
Vulnerability Discovery in Multi-Version Software Systems

Jinyoo Kim, Yashwant K. Malaiya, Indrakshi Ray
Computer Science Department

Colorado State University, Fort Collins, CO 80523
[jyk6457, malaiya, iray]@cs.colostate.edu

Abstract — The vulnerability discovery process for a
program describes the rate at which the security vulnerabilities
are discovered. Being able to predict the vulnerability
discovery process allows developers to adequately plan for
resource allocation needed to develop patches for them. It also
enables the users to assess the security risks. Thus there is a
need to develop a model of the discovery process that can
predict the number of vulnerabilities that are likely to be
discovered in a given time frame. Recent studies have
produced vulnerability discovery process models that are
suitable for a specific version of a software. However, these
models may not accurately estimate the vulnerability
discovery rates for a software when we consider successive
versions. In this paper, we propose a new approach for
quantitatively modeling the vulnerability discovery process,
based on shared source code measurements among multi-
version software systems. Such a modeling approach can be
used for assessing security risk both before and after the
release of a version. The applicability of the approach is
examined using two open source software systems, viz.,
Apache HTTP Web server and Mysql DataBase Management
System (DBMS). We have examined the relationship between
shared code size and shared vulnerabilities between two
successive versions. We observe that vulnerabilities continue
to be discovered for an older version because part of its code is
shared by the newer and more popular later version. Thus,
even when the installed base of an older version has declined,
vulnerabilities applicable to it are still discovered. Our results
are validated using the source code and vulnerability data for
two major versions of Apache HTTP Web server and two
major versions of Mysql DBMS.

I. INTRODUCTION

Security vulnerabilities are of great concern because an
unpatched vulnerability can potentially permit a security
breach. Vulnerability is a software defect that can be
exploited to cause a security breach. In 2006 alone
National Vulnerability Database (NVD) [1] recorded
6600 new vulnerabilities, a 35% increase over the
previous year. Predicting the number of vulnerabilities
in a software system that will be discovered in a given
time frame is important for several reasons. It will allow
the developers to plan for allocation of resources needed
to develop patches to address the vulnerability. A quick
patch development process will reduce the exposure to
zero-day exploits which exploit the time window

between the discovery of a vulnerability and release of a
patch to remedy it. It also gives a measure of the
trustworthiness of the software. We need a quantitative
model that describes the rate of vulnerability discovery
in a given software. The vulnerability discovery is an
important component of the security risk. Quantitative
models can allow a developer to evaluate a version for
suitability of release. They will allow users to assess the
risk presented by the discovery of new vulnerabilities.
In software reliability engineering, a related discipline,

a number of software reliability growth models
(SRGMs) have been proposed that model the defect
finding rate during testing. An SRGM is a mathematical
expression that can be fitted to experimental data to
project software reliability [2,3]. For example, Musa and
Okumoto have suggested a Logarithmic Poisson SRGM
[4]. Recently, researchers have started investigating how
the vulnerability discovery process can be described
using some Vulnerability Discovery Model (VDM).
Examples of VDMs include the work by Anderson,
Rescorla, Alhazmi and Malaiya [5,6,7,8,9]. Each model
uses a different approach and has several parameters.
However, these works have emerged only recently and
many of their limitations have not yet been investigated.
The models generally assume that each piece of
software is an independent and well-defined product.
This does not account for software evolution or
maintenance. Because software typically does change
with time, and generally inherits code from a previous
version, the VDMs can exhibit some departure from real
data.
Eick et al. [10] have extensively studied software

evolution. Specifically, they showed how source code
decay caused by evolution is dependent on time. Izurieta
and Bieman [11] showed how source code evolution is
dependent on time and user requirements. Ozment [12]
considered software code sharing between major
versions of software and showed how initial source code
affected entire software reliability. However, he did not
propose any software vulnerability discovery model that
can be used for predicting software vulnerability. This
research aims to fill this gap.
We chose major versions of Apache HTTP Web server

and Mysql DBMS because Apache HTTP Web server
(58% in [13]) and Mysql DBMS (29% in [14]) market
shares are the highest among several Web servers and

