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Abstract

Recent work in the area of Model-based Safety Analy-
sis has demonstrated key advantages of this methodology
over traditional approaches, for example, the capability of
automatic generation of safety artifacts. Since safety anal-
ysis requires knowledge of the component faults and failure
modes, one also needs to formalize and incorporate the sys-
tem fault behavior into the nominal system model. Fault be-
haviors typically tend to be quite varied and complex, and
incorporating them directly into the nominal system model
can clutter it severely. This manual process is error-prone
and also makes model evolution difficult. These issues can
be resolved by separating the fault behavior from the nom-
inal system model in the form of a “fault model”, and pro-
viding a mechanism for automatically combining the two
for analysis. Towards implementing this approach we iden-
tify key requirements for a flexible behavioral fault model-
ing notation. We formalize it as a domain-specific language
based on Lustre, a textual synchronous dataflow language.
The fault modeling extensions are designed to be amenable
for automatic composition into the nominal system model.

1 Introduction

Model-based safety analysis (MBSA) [8, 9, 3, 2, 15],
where the safety analysis is based on a central formal model
of the system, has been proposed to address some of the is-
sues arising due to the manual, informal, and error prone
nature of the traditional safety analysis process. Some of
the advantages of this approach include automation of parts
of the safety analysis process (e.g., auto-generation of fault
trees [4, 10, 17, 18]), providing consistent analyses, and
most importantly, tightly integrating the systems and safety
engineering processes around a central system model.

∗This project was partially funded by the NASA Langley Research
Center under contract NCC1-01001 of the Aviation Safety Program and
NASA Ames Research Center Cooperative Agreement NNA06CB21A.

Since safety analysis is performed in the context of the
entire system, MBSA requires modeling of the physical
(hardware and mechanical) components in addition to the
digital components that are typically modeled as part of
model-based development. The focus of the system safety
analysis is on analyzing the safety requirements in presence
of component faults. Thus, the MBSA approaches need to
support some notion of modeling of fault behaviors in ad-
dition to the nominal (non-failure) system behaviors. Fault
behaviors, however, typically tend to be quite varied and
complex even for simple system components. Consider,
for example, a simple mechanical valve whose nominal be-
havior is to regulate the outgoing pressure based on a posi-
tion command. Even with such a simple nominal behavior
the fault behaviors of this valve can be quite varied. They
can include fault behaviors such as the valve getting stuck
open, closed, or at some partial opening position. Numer-
ous other failure modes may also be present depending on
the manufacturer’s failure specification of the actual physi-
cal valve. More involved but realistic fault behaviors, such
as error propagations and conditional fault activations, add
even more complexity to the overall system fault behavior.

One approach to modeling these fault behaviors is to
specify them using the system modeling notation itself, and
incorporate them directly into the nominal system model.
Unfortunately, directly adding such complex fault behav-
iors into the system model tend to severely clutter the model
with failure information. This added complexity typically
obscures the actual non-failure system functionality making
model creation, development, inspection, and maintenance
difficult. In the absence of tool-support, the incorporation of
the fault behaviors is performed manually, leading to error-
prone extension of the model with fault behavior.

To address these issues, we believe it is crucial to have
the ability to separate the fault behavior from the nominal
system model in the form of a “fault model”, and at the
same time provide a mechanism for combining the two to
perform meaningful safety analysis. In addition, having a
notation that is specifically targeted for fault modeling will
promote ease of specification of complex fault behaviors,



such as error propagations and fault hierarchies, allowing
the engineer to create simple but realistic models for precise
safety analysis. In this paper, we identify the key require-
ments for flexible behavioral fault modeling. We propose a
prototype implementation of these requirements as domain-
specific fault modeling extensions to the synchronous data-
flow language Lustre [7]. This notation, LustreFM, also
enables automatic composition of the fault model into the
nominal system model that can then be analyzed for safety.
These language extensions can be easily mapped to other
synchronous dataflow languages with minor modifications.

The rest of the paper is organized as follows. In Sec-
tion 2, we motivate the problem and identify the require-
ments on flexible fault modeling. In Section 3, we enumer-
ate the key behavioral fault modeling requirements based
on which we propose the domain-specific LustreFM nota-
tion in Section 4. Section 5 provides a brief discussion of
the ongoing work. Section 6 discusses some of the related
work in the area of fault modeling, which is followed by a
conclusion.

