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Abstract 
 

Wireless LANs (WLAN) are becoming ubiquitous, as 

more and more consumer electronic equipments start 

to support them. This creates new security concerns, 

since hackers no longer need physical connection to 

the networks linking the devices, but only need to be in 

their proximity, to send malicious data to exploit some 

vulnerability. In this paper we present a fuzzer, called 

Wdev-Fuzzer, which can be utilized to locate security 

vulnerabilities in Wi-Fi device drivers. Our 

experiments with a Windows Mobile 5 device indicate 

that Wdev-Fuzzer can be quite effective in confirming 
known issues and discovering previously unknown 

problems. 
 

1. Introduction 
 

Wireless LANs give individuals the freedom to stay 

connected, while moving from one coverage area to 

another. They can be used to extend a wired 

infrastructure or to replace existing ones, saving costs 

not only due to the declining prices of the wireless 

components, but also because they require no (or 

simpler) data cable installations. Nowadays WLAN 

technologies are becoming ubiquitous, and most 

consumer electronic products (such as laptops, PADs, 

cellular phones, video game consoles, digital cameras, 

printers and video projectors) are equipped with them. 

WLAN however introduce newer problems, since 

they weaken the security perimeter. In many places, 

like airports and shopping malls, there are dozens of 

rogue networks just waiting to entrap unsuspecting 

travelers to capture private information (e.g., 

usernames and passwords) [1]. Additionally, it is much 

easier to compromise WLAN equipments because 

hackers only need to be in proximity of the devices to 

perform the attack (physical connection to the network 

is no longer necessary). 

Although some security failures are due to wrong 

system configurations, many result from the 

exploitation of implementation bugs in the software 

components. In this paper, we are particularly 

interested in locating this sort of bugs (or 

vulnerabilities) in device drivers (DD) of WLAN, to 

allow their removal. These DD are the entry point of 

any device, and therefore they are the first software to 

process the potentially malicious traffic coming from 

an attacker. Moreover, almost any vulnerability in these 

DD has a catastrophic impact since they run in the 

operating system (OS) kernel. 

In general, DD provide an abstraction layer between 

the physical details of equipments and the kernel. 

Currently, they are becoming the most dynamic and 

largest part of an OS. Their design involves knowledge 

from several disparate areas, like OS internals, chipset 

details, and synchronization that are not simultaneously 

mastered by programmers or designers. Therefore, they 

are hard to implement and to maintain. Nowadays, even 

tough several programs exist to assist developers in 

increasing the quality and reliability of their driver 

implementations [6][7][8][9][10], many DD still end 

up being deployed with bugs. 

Methods for discovering vulnerabilities in DD 

depend on the availability of the driver code. If the 

code is public, then source code auditing may lead to 



good results, as one can read and check for 

implementation flaws. However, in the majority of 

situations, the code is closed. In this case, black box 

testing may be performed, where the functional 

behavior of the unit under test (UUT) is verified 

(output results) against the input values that are 

provided. Reverse engineering may also be employed 

to discover vulnerabilities, but it is costly, time 

consuming and demands profound knowledge on 

system architecture and machine code.  

Vulnerabilities can also be discovered by another 

black box testing methodology, sometimes called 

fuzzing [26][2][11]. Fuzzing consists on presenting 

malformed data to the interface of the software 

component and on observing the outcomes. This 

technique may require further refinements to catch 

more complex bugs, due to protocol specificities, but it 

can be very effective in locating several kinds of 

vulnerabilities (like TCP-IP stack problems and OS 

hangs). 

In our work, we have designed a new fuzzer 

architecture that is able to build malformed packets and 

perform attacks against a target system, independently 

of its communication media. The current 

implementation of the architecture, called Wdev-

Fuzzer, supports the Wi-Fi protocol. In the future we 

intend to extend the tool to other communication 

protocols, such as IrDA and Bluetooth.  

The tool was utilized to study the behavior of a Wi-

Fi device driver, of a handheld device running 

Windows Mobile 5. The tested scenarios simulate an 

attack against the Wi-Fi device, either when it is just 

looking for an Access Point (AP) to connect or is 

already connected. Experimental results demonstrated 

that in most cases Windows is capable of handling 

correctly the malicious packets. However, in one 

situation, a specific Beacon packet always caused a 

system hang. This implies that the DD has a critical 

vulnerability which was previously unknown. Wdev-

Fuzzer was also successfully applied to uncover other 

potential problems. For example, it was used to 

reproduce denial of service attacks with Disassociation 

and Deauthentication frames. Additionally the tests 

revealed that there might be a problem in the 

implementation of the TCP-IP stack.  