10th IEEE High Assurance Systems Engineering Symposium

1530-2059/07 $25.00 © 2007 IEEE
DOI 10.1109/HASE.2007.55

141

10th IEEE High Assurance Systems Engineering Symposium

1530-2059/07 $25.00 © 2007 IEEE
DOI 10.1109/HASE.2007.55

141

10th IEEE High Assurance Systems Engineering Symposium

1530-2059/07 $25.00 © 2007 IEEE
DOI 10.1109/HASE.2007.55

141

10th IEEE High Assurance Systems Engineering Symposium

1530-2059/07 $25.00 © 2007 IEEE
DOI 10.1109/HASE.2007.55

141

10th IEEE High Assurance Systems Engineering Symposium

1530-2059/07 $25.00 © 2007 IEEE
DOI 10.1109/HASE.2007.55

141

10th IEEE High Assurance Systems Engineering Symposium

1530-2059/07 $25.00 © 2007 IEEE
DOI 10.1109/HASE.2007.55

141

DBMSs. The source code for the versions of Apache
HTTP Web server and Mysql DBMS are also freely
available. We have compared source codes of 26
versions of Apache HTTP Web server (1.3.x) [15] and
all the versions (75 versions) of Mysql DBMS (4.x and
5.x) [14] and collected their vulnerability data from
NVD to find out relationship between evolution of the
software and vulnerability detection.

The model proposed for the single version [7,8,9] uses
the hypothesis that the market share influences the
vulnerability discovery rates. As the market share
increases, so does the rate of vulnerability discovery.
When the software loses its market share, the rate of
vulnerability discovery also decreases. There is greater
motivation for finding vulnerabilities for products with a
larger market share. The market share data has been
used as a predictor for vulnerability discovery in [10].

We have investigated this model in the context of
multi-version software. Our first observation is that
when market share of a previous version is decreasing,
we sometimes see an increase in the rate of vulnerability
discovery. Our hypothesis is that the shared code
between two versions causes this anomaly. The increase
in the rate of vulnerability discovery in the previous
version when it has lost its market share is due to
vulnerabilities being discovered in the new version that
can be attributed to the shared code. We evaluated our
hypothesis on two open source systems, namely, Apache
HTTP Web servers and Mysql DBMS. The results
confirm our hypotheses. This leads us to a new model
for predicting the vulnerabilities of multi-version
software presented here.

The rest of the paper is organized as follows. Section 2
examines the software evolution and code sharing trends
in specific software systems and illustrates the impact of
software evolution on vulnerability discovery. Section 3
describes the software vulnerability discovery models
that focus on single version software and presents a new
multi-version vulnerability discovery model. Section 4
evaluates the new model using real software
vulnerability data. Section 5 concludes the paper with
pointers to directions for further research.

II. SOFTWARE EVOLUTION

Software evolution is the entire process that deals with
gradually changing software. These changes can be for
maintenance or modifications to incorporate functional
enhancements. Ideally, software evolution should
improve reliability and functionality. Realistically, that
does not always happen. New vulnerabilities may get
introduced along with new code in the process of
evolution. The goal of this paper is to understand the
relationship between evolution and vulnerability
discovery.

A. Software Evolution and Code Decay
Software evolution trend refers to the change in
software code size with time. As expected, this trend
depends on the project team and whether the project is
open-source or commercial. Mockus et al. [16] have
identified the environmental factors leading to software
evolution and its development. Godfry and Tu [17]
suggest that software evolution trend depends on
software development participants and the project
requirements. In this section, we will examine stable
development projects that have gone through a number
of versions, to see how software vulnerability discovery
is impacted. Apache HTTP Web server and Mysql
DBMS both have a several year history and are thus
good examples for relating software evolution and
vulnerability discovery.