2 Behavioral Fault Modeling Illustration in
Simulink

We motivate the behavioral fault modeling requirements
with the help of an aircraft Wheel Brake System example.
We model this example using Simulink [12], a graphical
synchronous dataflow language commonly used for mod-
eling digital control systems in the safety-critical systems
domain. By modeling both the nominal component as well
as the fault behaviors in Simulink, we expose some of the is-
sues with using existing system modeling notations for fault
modeling.

Wheel Brake System: The Wheel Brake System (WBS),
as described in ARP 4761 [20], provides braking pressure
to the aircraft wheels. We chose this example primarily be-
cause the ARP 4761 document is used as the main reference
for safety assessment by the majority of the safety engineers
in the avionics community. The WBS consists of a digital
controller, the Braking System Control Unit (BSCU), and
the hydraulic pipe assembly that carries the braking pres-
sure to the wheels. Based on the safety requirement that
loss of all wheel braking shall be less probable than 5 ·10−7

per flight, a design decision was made that each wheel has
a brake assembly operated by two independent sets of hy-
draulic pistons. One set is operated from the Green pump
and is used in the normal braking mode. The alternate brak-
ing system is on standby and is selected automatically when
the normal system fails. Switch-over between the hydraulic
pistons and the different pumps is automatic under various
failure conditions, or can be manually selected.
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Figure 1. Part of the Wheel Brake System

We use only a small part of the WBS consisting of the
hydraulic pumps, the isolation valves (used to isolate one of
the hydraulic lines in case of a failure), and the connecting
pipes (as shown in Figure 1) to illustrate realistic behavioral
fault modeling in Simulink.

2.1 Modeling Internal Faults

Internal faults1 are intrinsic to a component and originate
from within the component boundary. From the behavioral
modeling point of view, the internal fault behavior lies en-
coded in the component itself, representing a dormant fault.
Activation of this fault leads to a component error or fail-
ure2. Internal fault activation occurs independent of other
component failures, and can be modeled using an indepen-
dent system input or a triggering condition.

As an example, consider the nominal behavior of a
simple isolation valve as shown in Figure 2. There are
two instances of this valve, Green IsolationValve
and Blue IsolationValve in the WBS. It has two
inputs; ValveShut is a boolean input that controls
whether the isolation valve is open (False) or shut
(True), and PipePressure that captures the pressure
on the incoming pipe connected to the valve. The output
Pressure Out models the regulated pressure that goes
out on the outgoing pipe. The nominal behavior of the valve
can then be captured with a simple Simulink Switch block
– if the middle boolean input (ValveShut) is true, then

1For terminology details we refer the reader to [1].
2This is always true in the case of synchronous dataflow models, as

each component executes every time step irrespective of whether its output
gets used elsewhere or not, which may or may not correspond to reality.
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Figure 3. Extended Isolation Valve

the top input of the switch block (a constant value of zero)
is forwarded to the output, otherwise the bottom input (in-
coming PipePressure) gets forwarded.

We can now define two internal faults on this valve;
Stuck at Open (the outgoing pressure is the same as the
incoming pressure) and Stuck at Closed (the outgo-
ing pressure is zero). These faults are captured by sim-
ple Simulink blocks by the same name. We can now
extend the nominal behavior of the isolation valve with
these two fault behaviors. We need two independent
fault activation triggers for activating these two indepen-
dent faults, call them Trigger Stuck at Closed and
Trigger Stuck at Open.

Another basic consideration for fault modeling is the
duration of the fault. One can define a permanent fault
by latching the trigger inputs once activated. In case of
transient faults, we want the activation triggers to be non-
deterministic, in which case, the triggers are plain inputs.

Since we are defining two fault behaviors that affect the
same output of the component, there is potential for a con-
flict between them when both faults are activated at the same
time. We need to define priorities to break such a conflict.
In this case, we define Stuck at Open with a higher pri-
ority than Stuck at Closed for the isolation valve. We
define an extended component that now includes the nomi-
nal component behavior with the added fault behavior tak-
ing into account the priorities as shown in Figure 3.

Basic Modeling Issues: Since extending the nominal
component behaviors with the fault behaviors also extends
the component interfaces, the additional signals have to be
wired correctly. In Simulink, if the extended component lies
deeply embedded in the system, the newly added fault acti-
vation trigger inputs have to be routed all the way up to the
topmost system level. If we decide to add new fault behav-
iors, or redefine the priorities, we have to manually identify
the affected components and make the required modifica-
tions. Also, the priority decisions lie implicit in the way
the fault behaviors are composed, without being explicitly
stated.