 

2. Wdev-Fuzzer 
 

2.1 The Architecture of the Wdev-Fuzzer 

The Wdev-Fuzzer is divided in 8 modules (see 

Figure 1). Message Specification is a text file that 

defines packets as a group of  fields.  Each packet  field  

 
Figure 1. Wdev-Fuzzer block diagram 

is also specified in the same file using basic data types 

that are intrinsic to the Packet Generator. 

For each basic type there is a fuzz operator that 

assigns specific values according to some given rules. 

During the construction of the packets, the Packet 

Generator takes the packet description as input, and 

uses these operators to fill in the values of the fields. 

The result is a ready-to-be-send potentially bogus 

packet. By extending the basic types and the fuzz 

operators, it is possible to build newer types and 

values, in order to meet specific protocol requirements.  

The Attack Controller controls the activity of the 

Packet Injector. It decides which next packet (attack) 

should be transmitted, based on the feedback given by 

the Monitor Listener and Packet Listener, using a 

predetermined criteria. The Packet Listener receives 

and analyzes all responses that arrive from the UUT. 

The Monitor Application and corresponding Listener 

are optional components that exchange information 

about the state of the UUT. They find out if an attack 

was successful and contribute to the decision of which 

attack should be performed next. The Packet Injector 

sends the packets to the UUT.  

The Traffic Generator is used to create and 

exchange good packets between the AP and the UUT. 

This way we can observe the system behavior when 

subject to an attack while correct data is being 

transmitted by a Real AP. 

The basic architecture of Wdev-Fuzzer can be 

tailored to several communication protocols, still some 

changes will have to be performed. For example, a new 

Message Specification has to be carried out and the 

Packet Injector and Packet Listener implementations 
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have to be updated to use the specific functions for 

sending and receiving raw packets from the media.  

 

2.2 Using Wdev-Fuzzer in 802.11 

The IEEE 802.11 architecture consists of several 

interacting components to provide a WLAN that 

supports station mobility transparently to upper layers. 

The basic service set (BSS) is the fundamental building 

block of an IEEE 802.11 LAN. The BSS coverage area 

is where the member stations (STA) of the BSS may 

remain in communication. If a STA moves out of its 

BSS, it can no longer directly communicate with the 

other members.  

The independent BSS (IBSS) is the most basic type 

of a Wi-Fi LAN, and consists of only two STA that are 

able to exchange data directly with each other. Since 

this type of network is often formed without pre-

planning it is usually referred to as an ad-hoc network.  

A BSS, instead of operating independently, may 

also be part of an extended form of network that is built 

with multiple BSSs and is interconnected by a 

distribution system (DS). In this setting, an AP gives 

access to the DS by providing DS services in addition 

to act as a STA. 

Figure 2 shows the Medium Access Control (MAC) 

message frame format for the 802.11 protocol. These 

frames may be composed by fixed length (FL) and Tag 

Length Value (TLV) field types. To facilitate message 

parsing, when FL and TLV fields appear in the same 

message, FL fields always come first. A FL field 

appears at a fixed location relative to the beginning of 

the frame and it always has the same length. A TLV 

field has three elements, a Tag which uniquely 

identifies the field, a size element which determines the 

length of the data and the data itself.  

The MAC frame types that may be exchanged 

between a pair of STAs depend on their state. The state 

of the sending STA, given by Figure 3, is defined with 

respect to the intended receiving STA. The allowed 

frame types that can be transmitted in a given state are 

grouped into classes. In State 1, only Class 1 frames are 

allowed. In State 2, either Class 1 or Class 2 frames are 

acceptable. In State 3, all frames are permitted (Classes 

1, 2, and 3). The frame classes are shown in Table 1. 

The 802.11 standard is very large and reviews made 

by the ruling committee can take a while to be ready. 

To speed up the decision process, as well as to ratify 

important subsets of standards, nearly almost wireless 

equipment manufacturer joined the Wi-Fi Alliance. 

This group is dedicated to manage the Wi-Fi 

specification, a subset of the 802.11 standard, and 

defines the "right thing" to do if  any  ambiguity  in  the 

 
Figure 2. Generic Wi-Fi MAC frame format 

 