 Ver 1.3.0 Ver 1.3.37 Ver 4.0.0 Ver 5.0.0
Release

Date 6-5-1998 7-26-2006 10-12-2001 12-23-2003

ANSI
C 92.87 92.09 62.86 42.78

Sh 5.66 6.19 4.27 2.89

Perl 1.42 1.39 6.04 2.61

CPP 0.11 0.07 20.41 42.78

Table 1. Apache and Mysql Source Code Pattern

Since they are both open-source projects, the source
codes for successive versions are available. We analyzed
the source code patterns of Apache HTTP Web server
and DBMS using SLOCcount [18]. The results are
shown in Table 1. The first two columns are for versions
of HTTP Web server and the last two columns are for
Mysql. The major fractions of the source code of
Apache HTTP Web server and Mysql DBMS are .c
and .sh files. We ignored the source code that was made
for CGI scripts. We used a comment-stripping program
to extract the original source code. This procedure was
performed on all versions of Apache HTTP Web Server
and Mysql DBMS. To get the shared code of Apache
HTTP Web server and Mysql DBMS, we used Diff and
Line counter tools that are installed in Unix and Linux.
Comparisons were performed for 26 versions of Apache
HTTP Web server (1.3.x) and 27 versions of Mysql
DBMS (4.0.x).
The software evolution and code decay relative to the

initial version are presented in Figures 1 and 2 for
Apache and Mysql respectively. The major initial
version of Apache was released in 1998 and that of
Mysql was released in 2001. The software growth for
both the systems now shows saturation. Apache HTTP
Web server has had a larger percentage of software
source code modification (43%) than Mysql DBMS
(31%). One reason for this variation may be because of
the different degree of changes in the requirements.
Since the DBMS is a much more well-defined software,
its development can be expected to be more stable than

142142142142142142

a HTTP Web server. The code size for both systems has
grown logarithmically. There were minor changes to the
functional requirements but several patches of security
were applied to the later versions in both cases. Thus,
the evolution was determined more by reliability rather
than functional requirements.

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

1.
3.
0

1.
3.
2

1.
3.
4

1.
3.
9

1.
3.
12

1.
3.
17

1.
3.
20

1.
3.
23

1.
3.
27

1.
3.
29

1.
3.
32

1.
3.
34

1.
3.
36

Version Number

LO
C
 (

Li
ne

s
of

 C
od

e)

Initial Code Added Code

Figure 1. Apache HTTP Web server version 1.3.x
evolution

0

100000

200000

300000

400000

500000

600000

4.
0.
0

4.
0.

2
4.
0.
4

4.
0.
5a

4.
0.

7
4.
0.
9

4.
0.
11

a

4.
0.
13

4.
0.
15

a

4.
0.
16

4.
0.
18

4.
0.
21

4.
0.
23

4.
0.
24

4.
0.
26

Version Number

LO
C
 (

Li
ne

s
of

 C
o
de

)

Initial Code Added Code
Figure 2. Mysql DBMS version 4.0.x evolution

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

1100000

1200000

Apr-01 Nov-01 May-02 Dec-02 Jun-03 Jan-04 Aug-04 Feb-05 Sep-05 Mar-06 Oct-06

Release Date

Li
ne

s
o
f

C
o
d
e

Mysql 4.0.x Mysql 5.0.x Shared Code 4.0.x 5.0.x
Mysql 4.1.x Shared Code 4.1.x 5.0.x

Figure 3. Mysql evolution and shared code for 4.0x,
4.1x and 5.x

Figure 3 shows code evolution of versions 4.0x, 4.1x
and 5.0x of Mysql, including the code shared between
successive versions. Each point corresponds to a
specific subversion, indicated by specific values of x.
Note that, the Mysql code evolution shows saturation for
the three versions. It also shows that code shared
between 4.0x and 4.1x as well as between 4.1x and 5.0x
have been quite stable. There is no strong relation
between software evolution and its version number. For
obtaining the relationship between code sharing and
vulnerability discovery, we need to compare successive
versions of software instead of comparing between
major versions. This is because evolution takes place
with respect to the previous version. The code sharing
between successive versions in Mysql also show
saturation. In the next section, we describe the
relationship between code sharing and vulnerability
discovery.

B. Analysis of Vulnerability and Software Evolution
The software vulnerability trend is related to software

evolution. Sometimes a vulnerability is found right
after the release of the next version. Before we explain
these trends, we discuss how to obtain vulnerability data.
The apache HTTP Web server and Mysql DBMS
vulnerability data was compiled using the following
process:

1. For Apache HTTP Web server, we collected
vulnerability discovery data for 8 years, from
5th June 1998 to 30th December 2006, by
merging data from the NVD. For Mysql DBMS,
we gathered vulnerability for six years after the
release date, between 12th October 2001 and
30th November 2006. NVD is a public
vulnerability database, which follows the CVE
(Common Vulnerability and Exposure)
vulnerability categorization developed by
MITRE [19]. Using the CVE standard for
vulnerability categorization ensures uniform
treatment of vulnerabilities.

