.1. Type Specification

A type specification involves the description of the
systems internal components and external behaviour.
Traditionally, a component is structured by a set of normal
classes, which implement its normal activities. In the
approach proposed in this paper, the component should be
extended by an exceptional part, which implements its
abnormal activities (Figure 1). While the normal classes
implement the normal behaviour of the use cases, the
exceptional classes should implement the exceptional
behaviour. This structuring fosters traceability with the
modelling of the use cases, and makes it easier to maintain
the consistency of the system. In this approach, designers
compose an exceptional class hierarchy that is orthogonal
to the normal class hierarchy of the application.
Exceptional class hierarchies allow exceptional subclasses
to inherit the handlers form their superclasses, thus
allowing exceptional code reuse.

During the collaboration design some exceptions are
identified and their handlers are specified. Exceptions and
handlers constitute the abnormal behaviour of the
component that implements the collaboration. In this
approach, after the collaboration design, the type
specification must be refined to include the component
abnormal behaviour. External collaboration action
becomes public methods and each internal collaboration
action is represented as private methods of the normal

class. Each method represents explicitly the exceptions
that may be raised by showing send dependences between
operations and their exceptions. Following the idealized
fault-tolerant component model presented in Section 3,
exceptions raised by the normal part of the component are
internal exception that should be treated by the
exceptional part. Handlers for internal exceptions are
represented as methods of the exceptional class. If the
abnormal part of the component cannot handle an
exception, a failure exception is raised to the caller.

In Figure 3, the methods of ExceptionalSupClient
are the handlers for the exceptions that are raised by the
methods of the class SupClient, and its subclasses. The
methods of ExceptionalClient are the handlers for
exceptions raised by class Client. In this example, we
consider that SupClient, or its subclass, requests a service
from class Server. When the method m3() of the class
Server is invoked, it can raise two exceptions, E2 and
E3. The exception E3 is treated locally by the component
Server, more precisely, by the method E3Handler of the
class ExceptionalServer. However, exception E2 is
propagated to the caller, which must have a handler to
treat it. The E2Handler is defined as a method of the
class ExceptionalSupClient, which is inherited by
ExceptionalClient, thus allowing class Client to request a
service from class Server without needing to redefine the
E2Handler.

<<send>

<<send>

Figure 3 - Normal and exceptional class hierarchies

SupClient Exceptional
SupClient

E1

Server Exceptional
Server

E3

E2

Figure 4 – Robust software architecture

In Figure 4, the component SupClient raises an
internal exception E1 that is treated locally by the class

ExceptionalSupClient. When SupClient requests a
service from component Server, it can raise two
exceptional situations. The normal activity of the
component Server signals an internal exception E3 that is
treated within the component, and its exceptional activity
signals an external exception E2 that is propagated to the
caller SupClient.

4.2.2. Architecture Design

The architecture design uses the model of idealised
fault-tolerant component described in Section 3. In this
architectural model, a component requests services to a
low-level component that returns either normal or
exceptional responses. This makes it easier to identify
which handlers each component should incorporate. In our
exception handling model, we adopted explicit
propagation of exceptions between adjacent components.
As a consequence, the client is aware of all exceptions it is
responsible for handling. If a signalled exception cannot
be handled at the caller, then this exception should be
propagated to the components at higher level of
abstraction.

4.2.3. Collaboration Design

In the collaboration design, use cases are implemented
as collaborations, a collection of actions and component
types. The normal behaviour of the use cases is
represented by a set of actions (operations) that
incorporate the use case pre-, post-conditions and
invariant. The exceptional behaviour is the violation of the
action assertion, i.e., pre-, post-conditions or invariant.
The description of abnormal behaviour is in terms of
exceptions that are signalled, and handlers that
incorporate the exception treatment. The description
template employed for the specification of collaborations
is presented in Figure 5.

Abnormal behaviour is not restricted to the failure of a
single component. Invariably, it is also associated with
invalid interactions between two or more components and
the combination of component failures. The description of
abnormal behaviour in terms of collaborations allows
identifying these potential failures. Moreover,
collaboration diagrams are useful for representing
diagrammatically multiple-failures in systems, thus
providing support for understanding their abnormal
behaviour.