 
Figure 3. Relationship between messages and 

services 

Table 1. Tested Wi-Fi frames 

Frame Type 
Sub 

Type 

To 

AP 

From 

 AP 
Class 

Association Request Mgt 0 X - 2 

Association Response Mgt 1 - X 2 

Reassociation Request Mgt 2 X - 2 

Reassociation Response Mgt 3 - X 2 

Probe Request Mgt 4 X - 1 

Probe Response Mgt 5 - X 1 

Beacon Mgt 8 - X 1 

Disassociation Mgt 10 X X 2 

Authentication Mgt 11 X X 1 

Deauthentication Mgt 12 X X 1,3 

Power Save Ctrl 10 X - 3 

Request To Send Ctrl 11 X - 1 

Clear to Send Ctrl 12 - X 1 

Acknowledgment (Ack) Ctrl 13 X X 1 

Contention Free (CF) End Ctrl 14 - X 1 

CF-End + CF-Ack Ctrl 15 - X 1 

Data Data 0 X X 1,3 

(Mgt – Management, Ctrl – Control) 

 

802.11 standard arises. It is committed to guarantee the 

interoperability among vendors, assuring that all 

products with the "Wi-Fi certified logo" work together. 

In this work, we utilize the Wdev-Fuzzer to evaluate 

the Wi-Fi implementation of a Windows Mobile 5 

handheld device. Since these equipments are mostly 

used as a STA rather than as an AP, the device will be 

configured as an STA. The evaluation of an AP is left 
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out for future work. Additionally, we will not use the 

IBSS configuration because handheld devices are many 

times operated in a connected BSS. In the tested 

scenarios, the Wdev-Fuzzer is going to simulate a 

malicious AP that sends potentially erroneous frames to 

a UUT.  

 

2.3 Tested Faulty Values 

Table 2 displays the fuzz operators that are applied 

to each field type, to build Wi-Fi frames in the 

experiments. The ‘X’ character indicates that the 

operator was applied to the field and the ‘-‘ the 

opposite.  

The operator “Not present” omits an element from 

the frame. The “Repeated” operator produces multiple 

occurrences of the same field in the frame. The 

operators “All bits Zero” and “All bits One” are self 

explanatory. The “MIN” and “MAX” operators 

produce the minimum and maximum values that a field 

might contain, as stated in the 802.11 specification. 

Often, the “All bits Zero” and “MIN” operators 

produce equal values, whenever the minimum value is 

zero. The same applies for operators “MAX” and “All 

bits One”. In these cases, the “MIN” or “MAX” 

operators are not utilized, since they create test results 

equivalent to the “All bits Zero” and “All bits One” 

(respectively). 

The “Random” operator generates random values 

that are between the values produced by the “MIN” and 

“MAX” operators. At last, the “Specific Value” 

operator places a pre-defined value in a field. This 

operator is used for example to force certain frames to 

have UUT’s MAC address. 

 

2.4 Tested Scenarios 

At first we considered testing the UUT in all 3 states 

represented in Figure 3. However, since in real 

situations State 2 is only available for shorts periods of 

time, only States 1 and 3 were considered.  

Tests were carried out in 3 different scenarios (A, B 

and C). In scenario A, the UUT was in State 1, 

meaning that it was not associated or authenticated with 

any AP.  In scenario B, the UUT was in State 3, linked 

to a Real AP using no authentication. At last, in 

scenario C, the UUT was also at State 3 but using 

authentication. In scenarios B and C, the Traffic 

Generator forced the exchange of data packets between 

the UUT and the Real AP to stress the communication 

stack by opening a TCP-IP socket and exchange 

packets between the UUT and the Real AP. 

Table 2. Tested Faulty Values 

Fuzz Operator 

Fixed 

Length 

Field 

Tag Length 

Value Field 

Not Present - X 

Repeated - X 

All bits Zero X X 

MIN-1 X X 

MIN X X 

MIN+1 X X 

Random X X 

Specific Value X X 

MAX-1 X X 

MAX X X 

MAX+1 X X 

All bits One X X 

Table 3. Expected failure modes 

ID Description 

F1 
No problems were detected in the system 

execution. 

F2 Packet Listener detects invalid frame. 

F3 UUT was disassociated. 

F4 UUT was de-authenticated. 

F5 Monitor hangs. 

F6 OS hangs. 

F7 The system crashes and then reboots. 

Table 4. Detailed F1 failure mode 

ID Description 

F1A 
Device provides correct information about 

AP (either detecting it or not) 

F1B Device does not detect the AP but it should. 

F1C Device detects the AP but it should not. 

 

2.5 Expected Failure Modes 

The Packet Generator uses the Message 

Specification and the fuzz operators to build Wi-Fi 

frames. Depending on the values produced, the UUT is 

going to receive good and bad Wi-Fi frames, which 

may be handled correctly or may lead to some failure. 

Table 3 summarizes the expected failure modes of the 

UUT when it receives Wi-Fi frames. It was elaborated 

after some preliminary experiments and also based on 

information provided in the literature [15][16].  