2. We collected details from the database
resources linked with NVD to identify
vulnerabilities associated with specific versions
of Apache HTTP Web server and Mysql DBMS.
NVD data itself usually does not indicate
specific versions of the program.

3. The collected data was organized to compile
vulnerabilities for specific versions of software.
This process was needed to verify the
vulnerability data set.

Ozment [20] has examined OpenBSD, an operating
system software. Extremely few vulnerabilities found in
Apache HTTP Web server and Mysql are operating
system specific, thus we did not treat them separately.
We next investigated the relationship between

vulnerabilities and software evolution. Figure 4 shows

143143143143143143

the Apache HTTP Web server software evolution and its
vulnerability discovery. The evolution and vulnerability
discovery trends show a saturation phase. However, the
plot for software vulnerability is growing slower than
the software evolution model. Figure 5 shows the Mysql
DBMS vulnerability discovery and software evolution
trends.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Ju
n
-9

8

O
ct

-9
8

Fe
b
-9

9

Ju
n
-9

9

O
ct

-9
9

Fe
b
-0

0

Ju
n
-0

0

O
ct

-0
0

Fe
b
-0

1

Ju
n
-0

1

O
ct

-0
1

Fe
b
-0

2

Ju
n
-0

2

O
ct

-0
2

Fe
b
-0

3

Ju
n
-0

3

O
ct

-0
3

Fe
b
-0

4

Ju
n
-0

4

O
ct

-0
4

Fe
b
-0

5

Ju
n
-0

5

O
ct

-0
5

Fe
b
-0

6

Ju
n
-0

6

Release Date
Added Code in Next Version Vulnerability Discovery

Figure 4. Vulnerabilities Discovered and Code
Evolution in Apache HTTP Web server

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

O
ct

-0
1

Ja
n
-0

2

A
p
r-

0
2

Ju
l-
0
2

O
ct

-0
2

Ja
n
-0

3

A
p
r-

0
3

Ju
l-
0
3

O
ct

-0
3

Ja
n
-0

4

A
p
r-

0
4

Ju
l-
0
4

O
ct

-0
4

Ja
n
-0

5

A
p
r-

0
5

Ju
l-
0
5

O
ct

-0
5

Ja
n
-0

6

A
p
r-

0
6

Ju
l-
0
6

O
ct

-0
6

Release Date
Added Code in Next Version Vulnerability Discovery

Figure 5. Vulnerabilities Discovered and Code
Evolution in Mysql DBMS

In Figures 4 and 5, both vulnerability discovery and

software evolution show saturation. However, there is a
time gap between the onset of software evolution
saturation and that of the vulnerability discovery. From
these results, we see that the additional code in the later
versions does not exhibit an immediate relationship with
vulnerability discovery. However software evolution
explains, why software vulnerabilities continue to be
discovered. Many vulnerabilities linger for several
versions until they are discovered. For a specific version,
the vulnerabilities discovered include those introduced
in that version plus some of the inherited vulnerabilities
in the shared code. This makes modeling the
vulnerability discovery in multi-version software more
complex. In the next section we present a model to

address this.

III. SOFTWARE VULNERABILITY DISCOVERY MODEL
 Here we present a new model that accounts for the
shared code and hence share vulnerabilities in
successive versions of a software.

A. AML Vulnerability Discovery Model

0

20

40

60

80

100

120

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96Time
V

ul
ne

ra
bi

lit
ie

s /
 D

is
co

ve
ry

 R
at

e

Learning

Linear

Saturation

Figure 6. Alhazmi-Malaiya Logistic Model

The basic shape of the Alhazmi-Malaiya Logistic

(AML) model is illustrated in Figure 6. At the release of
software, the vulnerability discovery rate increases
gradually. During this phase, called the learning phase,
the software is gaining market share and installed bases
is small. In the next phase the trend is linear. The slope
here gives the maximum vulnerability discovery rate.
The final phase is the saturation phase, where the
vulnerability discovery rate slows down, and the
cumulative number of vulnerabilities asymptotically
approaches its highest value. This three phase logistic
behavior is represented by the expression for the
cumulative number of vulnerabilities Ω(t) in Equation 1.