The approach presented in this paper, in addition of
identifying the exceptional behaviour through
collaborations, also promotes the refinement of the system
type and architecture to include the identified exceptions,
and their respective handlers. In the refinement of the type
specifications, exceptions raised by a component are
hierarchically organised and associated with the type at
same abstraction level. This approach allows the handling

of either the more general supertype exceptions, or the
more specific subtype ones in a controlled manner.

Normal Behaviour
Action: The activity specified by the use case;
Pre-condition: The set of conditions that have to be

valid for action to start;
Invariant: The conditions that should hold during

the action;
Post-condition: The set of conditions that have to be

valid for the action to finish;

Exceptional Behaviour
Signal: The error state or event that identifies a

failure;
Handler: The action that should try to handle the

failure;
Post-condition: The set of conditions that have to be

valid, after the exception has been
handled;

Figure 5 – Template for the description of robust
collaboration

Additionally, the handlers for the exceptions of a
component are incorporated as methods of the abnormal
class. Furthermore, to design robust components that will
not fail in unanticipated ways, it is necessary to have a
clear specification of internal exceptions. Based on the
exceptions identified during the step of collaboration
design, the architectural design should be refined to
incorporate those exceptions that are propagated and
caught by a component. This approach facilitates the
identification of components that can be affected by an
exception, and the location of the respective exception
handlers.

In UML, exceptions are represented as stereotyped
classes and arranged in a hierarchy [2]. In our model,
exceptions are also hierarchically organised, and are
related to collaborations that are at the same abstraction
level as the exceptions themselves. A handler defined for
an exception E is suitable for any exception subtype of E.
Permitting several exceptions to be treated by the same
handler avoids code replication when the exceptions are
all handled in the same way. For facilitating the
specification of exceptions, we define a notation to
represent exception names that relate the collaboration
name with the type of the exception (either internal or
external). The template for the naming of exceptions is
Type_ExceptionName_CollaborationName. Type can
be {I, E}, where “I” represents internal exception, and “E”
represents external exceptions.

The approach being proposed for specifying and
designing components has several outcomes, including:
• The type specification of each component is structured

in terms of two orthogonal class hierarchies: the
normal and the abnormal. The former implements the
normal services provided by the component. The latter
implements the handlers for exceptions signalled

internally in the component, or raised by another
component whose service has been requested.

• The system architecture design is based on the model
of idealised fault-tolerant component, which explicitly
represents internal and external component exceptions.
This architectural model makes it easier to identify the
handlers each component must incorporate.
Considering the explicit exception propagation, each
exception signalled by a component must have a
handler in its caller.

• Collaborations are implemented as a collection of
actions and component types. The normal behaviour of
collaborations is implemented by the actions with
invariants, pre- and post-conditions. The exceptional
behaviour is captured from the failures and invalid
collaborations between two or more components.

4.3. Implementation
For implementing the components defined above, we

need an exception handling mechanism to support the
explicit separation of their normal and abnormal activity.
Moreover, we advocate that the exceptions should be
represented as full objects (rather than merely signals with
little information content), organised hierarchically, and
that the exception propagation to higher-level components
should be performed explicitly. All these properties can be
satisfied using the mechanism presented in [6], which is
implemented using the Java programming language by
means of a meta-object protocol (MOP) [7]. The
components of the application will be implemented in the
base level while the meta-objects implement the specific
responsibilities of the exception mechanism. When a
normal class of the component signals an exception, it is
intercepted by the MOP and the meta-objects will find an
adequate exception handler in the abnormal class of this
component. The abnormal classes are hierarchically
organised, allowing subclasses to inherit handlers from
their superclasses and, consequently, permitting the reuse
of abnormal code. The abnormal class hierarchy is
orthogonal to the normal class hierarchy.

5. Case Study: Requirement Analysis
The example that has been chosen is a simplified

version of the pump control system for the mining
environment [11]. The extraction of minerals from a mine
produces water and releases methane gas to the air. The
mining control system is used to drain mine water from a
sump to the surface, and to extract air from the mine when
the methane level becomes high. A schematic
representation of the mining system is given in Figure 6.
The mining control system consists of three control
stations: one that monitors the level of water in the sump,
one that monitors the level of methane in the mine, and
another that monitors the mineral extraction. When the
water reaches a high level, the pump is turned on and the

sump is drained until the water reaches a low level. A
water flow sensor is able to detect the flow of water in the
pipes. However, the pump is situated underground, and
for safety reasons it must not be started, or continue to
run, when the amount of methane in the atmosphere
exceeds a safety limit. For controlling the level of
methane, there is an extractor control station that monitors
the level of methane inside the mine, and when the level is
high an extractor is switched on to remove air from the
mine. The whole system is also controlled from the
surface via an operator console that should handle any
emergencies raised by the automatic system.