2.2 Modeling External Faults

The faults that get activated by interaction or interfer-
ence due to error propagation from outside the component
boundary are considered as External Faults. For example, a
power supply failure that propagates an error to all the digi-
tal components powered by that supply becomes an external
fault for those digital components. An external fault typi-
cally necessitates the prior presence of a vulnerability (i.e.,
an internal fault) that enables an external error propaga-
tion to harm the component. From the behavioral modeling
point of view, we model a component vulnerability in the
same manner as an the internal fault behavior. The external
faults differ from the internal faults in their activation—their
fault activation triggers are dependent on the error propa-
gating components as opposed to being triggered alone (as
with internal faults).

Consider the pipe assembly in Figure 1. We model the
pipes as having the nominal behavior of simply forwarding
the input pressure to the output. For simplicity, we only
define fault behaviors on the pipe components and not the
valves. We model two types of fault behaviors for pipes;
Pipe Burst (the pipe is severed and the resulting pres-
sure at the output is zero), and Pipe Leak (the resulting
pressure at the output is slightly lower that the incoming
pressure). These behaviors model both internal faults and
external fault vulnerabilities. We now consider two types of
error propagations that can occur in our example.

Error Propagation in Unconnected Components: In
our example, the normal (powered by Green pump) and the
alternate (powered by Blue pump) sets of hydraulic pipes
are independent; i.e., there is no dataflow between them.
In our Simulink model (Figure 1), we have only modeled
the logical architecture of this pipe assembly, and it does
not encode any information about the actual physical archi-
tecture. If in the physical layout the two redundant sets of
pipes are routed very close to each other, a failure of one
of the pipes (say, a pipe burst) can affect the pipe that is
routed close to it. Thus, though Pipe1 and Pipe2 do not
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Figure 4. External Fault: Propagation from an
Unconnected Component

seem to affect each other logically, there is indeed physi-
cal interference between them and a rupture of one pipe can
lead to the rupture of the other pipe. To capture this depen-
dency in the fault behaviors, we add explicit error propaga-
tion paths between these two pipes, (Figure 4). Note that the
explicit error propagations that are captured by routing the
trigger of one of the pipes to the other causes a cyclic depen-
dency between the two components (called a semantic loop
in Simulink). Synchronous dataflow languages, including
Simulink, do not allow such a cyclic dependency, and it can
be broken by adding a unit delay ( 1

Z block in Simulink).

Error Propagation in Reverse Dataflow Direction: In
our pipe assembly example, a failure of some pipe will af-
fect all the connected pipes in the assembly, provided the
connecting valve is not closed. Due to the data-flow in
the underlying architecture, the effect of the failure of a
pipe will get propagated downstream; the error propagation
downstream is implicitly captured in the model as it is in
the same direction as the dataflow. Thus, Pipe Burst
of Pipe1, will lead to no pressure in Pipe3. Observe,
however, that in our simple nominal pipe model, there is
no mechanism to propagate errors upstream. Though a
Pipe Burst failure of Pipe3 will lead to a loss of pres-
sure in Pipe1 when the connecting isolation valve is not
closed, there is no such data dependency in the nominal
model. Such an error needs to be propagated explicitly
as an external fault in Pipe1 in the direction opposite
to that of the dataflow (see Figure 5). We have replaced
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Figure 5. External Fault: Back Propagation

the Pipe3 component with an extended Pipe3 Burst
component, that embeds the fault behavior Pipe Burst,
which can be activated by an independent trigger input,
Pipe3 Burst Trigger.

Note that the occurrence of a backward error propaga-
tion from Pipe3 to Pipe1 depends on satisfaction of
a condition: the isolation valve is not closed. In Fig-
ure 5, the condition is captured in a separate Simulink
block Pipe3BurstOutCond. This block checks if the
Pressure Out value of the isolation valve is greater than
zero (i.e., the valve is open), and if so, sets its boolean
error propagating output, Trigger Out, to true. Here
again, we need to add a delay block to break the cyclic de-
pendency created due to the backward error propagation.
Note also that the target fault behavior for Pipe1 is not
Pipe Burst but Pipe Leak to model the fall and not
complete loss of pressure in Pipe1.

Error Propagation Modeling Issues: In reality, there are
a number of possible error propagation paths between vari-
ous system components. One has to model all these error
propagations, in addition to the component internal fault
behaviors, the activation and error propagation conditions,
etc., which will dramatically increase the complexity and
clutter in the extended model. Note that adding such ex-
plicit error propagations also blurs the distinction between
the actual system architecture and the additional fault be-



havior in the extended model.