F1 represents the case where the system appears to 

continue to work without any problems. However, in 

general, it does not mean that the injected fault was 

handled correctly. Whenever a test uses Beacon or 

Probe frames, the UUT Monitor returns some feedback 

to the Controller, saying which AP have been detected. 



In these cases, we are able to further extend F1 in three 

other categories, as represented in Table 4.  

F1A represents the scenario when the Monitor 

correctly reports the information about the AP, either 

because it was detected (the packet was well-formed) 

or because it was not detected (the packet was 

incorrectly formed, and therefore, the UUT discarded it 

and the report indicates no AP). The F1B value applies 

to the cases where the Monitor does not detect the AP 

but it should, and F1C corresponds to the cases where 

the AP is detected but it should not. 

When the UUT is at State 3, the F3 failure mode 

means that the device became disassociated from the 

AP, as a result of some attack. Likewise, the F4 mode 

indicates that the attack successfully deauthenticated 

the UUT from the AP.  

F5 failure mode signals that the Monitor 

Application hangs as a consequence of an attack, 

denoting that some problem with the DD has 

propagated to the application. Whenever the OS hangs, 

the F6 mode is used. The F7 failure mode happens if 

the system crashes and then reboots. 

 

3. The Testing Infrastructure 

In the Windows OS family, the Network Driver 

Interface Specification (NDIS) defines a standard 

Application Program Interface (API) for Network 

Interface Cards (NIC's). The details of a NIC hardware 

implementation can be wrapped by a Media Access 

Controller (MAC) device driver, in such a way that all 

NIC's for the same media (e.g., Ethernet) are accessed 

using a common API. Applications interact with NIC's 

through a stack of device drivers, where each driver 

adds functionality to the entire communication 

infrastructure.  

Probably, the main difficulty in building a Wi-Fi test 

infrastructure is the implementation of the operations 

for injecting and capturing the Wi-Fi raw frames. Our 

first attempt to address the problem utilized a filter DD 

that was placed in the lower parts of the driver stack, 

hoping to intercept packets sent and received by each 

NIC (as well as control instructions given by the OS to 

the DD). Windows, however, implements the Wi-Fi 

protocol in the MAC DD, which emulates the Ethernet 

protocol to the drivers above it. Therefore, our DD was 

only able to capture Ethernet frames and not Wi-Fi raw 

frames.  

Still there are other possible ways for capturing Wi-

Fi frames in Windows, neither of them very easy to 

achieve. One approach is using an internal interface to 

the MAC  DD,  but  to  the  best  of  our  knowledge  

no vendor provides it. Another  consists  in  developing 

 

Figure 4. The process of fuzzing Wi-Fi frames 

our own MAC DD, but this would require a direct 

interaction with the NIC and complete knowledge of its 

specification (something that usually is not available). 

A commercial solution based on this idea is Airpcap 

[5], which uses a proprietary MAC DD and their own 

capture hardware.  

In the end, we decided to build a heterogeneous 

testing infrastructure, since in Linux there are several 

cards and open drivers that support Wi-Fi frame 

injection and capture (although not every NIC can be 

used due to hardware limitations). One simple way to 

find them is to search in the Internet for Wi-Fi sniffers 

and look for compatible NICs. Figure 4 displays the 

current testing infrastructure that is composed by 4 

components: the Controller Machine, the Mobile 

Device (UUT), the Host PC and the Real Access Point.  

 

3.1 Controller Machine and UUT 
 

The Controller Machine generates the Wi-Fi packets 

containing malicious data (e.g., out-of-bound values, 

repeated tags) and sends them through the Wi-Fi 
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interface to the UUT. Each packet is sent several times 

to assure that the UUT is able to receive it. 

This element also monitors the outcomes of the 

tests, and saves the collected data in the disk for future 

analysis. Currently, the Controller is installed in a 

Linux OS machine, with the MadWi-Fi driver [3] for 

wireless LAN chipsets from Atheros. The Packet 

Injector uses a modified version of Lorcon [4] as a 

generic library for injecting Wi-Fi frames. The Monitor 

Listener receives any incoming frames from the 

Monitor installed in the UUT and forwards this 

information to the Attack Controller to synchronize the 

next attack. The Packet Listener informs the Attack 

Controller of each incoming packet sent by the UUT. 

These packets have to be carefully examined to detect 

any unexpected behavior. 

The UUT is the target Wi-Fi device of the 

experiments. It runs a Monitor Application that 

regularly connects to the Monitor Listener of the 

Controller, informing the current list of detected AP 

and the status of any existing connection. This data is 

especially useful when testing Beacon and Probe 

frames, as the detection of the AP is crucial to 

determine the correction of the error handling 

mechanisms.  