Mineral
extractor Sump

Pump

Pump
Control
Station

Extractor
Control
Station

Methane sensor

Water flow sensor High water
level sensor

Low water
level sensor

Air
extractor

User
interface

Air flow sensor

Mineral
Control
Station

Figure 6 – Schematic diagram of the mining system

In this case study, we employ the three phases of our
systematic approach described in Section 4. Firstly, the
functional requirements are captured through the use case
modelling (Section 5.1). Secondly, the specification and
design of the mining system, and its components, are
presented in Section 6 in terms of types, architecture and
collaborations. The specification and design of the system
is refined in Section 7. Finally, the issues related to the
implementation of the normal and abnormal classes in
terms of a meta-object protocol (MOP) are discussed in
Section 8.

5.1. Use Cases
The use cases of the system are shown in Figure 7.

The main use case is related to the extraction of minerals
(ExtractMineral use case) from the mining, however this
operation produces water and releases methane gas.
Hence, it is necessary to stop the mineral extraction for
draining water from a sump (DrainSump use case) or
extracting air from the mine (ExtractAir use case).

In order to simplify the presentation of the case study,
we consider that the sensors AirFlow, WaterFlow,
MethaneHigh, WaterHigh and WaterLow will never
fail, while the actuators Pump and AirExtractor are prone
to failure. The exceptional behaviour of the
MiningSystem is related to failures that can affect one of
the three major activities of the system that are, the
extraction of mineral, the extraction of air and the
drainage of water, which can be summarised as follows:

• If the methane sensor detects high level of methane,
the collaboration ExtractMinerals will be interrupted,
and the collaboration ExtractAir will be initiated to
reduce the methane level.

• If the water sensor detects high level of water in the
sump, the collaboration ExtractMinerals will be
interrupted, and the collaboration DrainSump will be
initiated to drain the sump to reduce the level of water.

• If both high level of methane and water flow are
detected concurrently, the collaboration
ExtractMinerals will be interrupted, the collaboration
ExtractAir will be initiated, and the pump will be
switched off.
The relationship between the base use case

ControlMiningSystem and the other three use cases
ExtractMinerals, ExtractAir and DrainSump is that of
extending the base use case by incorporating the
behaviour of the other three use cases. For illustration
purposes, in the following we briefly present the textual
description only for the use case ExtractAir.

Figure 7 - Use case diagram for the MiningSystem
.

Use Case ExtractAir
The textual description of ExtractAir is described in

the Figure 8. The normal behaviour of this use case is
associated with the extraction of air from the mine. It
describes the operation of AirExtractor: when the
methane levels are high the AirExtractor is switched on,
and when they drop to acceptable levels the AirExtractor
is switched off. Its invariant states that the Pump should
remain switched off while the AirExtractor is on. The
post-condition for the normal behaviour establishes that
the level of methane should be normal and the
AirExtractor should be off. The identified exceptional
behaviour is when no flow of air is detected, though the
air extractor is switched on. This situation is identified as

a failure in the AirExtractor. The handling of this
exception is to switch off the AirExtractor, and raise an
exception.

Use Case ExtractAir
Actors: AirExtractor, MethaneHigh and AirFlow ;
Description (Normal): When the operator starts the mining

process, air is extracted from the mine when the
methane level is high;

Pre-condition: The operator has started the mining process,
the level of methane is high, the air extractor and
pump are off, and there is no flow of air or water;

Invariant: The pump is off and there is no flow of water;
Operation: If the level of methane is high, the air extractor is

switch off, and there is no airflow then the air
extractor is switched on. The air extractor is switched
off when the methane level is normal;

Post-condition: The level of methane is normal, the air
extractor is off, and there is no flow of air;

Description (Exceptional): When the methane level

becomes high, air is extracted from the mine by
switching on the extractor, but there is no flow of air
(air extractor fails);

Signal: The air extractor is on and there is no flow of air;
Handler: It switches off the extractor and raises an exception;
Post-condition: The level of methane is high, the air extractor

is off, and there is no flow of air;

Figure 8 – Use Case ExtractAir
The specification of the other three uses cases,

ControlMiningSystem, DrainSump and
ExtractMineral, follows the same process of the specified
above. In addition to the normal behaviour, we also
specify the abnormal behaviour of the use cases, which
includes the definition of exception situations that can
affect their services, and how they are handled by the use
case, or propagated.