2.3 Issues with Direct Incorporation of
Fault Behaviors in System Models

As can be seen from the examples above, there are is-
sues and shortcomings with using the existing modeling no-
tations, such as Simulink, for fault modeling and incorpo-
rating the fault behaviors directly into the nominal system
model.
Model Complexity and Clutter: As one can observe from
these simple examples, the system fault behavior can get
quite complex. Directly composing the fault behaviors in
the system model tends to severely clutter and complicate
the system model. The added connections for modeling er-
ror propagations between different components hinder the
visibility of the underlying system architecture.
Manual Extension: Manually extending the nominal be-
havior with the fault behavior is error-prone, cumbersome
and leads to model evolution issues. As the system evolves,
when changes to the nominal or the fault behavior are re-
quired, one has to make these changes in a cluttered model
requiring a redo of a lot of modeling effort, which is highly
undesirable.
Lack of Language Support for Fault Modeling: Since
there is no good inherent support for fault modeling in the
synchronous dataflow language domain, one has to perform
the fault modeling activity with a system modeling mind-
set. The modeler has to deal with issues that arise when fault
modeling, for example, wiring of new signals, manually
routing the explicit error propagation paths when modeling
external faults, composing multiple fault behaviors with the
right priorities taken into account, latching the fault activa-
tion triggers inputs based on the duration, etc.

3 Behavioral Fault Modeling

Most of the issues highlighted in the previous section
can be resolved if we specify a separate fault model using
a domain-specific notation that is more suitable for repre-
senting flexible fault modeling ideas, for example, the is-
sues of fault behavior specifications and their associations
to nominal components, error propagations, permanent and
transient faults, conflict resolution, etc. identified in the
previous section. While the model-based development that
model-based safety analysis extends uses the nominal sys-
tem model for driving a variety of activities, such as code-
generation, test-case generation, etc., the fault model is used
solely for the purpose of safety analysis. Keeping the fault
and system models separate helps the separate evolution and
usage of the two models.

We can address the manual extension issue by making
the notation amenable to composition using an automatic

composition tool, which will take care of all composition
and wiring issues and generate an extended model with the
required fault behavior inserted in the right places. This will
now eliminate the error-prone manual extension required
otherwise.

Based on our experiences in model-based development
and safety analysis we have defined a set of requirements
on such a Behavioral Fault Modeling Language.

Component Fault Behavior

The notation must enable the engineer to specify component
fault behaviors for both internal faults and vulnerabilities to
external faults.

Associations to the Nominal Component

(1) Explicit Associations: Since the system fault model is
defined separate from the nominal model, the notation must
enable specifying explicit associations between the relevant
fault behaviors and the nominal components.

(2) Multiple Associations: Since a component can fail in
more ways than one, the notation must enable associations
of more than one fault behavior to a particular component.

(3) Conflict Resolution: A conflict may occur between the
multiple fault behaviors (multiple internal fault behaviors or
vulnerabilities) associated with a single component. These
conflicts must to be resolved by defining some form of pri-
orities or user-defined strategies.

(4) Nominal Component Types: For flexible associations, a
notion of component types must be supported. The user can
specify component types to group together nominal com-
ponents that have similar nominal or fault behaviors for the
purpose of easy associations.

Fault Activation

(1) Trigger and Persistence/Duration: The language shall
support the trigger and persistence specification for both in-
ternal and external faults. It shall also support the specifi-
cation of conditional fault activation, where the trigger and
the persistence will be controlled by the condition.

(2) Error Propagation Rules: For identifying and activating
the external faults, in addition to specifying the vulnerabil-
ity behaviors, the notation shall also support specification of
error propagation rules – i.e., mappings between the vulner-
abilities and the corresponding error propagating behaviors.

Fault Model Hierarchies

For more flexibility, the engineer must be able to succes-
sively specialize fault behavior definitions as the design of
the system and fault model progresses. For example, one
can define a generic stuck at failure mode for different types
of valves, which can later be specialized for different valves
as stuck at Open, stuck at Closed, etc.