 

3.2 Host PC and Real AP 

The UUT is physically attached to the Host PC 

through an USB port. This way, the Monitor 

Application can reach the Attack Controller through an 

out of band link, leaving the Wi-Fi medium free for the 

experiments. The Host PC runs Windows XP and 

Microsoft’s ActiveSync, allowing the communication 

between the UUT and the Host PC with TCP over 

USB, which is then followed by TCP over Ethernet  in 

the connection between the Host PC and the Controller 

Machine.  

To keep the complexity of the code of the Controller 

manageable, a Real AP is utilized to take the UUT 

through the various states of the Wi-Fi protocol. This 

way, specific frames can be injected in every state. The 

Real AP was implemented in Windows XP using an 

off-the-shelf AP application. 

 

4. Experimental Results 

This section presents the results of the various 

experiments carried out with the Wdev-Fuzzer in an 

802.11b network. The test bed was composed by a 

Controller Machine implemented in a Dell Optiplex 

170L Pentium IV computer, installed with Fedora Core 

6. It used a NetGear WPN311 wireless PCI card and 

the built-in Ethernet card as communication means. 

The UUT was an HP iPAQ hw6915 PDA running 

Windows Mobile 5 and equipped with a built-in Texas 

Instruments Wi-Fi chip. The Host PC machine was a 

HighScreen Pentium IV computer with Windows XP 

Professional Edition. The UUT was attached to an 

USB port on the Host and uses ActiveSync 4.1 build 

4841 to establish the connection. This machine was 

also equipped with an Ethernet card, which was 

connected to the Controller Machine with a 100Mbits 

link. It also hosts the Real AP using a GigaByte 

AirCruiser GN-WP01GS wireless PCI card and the 

companion AP application. The UUT was attached to 

an USB port on the Host PC and placed at about 2m 

distance from the Controller Machine and the Real AP.  

 

4.1 Observed Failure Modes 

The results of the test campaigns are displayed in Table 

5 and Table 6. A total of 89489 attacks were carried 

out for each of the three scenarios. The tables only 

show the outcomes for frames that flow from the AP to 

the UUT (see Table 1), since frames on the other 

direction never caused any problems (i.e., the failure 

mode was always of type F1).  The first column of the 

tables shows the field type being tested, and the second 

column displays how many different values were tried. 

The following columns display the results obtained for 

the various different frames. The ‘-‘ character is used to 

indicate that the corresponding field does not belong to 

the frame being tested, otherwise it is filled with the 

code of the observed failure mode (see Table 3).  

Since in most cases the result was F1, to make the 

table reading simpler, the number of times that it 

occurs is omitted (it is equal to number of tried values 

displayed in the second column). For failure modes 

different than F1, the table presents in the cell the 

number of tests that caused a problem. 

4.1.1 Failure Modes in Scenario A 

 

The UUT is in State 1 in the test campaign of 

scenario A. The UUT is placed in this state by 

powering on the Wi-Fi component of the device and by 

making sure that no association exists with any STA or 

AP. The test results for this scenario are displayed in 

Table 5. It shows that in general the UUT was able to 

handle correctly the malicious frames. Nevertheless, 

some interesting outcomes were observed for certain 

specific scenarios, which are summarized in the 

following points. 

  

 



Table 5. Observed failure modes in scenario A 
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Protocol*  

