
Towards Research on Software Cybernetics *

T. Y. Chen
School of Information Technology

Swinburne University of Technology
Hawthorn 3122, Australia

Email: tychen @it.swin.edu.au

Kai- Yuan Cai
Department of Automatic Control

Beijing University of Aeronautics and Astronautics
Beijing 100083, China

Email: kyc@ns.dept3.buaa.edu.cn

T. H. Tse t

Department of Computer Science and Information Systems
The University of Hong Kong
Pokfulam Road, Hong Kong

Email: tse@csis.hku.hk

Abstract of software analysis and design. Software theories, such as
temporal logic, CSP and CCS, have not been fully applied
in control systems analysis or synthesis either. The core of
software engineering and that of control theory/engineering
have been developed independently of each other. The
feasibility of bringing these two cores together has rarely
been explored.

Our proposed concept of software cybernetics is to make
better use of the interplay between the core of software
engineering and that of control theory/engineering. It
treats software problems as a control problem, and control
problems as a software problem. It deals with software
problems and control problems in an integrated manner.

Software cybernetics is a newly proposed area in
software engineering. It makes better use of the
interplay between control theory/engineering and software
engineering. In this papet; we look into the research
potentials of this emerging area.

Keywords: Control engineering, software engineering.

software cybernetics

I. Introduction

Software cybernetics is an emerging area in software
engineering that explores the interplay between control
theory/engineering and software engineering [1].

As a matter of fact, the interplay between software
and control is not new. In computer-controlled systems,
control policies or algorithms must be implemented in
embedded software. There are various software tools,
such as Matlab [2], which support control systems design.
Theoretical software models may also help to develop
control theories. Finite-state automata, for instance, have
been used to represent discrete event dynamic systems,
leading to a supervisory control theory in the control

community [3,4].
The existing interplay between software and control is,

however, far from comprehensive. For example, control
theories seldom playa major role in the quality assurance

2. Software Testing in the Context of Software

Cybernetics

The feasibility and effectiveness of software cybernetics
have been demonstrated in the area of software testing by
treating the latter as a control problem [1]. The software
under test serves as the controlled object, while the software
testing strategy serves as the corresponding controller. The
software under test and the corresponding testing strategy
make up a closed-loop feedback control system. In this way,
the feedback mechanism in software testing is formalized.

By treating software testing as a control problem, we can
address an inverse problem of software testing: Given a
quantitative testing or reliability goal, how can we design
an optimal testing strategy to achieve this goal?

We should explore adaptive strategies in software
testing. Adaptive testing is the counterpart of adaptive
control in software engineering. It means that a software
testing strategy should be adjusted online as a consequence

*This research is supported in part by the Research Grants Council of
Hong Kong and the University of Hong Kong Committee on Research and
Conference Grants.

t Contact author.

1530-2059/02 $17.00 @ 2002 IEEE 240

Proceedings of the 7th IEEE International Symposium on High Assurance Systems Engineering (HASE’02)
1530-2059/02 $17.00 © 2002 IEEE

of the test results collected during software testing, since

the understanding of the software under test is improved. A

non-adaptive software testing strategy specifies the whole

test suite to be generated. On the other hand, an adaptive

software testing strategy specifies the next testing policy to

be employed for a given history of testing events. This new

testing policy in turn determines the next test cases to be

generated. In comparison with random testing (which is

commonly adopted as a benchmark for softwate testing),

adaptive testing uses fewer tests to detect more software

defects. Some initial but encouraging results have been

obtained [1,5].

(d) Cybernetic Software Engineering

Generalizing on the philosophy of treating software

testing as a control problem, we may also treat

software development as a control problem. This

should lead to a new form of software engineering,

potentially known as cybernetic software engineering.

The software under development serves as a controlled

object and the software development process serves

as the corresponding controller. The software under

development and the software development process,

together, constitute a closed-loop feedback control

system.

3. Other Directions in Software Cybernetics 4. Comparison with Artificial Intelligence

Another interesting point is that artificial intelligence

theories and control theories follow different philosophies,

and hence their applications to software engineering

problems may yield different results. In comparison
with control theories, AI theories are more concerned

with general-purpose techniques of problem solving. The

underlying feedback mechanism does not playa central

role. However, a control theory nonnally focuses on a

class of controlled objects. The controlled objects and

the corresponding controller must be distinguished from

one another. The feedback mechanism from a controlled

object to the corresponding controller plays a key role in

synthesizing the controller to achieve a given control goal.

Besides the area of software testing, we propose

the following directions in software cybernetics. Some

preliminary studies have been made in [6].

(a) Software Control Policies with Different Tolerancesfor

Failures

Modern aircraft adopt fiy-by-wire flight control

systems. Flight control laws are implemented
with embedded software components and systems.

Similarly, different software control policies may

have different degrees of tolerance towards software

failures. In order to obtain satisfactory software

control policies, both control theory and software

reliability theory should be taken into account. Neither
of them can be overlooked. 5. Conclusion

From the above overview, the software cybernetics
should be a promising area for research and practice in the
integration of software engineering and control engineering.

(b) Software Testabilil)'. Software Controllabilil)' and

Software Observabilil)'

Software testability refers to the ability that software

defects can be detected. Software controllability

refers to whether a testing process can be generated.

Software observability refers to whether a testing

process can be recorded. On the other hand, the

controllability of a control system often refers to

whether the desired state transfer can be implemented,

and the observability of a control system often refers

to whether an initial state can be estimated using the

finite history of input-output pairs of the system. Can

these concepts be unified in a single framework with a

view to improving the software quality?

(c) Bisimulation and Controllability

Blsimulation is a key notion in concurrent software

processes, and controllability is a key notion in control

systems. How can we define the controllability of

concurrent software processes? Can a general and

unified theory of bisimulation and controllability be

developed?

References

[I] K.-Y. Cai, "Optimal software testing and adaptive software
testing in the context of software cybernetics", Information
and Software Technology 44 (2002) (to appear).

[2] D. Hanselman and B. R. Littlefield, Mastering Matlab 6,
Prentice Hall, Englewood Cliffs, New Jersey (2001).

[3] P. J. Ramadge and W. M. Wonham, 'The control of discrete
event systems", Proceedings of the IEEE 77 (I): 8\-98

(1989).

[4] K. C. Wong, J. G. Thistle, R. P. Malhame and H.-H. Hoang,
"Supervisory control of distributed systems: conflict
resolution", Discrete Event Dynamic Systems: Theory and
Applications 10 (I/2): 131-186 (2000).

[5] K.- Y. Cai, T. Y. Chen, Y.-C. Li and Y. T. Yu, "On the on-line
parameter estimation problem in adaptive software testing"

(in preparation).

[6] C. Bai, K.- Y. Cai and T. Y. Chen, .'Necessary/sufficient
conditions for software defect curves" (in preparation).

241

Proceedings of the 7th IEEE International Symposium on High Assurance Systems Engineering (HASE’02)
1530-2059/02 $17.00 © 2002 IEEE