4 Fault Modeling Extensions to Lustre:
LustreFM

For performing the fault modeling language extensions,
we have chosen a textual synchronous dataflow language,
Lustre [7]. Lustre shares the same underlying semantic
model as languages such as Simulink and SCADE (it is the
underlying textual notation to the graphical SCADE tool).
We preferred a textual language to a graphical notation as
the graphical notations add more complexity to the exten-
sion definitions and composition without providing any sig-
nificant conceptual advantages. Another reason for choos-
ing Lustre over other textual notations is that we have a well
established translator framework which uses Lustre as an in-
termediate language to translate from graphical languages,
such as Simulink, into input languages of formal analysis
tools, such as NuSMV [13], and PVS [16]. Thus, the system
may be originally defined in SCADE or Simulink, which
will then be transformed into an intermediate Lustre nomi-
nal system model.

Lustre: Lustre [7] is a synchronous dataflow language,
where the behavior of a Lustre program is derived from a
set of equations that assign variables. Lustre assignments
to variables are always functional, meaning that there is no
possible nondeterminism in the assigned variables. Each
variable is a function of time: any variable or expression de-
notes a flow, i.e., an infinite sequence of values of its type.
A Lustre program is effectively an infinite loop, and each
variable or expression takes the kth value of its sequence
at the kth step in the loop. Boolean, arithmetic, compari-
son, conditional operators are implicitly extended to oper-
ate pointwise on flows. Lustre also supports clocks, which
allow different portions of a specification to run at differ-
ent rates. Lustre definitions can be recursive, but the lan-
guage requires that a variable can only depend a past val-
ues of itself. A Lustre program may not contain syntacti-
cally cyclic definitions. Lustre programs are organized into
nodes, which package equations into modules that can be
reused within a program. A node consists of an interface
specification (the input and output parameters) and a body,
which declares local variables and defines the assignment
equations for local and output variables. We can specify
the nominal behavior of the isolation valve (modeled as a
Simulink subsystem instantiated twice in Figure 2) as a Lus-
tre node:

node IsoValve (ValveShut: bool ; PipePressure: int)
return (Pressure_Out: int);

let
Pressure_Out = if (ValveShut) then 0

else (PipePressure);
tel;

4.1 Component Fault Behavior

Fault behaviors can be typically captured in terms of a
regular Lustre nodes without any language extensions. To
illustrate, let us revisit the definitions of the two simple
failure modes we considered earlier, Stuck at Open and
Pipe Burst, in Lustre.

node Stuck_at_Open (Nominal_In : int)
return Stuck_Out : int;

let
Stuck_Out = Nominal_In;

tel;

node Pipe_Burst ()
return Burst_out : int;

let
Burst_Out = 0;

tel;

Note that the Stuck at Open fault behavior is in the
form of a wrapper to the nominal component behavior as it
uses the input to affect the output and bypasses the nominal
behavior. The Pipe Burst behavior on the other hand,
directly affects the nominal output (in effect, after the gen-
eration of the output using the nominal behavior). Same
holds in case of an inverted failure mode, where it inverts
the nominal component boolean output.

Modeling certain fault behaviors might necessitate
adding new inputs to the system that originally did
not exist. Consider the example of having to model
a non-deterministic fault behavior, that outputs a non-
deterministic integer. Since non-determinism is not sup-
ported in Lustre, we can model this by taking a non-
deterministic input. To capture this additional input, we
make an extension to Lustre, new, as shown below.

node nondeterministic (new nondeter_In: int)
return nondeter_Out : int ;

let
nondeter_Out = nondeter_In;

tel;

4.2 Association with the Nominal Compo-
nents

Nominal Component Types: Consider our run-
ning example as shown in Figure 1. Note that
there are two instances of the IsoValve imple-
mentation, viz., Green IsolationValve and
Blue IsolationValve in the model, but the in-
formation that these are implemented exactly the same is
lost in the Luster model. We enable specification of explicit
nominal component types to group together components
that have the same nominal implementation, and now the
component types in addition to the specific component
instances can be used for association. Part of the LustreFM
grammar is given in Figure 6.

cType IsoValve = Green_IsolationValve,
Blue_IsolationValve;



Internal Fault Association: For all internal faults, we
must explicitly specify associations to the affected nominal
components. In addition to identifying the affected nom-
inal component/type, the association also includes (1) the
affecting fault behavior(s), and (2) the fault activation infor-
mation.

The fault behavior definitions affect nominal component
variables (typically outputs), and may also use the nomi-
nal component variables (inputs, locals, or outputs); e.g., in
the Stuck at Open fault behavior, the Nominal In in-
put corresponds to a particular input of the nominal compo-
nent(s) that this fault behavior uses, and Stuck out output
corresponds to the output of the nominal component(s) that
it affects. For the fault behavior association to be automati-
cally composable, the correspondence between the fault be-
havior variables and the nominal variables must be explic-
itly specified.