Version 
4 F1 F1 F1 F1 F1 F1 F1 F1A F1A F1 F1 F1 

To/From* 

DS 
4 F1 F1 F1 F1 F1 F1 F1 F1A F1A F1 F1 F1 

More Flags* 2 F1 F1 F1 F1 F1 F1 F1 F1A F1A F1 F1 F1 

Retry* 2 F1 F1 F1 F1 F1 F1 F1 F1A F1A F1 F1 F1 

Power* 

Management 
2 F1 F1 F1 F1 F1 F1 F1 F1A F1A F1 F1 F1 

More* 

Data 
2 F1 F1 F1 F1 F1 F1 F1 F1A F1A F1 F1 F1 

WEP* 2 F1 F1 F1 F1 F1 F1 F1 F1A F1A F1 F1 F1 

Order* 2 F1 F1 F1 F1 F1 F1 F1 F1A F1A F1 F1 F1 

Duration 3500 F1 F1 F1 F1 F1 F1 F1 F1A F1A F1 F1 F1 

RA/Addr1 8 F1 F1 F1 F1 F1 - - - - - - - 

TA/Addr2 8 - - - - F1 - - - - - - - 

DA 8 - - - - - F1 F1 
7x 

F1C 

7x 

F1C F1 F1 F1 

SA 8 - - - - - F1 F1 F1A F1A F1 F1 F1 

AID 15 - - - - - F1 F1 - - - - - 

BSS ID 8 - - F1 F1 - F1 F1 F1 F1 F1 F1 F1 

Addr3 8 - - - - F1 - - - - - - - 

Sequence 

Control 
10 - - - - F1 F1 F1 F1 F1 F1 F1 F1 

Addr4 7 - - - - F1 - - - - - - - 

Frame Body 7 - - - - F1 - - - - - - - 

TimeStamp 6 - - - - - - - F1A F1A - F1 - 

Beacon** 

Interval 
2700 - - - - - - - F1A F1A - F1 - 

Capabilities** 2050 - - - - - F1 F1 F1A F1A - F1 - 

SSID** 1275 - - - - - F1 F1 
32x 

F1B 

32x 

F1B 
F1 F1 F1 

Supported** 

Rates 
256 - - - - - F1 F1 F1A F1A F1 F1 F1 

FH** 

Parameter 
256 - - - - - F1 F1 F1A F1A F1 F1 F1 

DS** 

Parameter 
256 - - - - - F1 F1 F1A F1A F1 F1 F1 

CF** 

Parameter 
256 - - - - - F1 F1 F1A F1A F1 F1 F1 

IBSS** 

Parameter 
256 - - - - - F1 F1 F1A F1A F1 F1 F1 

TIM** 256 - - - - - F1 F1 F1 
1x 

F6 
F1 F1 F1 

Reason Code 15 - - - - - - - - - F1 - F1 

Status Code 5 - - - - - F1 F1 - - - F1 - 

Auth. 

Algorithm Nbr 
5 - - - - - - - - - - F1 - 

Auth. 

Transaction 

Nbr 

5 - - - - - - - - - - F1 - 

Other TLV** 1255 - - - - - F1 F1 F1 F1 F1 F1 F1 

* Frame Control, **Tag Length Value 
 

 

 

 

Table 6. Observed failure modes, scenario B and C 
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Protocol* 