6. Case Study: Specification and Design
In this section, we proceed to specify and design the

mining system following the approach described in
Section 4.2, which follows the three steps of Catalysis
with additional activities for representing exceptional
behaviour.

The three steps were applied recursively to the mining
system and its components. Initially, we have to apply
them to the MiningSystem itself. The MiningSystem is
composed by the user interface, sensors, actuators, and a
control component. The control component, called
ControlStation, is also considered a system by itself and
should be specified and designed recursively by applying
the definitions of type, architecture and collaborations
according to Catalysis (Section 2). However, for the sake
of brevity, the presentation will not detail the complete

specification and design process, but instead we provide
an overview of the approach being proposed by applying
it to a partial key aspects of the mining system problem.

In this paper, we presented the type specification of
the ControlStation in Section 6.1. In Section 6.2 we
present the specification and design of the
AirExtractorControl component, which is a component of
ControlStation. In section 7 the type specification of the
AirExtractorControl component is presented including
the architecture considered in the context of the
MiningSystem, which is shown in Figure 13.

6.1. The ControlStation Component
Specification and Design

The ControlStation component of the MiningSystem
is responsible for guaranteeing the suitable environment
conditions for mineral extraction. In adverse situations,
the mineral extraction should be interrupted to initiate the
extraction of air or the removal of water for maintaining
the safety conditions of the mine. Therefore, in order to
obtain components with specific responsibilities, the
ControlStation should be decomposed into three small
components: PumpControl component which is
responsible for extraction of water, AirExtractorControl
component which is responsible for extraction of methane,
and MineralExtractorControl component which is
responsible for extraction of mineral.

Figure 9 shows the type specification for the
ControlStation and the operations associated with it

PumpControl AirExtractorControl MineralExtractor
Control

start_ControlMiningSystem()
stop_ControlMiningSystem()

ControlStation <<type>>

1 1 1

Figure 9 - Type model for the ControlStation

6.2. The AirExtractorControl Component
Specification and Design

In this section, the AirExtractorControl component of
the ControlStation is specified and designed, following
the approach previously introduced. For illustration
purposes, the specification and design will be restricted to
the collaboration. Also in this section, we illustrate how
the refinement of exceptional behaviour should be
performed in the context of structural decomposition, and
how the UML collaboration diagram can be employed in

the understanding of a system/component exceptional
behaviour.

6.2.1. The AirExtractorControl Collaboration

When the methane sensor detects high level of
methane in the mine, the collaboration ExtractAir is
initiated to keep the methane level under control. The
collaboration associated with the extraction of air from the
mine is represented in Figure 10. For starting the air
extraction, it is necessary to switch on the AirExtractor,
which should be detected by the AirFlow sensor. When
the methane level becomes normal, the collaboration
ExtractAir has to finish by switching off the AirExtractor,
which is also reflected by the AirFlow sensor.

An exceptional behaviour associated with this
collaboration is the failure of the extractor that is detected
by the AirFlow sensor. This can be described in Figure 11.

7. Case Study: Refinement of Exceptional
Behaviour
In this section, in order to obtain a type specification

and an architectural design that considers exceptional
behaviour of the component, we refine the exceptional
behaviour of the mining system, following the approach
described in Section 4.2. The component type
specification will include an abnormal class hierarchy that
implements the exceptional behaviour of its associated
normal class, which was identified during the design of

the collaborations. On the other hand, the component
architecture will be represented by idealised fault-tolerant
components that explicitly represent internal and external
components exceptions. In Section 7.1, the AirExtractor
type is refined to incorporate exceptions and their
handlers, identified for the collaboration ExtractAir, and
in Section 7.2 the exception flow in the MiningSystem
architecture is represented in terms of idealised fault-
tolerant components.