1

)(
+

=Ω − ABtBCe
Bt (1)

where B represents the estimated total number of
vulnerabilities and the parameters A and C determine the
shape of the curve [7]. The model is based on the
assumption that the vulnerability discovery process is
controlled by the market share of the software and the
number of vulnerabilities remaining undiscovered [8].
This model has been found to yield a significant
goodness-of-fit for many widely used software systems
[7,8,9,21]. However the plots of actual data sometimes
show a departure from the model following the release
of a new version [8].
 It should be noted that this model does not require the
knowledge of the market-share data, since the market
share variation is implicit in the model itself. Alhazmi
and Malaiya have proposed an effort-based model

144144144144144144

[21,22] that uses the market share data, however that
model is not considered here. When the vulnerability
finding effort is irregular, which may be the case for
systems with limited deployment, an effort-based model
may be needed to project the vulnerability discovery
rate.

B. Multi-version Software Vulnerability Discovery
Model

The AML model assumes that the software represents
an independent and stable implementation. While the
model shows a good goodness-of-fit for many systems,
it does not explain a frequently observed sudden
increase in vulnerability discovery rate system when the
next software version is released. This anomaly led us to
investigate a multiple version software vulnerability
discovery model (MVDM), which takes into account the
impact of a new version. Nowadays practically all
common programs have several upgraded versions
because of growing user and vendor requirements. As a
result, multiple versions of some software are under use
simultaneously.

The later versions of software are expected to have
better software reliability and functionality than the
previous ones. This gives rise to a vulnerability
discovery trend different from single version VDM such
as the AML model, since the software design is changed
or new code is added from time to time. A new version
typically inherits a significant fraction of the code or
implementation from the previous version. Even when
the installed base for a specific version may have shrunk
significantly, a section of its code may be embedded in
the newer and more popular version. A vulnerability
found in the shared code of a new version, will also be
applicable to the older versions containing the shared
code. Here we propose an advanced software
vulnerability discovery model which incorporates the
impact of vulnerabilities discovered in the code
inherited by the later versions.

We assume that shared functionality and shared code
inherited from a previous version of software is tested
for vulnerabilities during usage, even if the previous
version is not in use any more. This is illustrated in
Figures 7 and 8.

The first peak in Figure 7 represents the peak
vulnerability discovery rate of the initial version of
software. The second peak indicates the peak
vulnerability discovery rate in the second version. The
small peak within the second peak represents the
vulnerability discovery in the shared code in the second
version. Figure 7 assumes that when the second version
is released, its vulnerability discovery rate starts rising
while the installed base and hence the vulnerability
discovery rate in the first version declines.

The cumulative number of vulnerabilities for earlier

version software is presented in Figure 8. The first

version software vulnerability discovery model shows
onset of a saturation phase, however due to the shared
vulnerabilities discovered in the second version of
software, the vulnerability discovery rate rises again
resulting in a distorted logistic graph. The cumulative
number of vulnerabilities Ω(t) for some given software
with multiple versions is given by an addition of two
terms.

Calendar Time

V
u
ln

e
ra

b
ili

ty
 D

is
co

v
e
ry

 r
a
te

1st Version 2nd Version
Shared part Total Version Trend

Figure 7. Multi-version Software Vulnerability
Discovery Model

Calendar Time

N
u
m

b
e
r

o
f

V
u
ln

e
ra

b
ili

ty

Figure 8. Cumulative vulnerabilities applicable to the

earlier version in a multi-version Software System

1''

'
1

)()('' +
+

+
=Ω −−− εα tBAABt eCB

B
BCe

Bt (2)

In Equation 2, the parameter α indicates shared

components such as shared code and shared
functionality, and the parameter ε is the time lag
between the release dates of the two versions. Equation
2 is referred to as the multiple version vulnerability
discovery model (MVDM). The two version modeling
concept can be generalized to multi-version software

145145145145145145

modeling as given in Equation 3.