Version 
4 F1 F1 F1 F1 F1 F1 F1 F1A F1A 

1x 

F3 
F1 

1x 

F4 

To/From*  

DS 
4 F1 F1 F1 F1 F1 F1 F1 F1A F1A 

3x 

F3 
F1 

3x 

F4 

More Flags* 2 F1 F1 F1 F1 F1 F1 F1 F1A F1A 
1x 

F3 
F1 

1x 

F4 

Retry* 2 F1 F1 F1 F1 F1 F1 F1 F1A F1A 
1x 

F3 
F1 

1x 

F4 

Power* 

Management 
2 F1 F1 F1 F1 F1 F1 F1 F1A F1A 

1x 

F3 
F1 

1x 

F4 

More* 

Data 
2 F1 F1 F1 F1 F1 F1 F1 F1A F1A 

1x 

F3 
F1 

1x 

F4 

WEP* 2 F1 F1 F1 F1 F1 F1 F1 F1A F1A 
1x 

F3 
F1 

1x 

F4 

Order* 2 F1 F1 F1 F1 F1 F1 F1 F1A F1A 
1x 

F3 
F1 

1x 

F4 

Duration 3500 F1 F1 F1 F1 F1 F1 F1 F1A F1A 
3500x 

F3 
F1 

3500x

F4 

RA/Addr1 8 F1 F1 F1 F1 F1 - - - - - - - 

TA/Addr2 8 - - - - F1 - - - - - - - 

DA 8 - - - - - F1 F1 
7x 

F1C 

7x 

F1C 

2x 

F3 
F1 

2x 

F4 

SA 8 - - - - - F1 F1 F1A F1A 
1x 

F3 
F1 

1x 

F4 

AID 15 - - - - - F1 F1 - - - - - 

BSS ID 8 - - F1 F1 - F1 F1 F1 F1 
1x 

F3 
F1 

1x 

F4 

Addr3 8 - - - - F1 - - - - - - - 

Sequence 

Control 
10 - - - - F1 F1 F1 F1 F1 

10x 

F3 
F1 

10x 

F4 

Addr4 7 - - - - F1 - - - - - - - 

Frame Body 7 - - - - F1 - - - - - - - 

TimeStamp 6 - - - - - - - F1A F1A - F1 - 

Beacon Interval 2700 - - - - - - - F1A F1A - F1 - 

Capabilities** 2050 - - - - - F1 F1 F1A F1A - F1 - 

SSID** 1275 - - - - - F1 F1 
32x 

F1B 

32x 

F1B 

1275x 

F3 
F1 

1275x 

F4 

Supported** 

Rates 
256 - - - - - F1 F1 F1A F1A 

256x 

F3 
F1 

256x 

F4 

FH** 

Parameter 
256 - - - - - F1 F1 F1A F1A 

256x  

F3 
F1 

256x 

F4 

DS** 

Parameter 
256 - - - - - F1 F1 F1A F1A 

256x  

F3 
F1 

256x 

F4 

CF** 

Parameter 
256 - - - - - F1 F1 F1A F1A 

256x  

F3 
F1 

256x 

F4 

IBSS** 

Parameter 
256 - - - - - F1 F1 F1A F1A 

256x  

F3 
F1 

256x 

F4 

TIM** 256 - - - - - F1 F1 F1A 
1x 

F6 

256x  

F3 
F1 

256x 

F4 

Reason Code 15 - - - - - - - - - 
15x  

F3 
- 

15x 

F4 

Status Code 5 - - - - - F1 F1 - - - F1 - 

Auth. 

Algorithm Nbr 
5 - - - - - - - - - - F1 - 

Auth. 

Transaction 

Nbr 

5 - - - - - - - - - - F1 - 

Other TLV** 1255 - - - - - F1 F1 F1 F1 
1255x 

F3 
F1 

1255x 

F4 

* Frame Control, **Tag Length Value 

 

 

 

 



Since Beacon frames are directed to everybody in 

the coverage area, APs should announce themselves 

using the broadcast MAC address 

(FF:FF:FF:FF:FF:FF) as the Destination Address. 

Windows Mobile, however, reports a new AP when the 

Destination Address uses a distinct MAC address (see 

row DA). This occurs even when the Destination 

Address is different from the MAC address of the 

UUT. This behavior is an implementation issue and 

doesn’t seam to be a problem.  

SSID is the identifier of the AP, and it has a 

maximum size of 32 characters. The experiments show 

that the UUT does not report an existing AP if the 

SSID field has ‘0x00’ as one of the ASCII characters of 

the identifier (see row SSID). The same behavior was 

also seen when we run an equivalent test with another 

Windows Mobile equipment, which gives evidence that 

this problem may extend to several other 

implementations. From a security perspective, this 

behavior is undesirable since it allows the creation of 

networks which are hidden from certain devices (e.g., a 

group of hackers could keep a network secret if they 

found out that the security officers use a Windows 

Mobile-based solution for diagnosing Wi-Fi networks). 

When multiple SSID fields are sent in a given 

frame, the UUT assumes the last value as the correct 

one. If other vendors take a different view, and choose 

for instance the first SSID, then this could lead to 

incompatibility problems. The 802.11 specification 

does not address this particular issue. 

Whenever the UUT receives a Beacon frame with a 

TLV field with TAG = 5 (Traffic Information Map – 

TIM), Length = 255 and Value = 0xFF, the OS hangs 

at the first user interaction with the device (see F6 

value in row TIM). The same kind of failure also 

occurred when the UUT was in States 2 and 3, as 

shown in Table 6. When a similar test was made with 

another Windows Mobile equipment, everything went 

fine and no hangs were felt. This probably means that 

the flaw is in HP iPAQ device driver. Even so, the 

vulnerability is critical from an availability standpoint 

because exploitation is simple (e.g., since Beacon 

frames are processed in all states, a hacker would only 

need to walk around with a malicious AP to hang all 

vulnerable devices in a surrounding area). 

The Probe Response failure modes were identical to 

the Beacon frame, with the exception of the TIM field 

where no OS hangs were seen. 

4.1.2 Failure Modes in Scenario B 

 

To   perform   the   experiments  corresponding   to  the 

scenario B, the UUT was associated and authenticated 

to the Real AP using no encryption protocol. The 

results for the Beacon and Probe Response frames are 

equivalent to those obtained in scenario A, which is not 

surprising, as the process of detecting APs while 

connected to another AP remains the same.  

Fuzzing Disassociation and Deauthentication frames 

confirmed a known problem with the Wi-Fi protocol. 

Since the various fields of the frame are not 

cryptographically protected with some authentication 

data (e.g., a message authentication code), a rogue AP 

can transmit Disassociation and Deauthentication 

frames and cause the Wi-Fi communication to be 

disrupted (i.e., the Wi-Fi protocol is vulnerable to a 

Denial of Service (DoS) attack). This can happen if the 

Destination Address (DA) is equal to the address of the 

associated STA or the broadcast address. Nevertheless, 

we found out that several checks are made before 

accepting the frames, making the attack harder to 

execute. Several flags of the frame control part of the 

packet are verified (To/From DS, More Flags, Retry, 

Power Management, More Data, WEP and Order), 

reducing significantly the combinations that break the 

communication.  