AirExtractorControl
start_ExtractAir()
finish_ExtractAir()

<<implements>>

AirExtactorControl_implementation

Inv.: Pump==off and WaterFlow==off

AirExtractor

switchOff
switchOn

AirFlow

checkFlowSensor

MethaneHigh

start_ExtractAir()
finish_ExtractAir()

checkLevelSensor

Figure 10 - Collaboration AirExtractorControl

Normal Behaviour Exceptional Behaviour
Action(AirExtractor)::switchOn
Pre: the level of methane is high, the air extractor is switched off,
and there is no airflow;

MethaneHigh==on and
AirExtractor ==off and AirFlow==off

Post: the air extractor is on, and there is airflow;
AirExtractor ==on and AirFlow==on

Signal: the air extractor is on, but no airflow is detected;
(AirExtractor ==on and AirFlow ==off) implies

I_excSwitchAirExtractorOn_EA!
Handler: switches off the air extractor and raises an exception;

AirExtractor:=off and E_excAirExtractorFailure_EA!
Post: the air extractor is switched off, and there is no airflow;

AirExtractor ==off and AirFlow==off

Action(AirExtractor)::switchOff
Pre: the air extractor is on, and there is airflow;

AirExtractor==on and AirFlow==on
Post: the air extractor is switched off, and there is no airflow;

AirExtractor ==off and AirFlow==off

Signal: the air extractor is off, but the sensor detects airflow;
(AirExtractor ==off and AirFlow==on) implies

I_excSwitchAirExtractorOff_EA!
Handler: propagates the exception;

E_ excAirExtractorFailure _EA!
Post: the air extractor is switched off, and there is airflow;

AirExtractor ==off and AirFlow==on
Action(AirFlow)::checkFlowSensor
Post:

AirFlow==AirFlow@pre

Signal: the extractor is on and the sensor does not detect airflow
(AirExtractor ==on and AirFlow==off) implies

I_excAirExtractorFailure_EA!
Handler: switches off the extractor and raises an exception

AirExtractor := off and E_excAirExtractorFailure_EA!
Post: the air extractor is switched off, and there is airflow;

AirExtractor ==off and AirFlow==off
Action(MethaneHigh)::checkLevelSensor
Post:

MethaneHigh == MethaneHigh@pre

Figure 11 – Normal and exceptional behaviour of collaboration AirExtractorControl

7.1. Identified Exceptions for AirExtractor
Type

Accordingly with Section 4, software designers
should structure their application by creating a set of
normal classes that implement the normal activities of
the software component, and abnormal classes which
implement the abnormal activities (see Section 4.2.2).
In Figure 12, the AirExtractorControl type is
composed by its normal activity implemented by class
AirExtractorControl, and its abnormal activity
implemented by class
ExceptionalAirExtractorControl.

The AirExtractorControl component implements
the ExtractAir collaboration (Section 6.2). The
external behaviour of this collaboration is
implemented by the actions start_ExtractAir and
finish_ExtractAir. These external actions become
public methods of the normal class of the
AirExtractorControl component. The internal
collaboration actions (swithcOn, switchOff,
checkFlowSensor, checkLevelSensor) are
represented as private methods of the normal class.
The exceptions identified during the collaboration
ExtractAir are hierarchically organised and each
operation represents explicitly the exceptions that may
be raised by showing send dependencies between
operations and their exceptions. The method
switchOn raises the exception
I_excSwitchAirExtractorOn_EA, the method
switchOff raises I_excSwitchAirExtractorOff_EA,
checkFlowSensor raises
I_excAirExtractorFailure_EA and
checkLevelSensor does not raise exceptions.

The class I_excExtractAir allows the definition of
internal exceptions raised by the component
AirExtractor. Handlers for these exceptions are
represented as methods of the class
ExceptionalAirExtractorControl. The method
H_AirExtractorFailure, H_SwithcAirExtractorOn,
H_SwitchAirExtractorOff of the
ExceptionalAirExtractorControl are responsible for
handling the exceptions
I_excSwitchAirExtractorOn_EA,
I_excSwitchAirExtractorOff_EA and
I_excAirExtractorFailure_EA, respectively.

If an exception cannot be handled internally by the
component, a failure exception is raised to the caller.
The class E_excExtractAir allows the definition of
failures exceptions that are raised when the
exceptional class is not able to recover the state of the
component to an error free state.