 ∑
=

−− +
=Ω

n

i
itBA

ii

i
i iieCB

Bt
1

)(1
)(εα (3)

When successive releases are close to each other, the

summation will result in a plot that will show delayed
onset of saturation, in effect prolonging the linear phase
of the logistic curve. In the next section we estimate α
by actually measuring the amount of code shared to
validate the approach. Further research is needed to
develop more convenient empirical methods for
estimating α.

IV. EVALUATION OF THE MULTI-VERSION MODEL

Computationally the process of applying the MVDM
as given in Equation (2), is an extension of the approach
used for using the AML VDM. First we identify the
vulnerabilities limited to the earlier version, which we
refer to as pure vulnerabilities. We separate the
vulnerabilities shared between the earlier and the later
version. The fraction of code shared, represented by the
parameter α is evaluated by examination of the code for
the two versions. AML modeling is done to find the pure
vulnerability discovery data for the first version of
software. The parameters A, B and C are estimated
using statistical model fitting.

We next examine the data for the shared vulnerabilities.
Using the value of α, the parameters A’, B’ and C’ are
estimated. The plots for the MVDM are then obtained
by using addition of the two parts of the model – pure
vulnerabilities in the earlier version and the shared
vulnerabilities. Goodness-of -fit is then evaluated using
the Chi-square tests and P-value evaluation. For
comparison, the simple AML VDM is fitted for the
entire data for all the vulnerabilities, pure and shared, in
the earlier version.

 Previous
Version Next Version

Shared Code
Ratio α

Apache 1.3.24
(3-21-2002)

2.0.35
(4-6-2002) 20.16%

Mysql 4.1.1
(12-1-2003)

5.0.0
(12-22-2003) 83.52%

Table 2. Shared Source Code Ratio α

Here we apply the approach to two successive versions
of Apache – 1.3.24 and 2.0.35 and two successive
versions of Mysql 4.1.1 and 5.0.0. Table 2 gives the
values of α, in the last column, which is a measure of the
shared code.

Figure 9 shows cumulative vulnerabilities in Apache
versions 1.3.x and 2.0.x. The pure vulnerabilities in

1.3.x exhibits a saturation phase in the vulnerability life-
cycle. However, when the shared vulnerabilities from
the second version are added, the overall plot for 1.3.x
shows continuous vulnerability discovery. The fitted
plots for pure vulnerabilities of 1.3.x, vulnerabilities in
2.0.x and the shared vulnerabilities are given in addition
to overall MVDM model (given by a thick line). This
is an example of the superposition effect [10], ignoring
which can lead to inaccuracy in the estimates for the
vulnerability discovery trend.

Since in open source software, we can analyze the
structure to evaluate the shared code, we can estimate
one of the major parameters of the MVDM, and thus do
a more detailed modeling. The fitted parameter values
and the goodness-of-fit results for the Apache HTTP
web server are presented in Table 3.

0

10

20

30

40

50

60

A
ug

-9
8

Fe
b
-9

9

A
ug

-9
9

Fe
b
-0

0

A
ug

-0
0

Fe
b
-0

1

A
ug

-0
1

Fe
b
-0

2

A
ug

-0
2

Fe
b
-0

3

A
ug

-0
3

Fe
b
-0

4

A
ug

-0
4

Fe
b
-0

5

A
ug

-0
5

Fe
b
-0

6

A
ug

-0
6

Calendar Time

N
u
m

be
r

o
f

V
ul

ne
ra

b
ili

ty

Apache 1.3.x Shared Apache Pure Apache 1.3

Model pure Apache 1.3 Apache 2.0.x Model 2.0.x

Shared model Multiple version model

Figure 9. Apache Multi-version software vulnerability
discovery modeling

 A B C P
value χ2 χ2-

critical

Single
AML
Result

0.0012 54.939 0.701 1 27.79 125.46

MVDM
1st Step 0.0024 36 1

MVDM
2nd Step 0.0015 54.207 0.171

MVDM
Overall
Result

 1 9.294 125.46

Table 3. AML and MVDM Fitting result for Apache
HTTP Web server

Since in open source software, we can analyze the

146146146146146146

structure to evaluate the shared code, we can estimate
one of the major parameters of the MVDM, and thus do
a more detailed modeling. The fitted parameter values
and the goodness-of-fit results for the Apache HTTP
web server are presented in Table 3.