We also discovered that, whenever the UUT became 

disassociated and got associated after terminating the 

attack, the Traffic Generator could not recover the 

TCP-IP communication. This aspect reveals that some 

implementation problems may exist in the TCP-IP 

stack. Contrarily, whenever the UUT become 

deauthenticate and got authenticated at the end of the 

attack, the Traffic Generator always recovered the 

TCP-IP communication. This shows that the DoS 

attacks performed with Dissassociation frames can be 

more harmful than the ones made with 

Deauthentication frames.  

4.1.3 Failure Modes in Scenario C 

 

In scenario C, the test campaign was performed with 

the UUT associated and authenticated to the Real AP 

using shared key mode encryption protocol. The results 

observed in scenario C were equal to the ones obtained 

in the scenario B. 

 

5. Related Work 
 

Fault injection methods and tools can inject 

hardware or software faults in a target system under 

test (see for example, [12][13][19][25][27][30]). By 

forcing and reproducing the occurrence of irregular and 

unusual events, they can for instance evaluate the target 

system’s ability to cope with them. The mimicked 



faults were in most cases relatively simple, such as pin-

level faults or single bit-flips in memory, registers, or 

instructions. Consequently, these techniques were 

mostly used for activities such as hardware validation 

or for the verification of fault handling mechanisms, 

and not for the discovery of security vulnerabilities. 

Robustness testing can be applied to characterize the 

behavior of software components when they face 

exceptional inputs or stressful environmental 

conditions. Most of the robustness tools have targeted 

general propose OS, by supplying erroneous inputs to 

the functions that constitute the various application 

interfaces. For instance, the Ballista tool has assessed 

several OS that implement the POSIX standard [20]. 

Similarly, Shelton et al. have made a comparative study 

of six variants of Windows [28]. Other example studies 

with these tools include real time microkernels [14] and 

middleware support systems like CORBA [22][24]. 

More recently, this technique has been applied at the 

OS device driver interface [15][16][17][23]. 

Robustness testing has however been mainly applied to 

the internal interfaces of systems, which can not be 

directly exploited by an external adversary. Therefore, 

the discovered problems in most cases do not 

correspond to security vulnerabilities. 

Fuzzing is a testing technique that generates invalid 

data and passes it to a target application for processing, 

and then observes the application to see if it fails while 

consuming the data [11]. A failure indicates the 

presence of some vulnerability, which can potentially 

be exploited by some adversary. Fuzz was one of the 

first projects to explore these ideas, and it was designed 

to test UNIX commands (and was later applied to other 

OS) [26]. It generates large sequences of random 

characters which were used as command-line 

arguments of programs. Many programs failed to 

process the illegal arguments and crashed. In the recent 

years, fuzzers have evolved into more intelligent and 

less random tools, capable of testing different kinds of 

software components (see for example, 

[18][21][29][31]). Fuzzing Wi-Fi is not new and 

reports of hacking and security problems were 

previously reported (see [32][33][34]).   

In this paper, we present the design of a tool that 

aims at finding vulnerabilities in Wi-Fi driver 

implementations. The tool works in a completely 

automatic way, and is able to test several IEEE 802.11 

commands in the various stages of the protocol 

execution. An experimental evaluation of the tool was 

performed with Windows Mobile, which has been 

extensively tested through the years. Nevertheless, as 

an interesting output of our investigation, we were able 

to uncover some previously unknown problems. 

6. Conclusions 
 

This paper presents the Wdev-Fuzzer tool, a fuzzer 

that targets device drivers of communication protocols. 

The proposed architecture is quite generic, allowing a 

detailed description of the protocol’s messages. 

Therefore, the generated attacks are very effective at 

discovering new vulnerabilities and at verifying known 

issues. Additionally, the tool can also help to perform 

some of the tasks of conformance testing, by detecting 

misbehaviors of the device driver’s implementation 

with respect to the specification of the protocols. 

The current version of the tool was utilized to 

evaluate a Wi-Fi device driver of a handheld device 

running Windows Mobile 5. The results demonstrated 

that in most cases, Windows was able to handle 

correctly the malicious frames. They also showed that 

Wdev-Fuzzer can be successfully applied to reproduce 

denial of service attacks using Disassociation and 

Deauthentication frames. The tool revealed that there 

might be a problem in the implementation of the TCP-

IP stack, uncovered by the use of disassociation frames 

when the UUT was associated and authenticated with 

an AP. Finally, it discovered a previously unknown 

vulnerability that causes OS hangs, using the TIM 

element in the Beacon frame. 
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