7.2. Exceptional Flow in the MiningSystem
Architecture

As discussed in Section 3, a dependable system
may be composed by a set of idealised fault-tolerant
components. In the mining system case study, the
components are hierarchically organised as shown in
Figure 13. In their hierarchical structure, the high-
level components encapsulate lower level ones, i.e.,
high-level components request services from lower
level ones, from which they can receive either normal
or exceptional responses. Exceptional responses are
represented by external exceptions that a component
raises. Both internal and external exceptions raised by
a component are explicitly represented in the
specification of its type, similarly to what it was

AirExtractorControl <<type>>

start_ExtractAir()
finish_ExtractAir()

<<send>>
<<send>>

Figure 12 - Component AirExtractorControl

done for the AirExtractorControl component in
Section 7.1.

Based on exceptions represented by the type
specification model, the system architecture was
refined to represent the internal component exceptions
(I_excAirExtractorFailure_EA,
I_excSwitchAirExtractorOn_EA, and
I_excSwitchAirExtractorOff_EA) and external
component exception propagation
(E_excAirExtractorFailure_EA). Also in this
diagram, we represent the exceptions associated with
the component ControlStation and PumpControl
identified with the same process performed for the
AirExtractorControl component.

I_excAirExtractorFailure_EA
I_excSwitchAirExtractorOn_EA
I_excSwitchAirExtractorOff_EA

E_excAirExtractorFailure_EA

ControlStation

AirExtractor
Control

E_excRaiseAlarm_DS
E_excRaiseAlarm_EA

PumpControl

E_excPumpFailure_DS
E_excHighMethane_DS

I_excPumpFailure_DS
I_excHighMethane_DS
I_excSwitchPumpOn_DS
I_excSwitchPumprOff_DS

I_excControlStationFailure_CMS

MiningSystem

E_excRaiseAlarm_CMS

Figure 13 – Revised software architecture with
exception flow

8. Case Study: Implementation Issues
The explicit separation of normal and exceptional

behaviour of a component should be maintained when
the designed components are translated into source
code. On the contrary, these components will be
difficult to understand, to change and to maintain in
the presence of faults. Components designed in
Section 6 must keep the separation of normal and
abnormal activity. This can be achieved by using the
exception handling mechanism presented in [5], which
supports this separation in a structured and transparent
manner.

Exceptions should be implemented as data objects,
and different types of exceptions should be organised
hierarchically as classes, being the class Exception
the root of this hierarchy. Handlers may be associated

either with classes or objects. In the first case, an exceptional
class should be created, and in the second case, object
handlers may be also defined. In Figure 12, the methods of
ExceptionalAirExtractorControl are class handlers for the
exceptions that should be treaded within
AirExtractorControl´s methods. To implement handlers
associated to individual objects, a new exceptional class must
be created. This new class contains methods that implement
the object handlers for the exceptions that should be treated in
any method of the object. For instance, the object Pump,
instance of the class Actuator, may be associated to the
handlers that are distinct from the handlers associated to the
object MineralExtractor that is also an instance of the class
Actuator (Figure 14).

In this example, the association between the actuator and
their exceptional classes (ExceptionalPump,
ExceptionalAirExtractor or ExceptionalMineralExtractor)
is automatically performed by the exception handling
mechanism.

<<send>>

Figure 14 - Objects and their exceptional classes

9. Conclusions
In this paper we present a systematic approach for

incorporating exceptional behaviour in the development of
component-based systems, based on architectures that are
composed by idealised fault-tolerant components. Such an
innovative way of detecting and handling exceptions in the
context of faults occurrence is particularly relevant to those
systems in which high assurance is required from the services
they provide.

The proposed approach relies on the premise that
components alone are not able to provide an effective means
to deal with exceptional behaviour when error recovery
requires several components to interact. Hence the need for
considering the notion of collaborations that would allow
capturing the interactive behaviour between components.
When collaborations (or contracts) are considered as first
class design entities, there is also the need to employ
development methodologies that incorporate these entities
throughout the system development, such as Catalysis [4], the
method on which our approach is based. However, Catalysis,
as well as other similar approaches, lacks a coherent way of
explicitly representing exceptional behaviour during the
development of component-based software. For example,

although Catalysis defines alternative ways to express
exceptions in collaborations, almost nothing is
mentioned how these exceptions are captured during
the requirements specification, transformed into a
design, and finally implemented as software
components.