In Table 3, the top row gives the results for an
application of the simple AML VDM. The next two
rows show the fitted parameters for the two steps for the
MVDM. The last row gives the goodness-of-fit for the
overall MVDM. Both models show significant
goodness-of-fit through chi-square test results. The Chi-
square values suggest that the MVDM gives a better fit
than the existing AML VDM. It should be noted that the
shared code can be evaluated at the very release of the
later version, and thus α can be estimated before a
significant number of shared vulnerabilities have been
found.

To verify the general applicability of the multiple
software vulnerability discovery modeling presented in
the previous subsection, we applied it to the Mysql data
using the same methodology. We used Mysql version
4.1.x and 5.0.x, because the previous version of Mysql
is 3.2x, and its original source was coded only for Linux.
From versions 3.22 onwards, it was available for
Windows version software also. Since OS conversion
affects the number of users, the comparison between
3.2x version and 4.x version would not be meaningful.
The results of the application of the MVDM for 4.x
version and 5.x version are presented in Figure 10. The
computation method and the plots obtained are similar
as the two Apache versions.

0

5

10

15

20

25

30

35

40

D
ec

-0
1

M
a
r-

0
2

Ju
n
-0

2

S
e
p-

0
2

D
ec

-0
2

M
a
r-

0
3

Ju
n
-0

3

S
e
p-

0
3

D
ec

-0
3

M
a
r-

0
4

Ju
n
-0

4

S
e
p-

0
4

D
ec

-0
4

M
a
r-

0
5

Ju
n
-0

5

S
e
p-

0
5

D
ec

-0
5

M
a
r-

0
6

Ju
n
-0

6

S
e
p-

0
6

D
ec

-0
6

Calendar Time

N
u
m

be
r

o
f

V
ul

ne
ra

b
ili

ty

Pure Mysql 4.x Model Pure 4.x Mysql 5.x

Shared 4.x 5.x Model total 5.x Shared Model

Mysql 4.x MVDM Model Mysql 4.x
Figure 10. Mysql Multi-version software vulnerability

discovery modeling

The results for Mysql show the same pattern as for
Apache versions that we considered. The pure
vulnerabilities of Mysql version 4 show saturation

from mid 2005, however the vulnerabilities shared with
the later version have continued to be discovered, again
showing how the vulnerability discovery in the initial
version software is influenced by the later version. The
fitting results are shown in Table 4. It shows that the
MVDM results in a lower χ2 value and thus it provides a
better fit compared with using the single AML VDM.
The proposed MVDM explicitly models the shared

code and thus permits more accurate modeling. This can
potentially be used to develop methods with high
predictive capability with further investigations. The
limitation of this approach is that it uses more
parameters compared with a single vulnerability
discovery model. However, the parameters arise because
of the use of shared code, and thus this modeling
approach is meaningful for generalized software
vulnerability discovery modeling.

 A B C P
value χ2 χ2-

critical

Single
AML
Result

0.0012 60 0.8 0.99 37.12 80.232

MVDM
1st Step 0.0036 26.207 1.27

MVDM
2nd Step 0.0088 20.818 10.19

MVDM
Overall
Result

 1 35.35 80.232

Table 4. AML and MVDM Fitting result for Mysql
DBMS

V. CONCLUSIONS

Predicting the vulnerability discovery rates in major

software packages is important for both developers and
users. A few vulnerability discovery models have
recently been proposed. However these do not take
some of the characteristics of multi-version software
into account. We have examined several versions of two
open source software: the Apache HTTP Web Server
and Mysql DBMS to identify the relationship between
software evolution and vulnerability discovery. We also
proposed a new model for estimating the vulnerabilities
by taking into account the shared code among
successive versions. The MVDM was validated with
data obtained from the NVD. The proposed model
considers the impact of the life-cycles of the individual
versions on the vulnerability discovery trend for
overcoming the limitations of existing simple VDMs.
For the commercial systems that are not open source,

the successive versions of the source code will not be
available outside of the developing organization.

147147147147147147

However the approach examined in this paper can be
used internally within the organization.
 Further research is needed to enhance the accuracy of

the proposed approach. The analysis needs to be
repeated to other types of applications to establish its
general applicability. Source code base analysis may not
be enough to identify all shared vulnerabilities, because
some vulnerabilities may be inherent in a procedure or
approach coded differently in different versions of the
software. Further research is needed to compare the
higher- level behavior of the multiple versions of some
software. The need to evaluate the degree of code
sharing may be eliminated if methods can be developed
to estimate it empirically.

References

[1] National Vulnerabilities Database,

http://nvd.nist.gov, 2006
[2] Y. K. Malaiya, J. Denton, “What Do the Software

Reliability Growth Model Parameters Represent?”
Int. Symp. on Software Reliability Engineering,
1997. pp. 124-135.

[3] ReliaSoft Publishing, “Reliability Growth and
Repairable System Data Analysis Reference”,
http://www.weibull.com/relgrowthwebcontents.htm

[4] J. D. Musa, A. Ianino, K. Okumuto, “Software
Reliability Measurement Prediction Application”,
McGraw-Hill, 1987.

[5] R. Anderson, “Why information security is hard –
An Economical Prospective”, Proceedings of the
17th annual Computer Security applications
conference, 2001, pp. 358-365.

[6] E. Rescorla, “Is finding security holes a good
idea?”, In Workshop on Economics and
Information Security, 2004. Minneapolis,
Minnesota, pp. 14-19.

[7] O. H. Alhazmi and Y. K. Malaiya, "Modeling the
Vulnerability Discovery Process," Proc. Int. Symp.
Software Reliability Eng, Nov. 2005, pp. 129-138.

[8] O. H. Alhazmi, Y. K. Malaiya, I. Ray, "Measuring,
Analyzing and Predicting Security Vulnerabilities
in Software Systems," Computers and Security
Journal, Volume 26, Issue 3, May 2007, pp. 219-
228

[9] O. H. Alhazmi, Y. K. Malaiya, "Application of
Vulnerability Discovery Models to Major
Operating Systems," to appear in IEEE Trans.
Reliability, Dec 2007.

[10] S. G. Eick, T. L. Graves, A. F. Karr, J. S. Marron, A.
Mockus, “Does Code Decay? Assessing the
Evidence from Change Management Data,” IEEE
Transactions on Software Engineering, 2001, 27(1),
pp. 1-12.

[11] C. Izurieta, J. Bieman, “The Evolution of
FreeBSD and Linux”, ISESE’06, September 21–22,
2006, Rio de Janeiro, Brazil, pp. 204-211.

[12] A. Ozment, “Software security growth modeling:
Examining vulnerabilities with reliability growth
models.” In Proceedings of the First Workshop on
Quality of Protection, September 2005, Milan, Italy,
pp. 223-233.

[13] Netcraft, “April 2007 Web Server Survey”,
http://news.netcraft.com/archives/Web_server_surv
ey.html

[14] The Mysql Product achieve,
http://downloads.mysql.com/archives.php (2006)

[15] The Apache Software Foundation achieve,
http://archive.apache.org/dist/httpd (2006)

[16] A. Mockus, R. T. Fielding, J. D. Herbsleb, “A case
study of open source software development: the
apache server”, In ICSE (2000), pp. 263–272.

[17] M. W. Godfrey, Q. Tu, “Evolution in open source
software: A case study”, In ICSM(2000), pp. 131–
142.

[18] Counting Source Lines of Code (SLOC),
http://www.dwheeler.com/sloc/

[19] MITRE, http://www.mitre.org
[20] A. Ozment, S. E. Schechter. "Milk or Wine: Does

Software Security Improve with Age?",
Proceedings of The Fifteenth Usenix Security
Symposium. July 31 - August 4 2006, Vancouver,
BC, Canada, pp. 31-39.

[21] S.W. Woo, O. H. Alhazmi, Y. K. Malaiya,
“Assessing Vulnerabilities in Apache and IIS HTTP
Servers”, (DASC'06), September 29-October, 2006,
Indianapolis, USA, pp.103-110.

[22] S-W. Woo, "An Analysis of Vulnerabilities in Web-
servers and Browsers Using Time based and Effort-
based Models," Thesis, CS Dept, Colorado State
University, 2006.

148148148148148148