In the approach presented in this paper,
exceptional behaviour is explicitly captured in the use
cases of the problem definition, in the architectural
representation of the software system in terms of
idealised fault-tolerant components, and in the final
implementation. In the use cases, the exceptional
behaviour is defined informally, as it is done for the
normal behaviour. The architecture of the system is
then presented using the model of idealised fault
tolerant components, in which the propagation of
exceptions between system components is explicitly
represented. In the design representation of the system
in terms of collaborations, the use cases are
implemented as actions, which are defined in terms of
pre- and post-conditions. The exceptional behaviour
specified in the use cases is refined in the context of
the actions that define the identified collaborations.
Also at this stage, we define a template for
representing the exceptional scenarios, and we present
the collaboration diagrams for the normal and
exceptional behaviour of the collaborations. And
finally, we discuss how the resulting design can be
implemented as software components.

While developing this work, we have come across
several deficiencies regarding the modelling, analysis
and design of exceptional behaviour in the software
development. One of the problems that we have faced
was the explicit representation of exception handling
in the use cases, which were initially conceived for
succinctly describing the problem at hand. However, if
exceptional behaviour is to be considered at the
requirements level, then exceptions have to be
represented in the use cases, which tend to increase the
complexity of their description. Hence the need to find
alternative ways for describing use cases with
different levels of detail, and to make sure that these
descriptions are consistent and accurate.

Acknowledgements. Gisele R. M. Ferreira is
supported by FAPESP grant number 00/03700-3,
and Rogério de Lemos would like to
acknowledge the financial support from The
Nuffield Foundation.

References
[1] A. Avizienis. “Toward Systematic Design of Fault-
Tolerant Systems”. Computer 30(4). April 1997. pp
51-58.

[2] G. Booch, J. Rumbaugh, I. Jacobson. The Unified
Modeling Language User Guide. Addison-Wesley. Reading,
MA. 1999.
[3] R. de Lemos, and A. Romanovsky. “Exception Handling
in the Software Lifecycle”. Int. Journal of Computer Systems
Science and Engineering 16(2). March 2001. pp.167-181.
[4] D. D'Souza, and A. C. Wills. Objects, Components and
Frameworks with UML: The Catalysis Approach. Addison-
Wesley, Reading, MA. 1998.
[5] A.Garcia, D. Beder, and C. Rubira “An Exception
Handling Mechanism for Developing Dependable Object-
Oriented Software based on Meta-level Approach”.
Proceedings of 10th IEEE Symposium on Software Reliability
Engineering.1999.
[6] A.F. Garcia, D.M. Beder, and C.M.F. Rubira. “An
Exception Handling Software Architecture for Development
Fault-Tolerant Software”. Proc. of the 5th IEEE International
High-Assurance Systems Engineering Symposium (HASE
2000). Albuquerque, NM. November 2000. pp. 311-320.
[7] M.-O., and J.-C. Fabre. “Implementing a Reflective Fault-
Tolerant CORBA System”. Proceeding of the 19th Symposium
on Reliable Distributed Systems (SRDS’2000). Nurnberg,
Germany. 2000. pp. 154-163.
[8] P. Lee, and T. Anderson. Fault-Tolerance: Principles and
Practice. 2nd Edition. Springer-Verlag. Berlin, Germany.
1990.
[9] B. Meyer. Object-Oriented Software Construction.
Prentice Hall. 1988.
[10] R. Miller, and A. Tripathi. “Issues with Exception
Handling in Object-Oriented Systems”. Proceedings of 11th
European Conference on Object-Oriented Programming
(ECOOP'97). Jyväskylä, Finland. Lecture Notes in Computer
Science 1241. M. Aksit, S. Matsuoka (Eds.). Springer-Verlag.
Berlin, Germany. 1997. pp. 85-103.
[11] M. Sloman, and J. Kramer. Distributed Systems and
Computer Networks. Prentice Hall. 1987.
[12] A. F. Zorzo, and R. J. Stroud. “A Distributed Object-
Oriented Framework for Dependable Mulitparty Interactions”.
Proceedings of the Conference on Object-Oriented
ProSgramming, Systems, Languages and Applications
(OOPSLA’99). Denver, USA. November 1999. pp. 435-446.