Internal fault activation can be carried out based on ei-
ther (1) an explicit, independent boolean system-level input,
which captures the activation and persistence of the fault,
or (2) a triggering condition, which when satisfied activates
the fault and keeps it active for the duration it holds. In case
of explicit boolean input trigger, the persistence can be de-
fined to be either permanent (once triggered, permanently
active) or transient (triggered for an unspecified duration,
and can become dormant and active arbitrarily). An exam-
ple of a triggering condition for internal faults is when a
value failure occurs, where the component fails if the in-
coming value is not in a specified range. In this case, the
fault activation of the corresponding internal fault is con-
trolled solely by the condition that captures the violation of
this range. Thus, an internal fault activation can be specified
in terms of either the fault duration in case of the explicit in-
put, or by identifying the triggering condition.

We can now capture an example association in the fol-
lowing manner-
fm_assoc StuckOpen:IsoValve = permanent {

Pressure_Out = Stuck_at_Open(PipePressure);}

The above fm assoc association definition has a name
(StuckOpen), and refers to an affected nominal compo-
nent/type (IsoValve). On the right-hand side is the body
of the association that includes the duration (permanent)
of the associated fault(s), and a list of Lustre style equations
that correspond to node call expressions. The LHS of the
equation is the affected output(s) of the nominal component
(Pressure Out), and the RHS of the equation represents
a Lustre node call expression, with the node being a fault be-
havior node(Stuck at Open), and the parameters being
the used nominal component variables (PipePressure)
or constants.

Vulnerability Behavior Association: The association of
the fault behavior corresponding to the vulnerability can be

ctype ::= cType Nom CompTypeId‘=’Nom InstId {‘,’Nom InstId}∗‘;’
Nom CompId ::= Nom CompTypeId | Nom InstId
FMCompName ::= FM AssocName‘:’Nom CompId

Duration ::= transient | permanent
ValueCond ::= valueCondition FM NodeId
FMAssoc ::= fm assoc FMCompName = [Duration | ValueCond]

‘{’ Lustre NodeCallEqList; ‘}’

EPRule ::= ep Rule FM AssocName‘=’ FMCompName

[FM NodeId]‘→’ FMCompName‘;’

| ep Rule FM AssocName‘=’FMCompName‘↔’FMCompName‘;’

Figure 6. Fragment of LustreFM Grammar

defined similar to the internal fault association described in
the previous paragraph. However, the activation informa-
tion is not explicitly specified in this case as it depends on
the error propagating sources. It is implicitly derived based
on the error propagation rules (Section 4.4), which identify
the (conditional or unconditional) activation triggers for the
vulnerability specified.

Priority Definition for Conflict Resolution: We have an
explicit priority definition (> or =) for resolving conflicts
between fault behaviors.

4.3 Conditional Fault Activation

Conditions can be specified in the following cases - (1)
a conditional internal fault activation, or (2) a conditional
error propagation for external fault activation, or (3) an ex-
plicit boolean condition that combines more that one ex-
plicit triggers for any internal fault behavior or vulnerabil-
ity. If there are more than one activation triggers for any
fault specification and in absence of an explicit fault acti-
vation condition, the implicit condition is an OR of all the
incoming triggers affecting the particular fault behavior.

Condition as a Lustre Node: This follows the rules
defined in Section 4.1. This type of condition can be
used for both conditional activation of internal faults, and
conditional error propagation. Note that, for conditional
error propagation, the condition should always implic-
itly consider the activation of the fault behavior in the
error originating component for evaluation. For exam-
ple, the condition that captures the valve open condi-
tion (PipeBurst Cond) will be evaluated only when the
Pipe Burst fault behavior of Pipe3 component has
been activated.

node PipeBurst_Cond (Pressure_In: int)
return Trigger_Out: bool;

let
Trigger_Out = (Pressure_In > 0);

tel;



The additional trigger dependence will be added by the
composition tool, and does not need to be captured by the
Lustre node explicitly.

Condition as a Logical Operator/Expression: We also
support the specification of a boolean logical operator (e.g.,
OR) or a logical expression to combine multiple incom-
ing triggers that all meant to activate the same internal
fault/vulnerability. We skip the details for lack of space.

4.4 Error Propagation Rules

To capture the external faults, we must support the spec-
ification of the possible error propagation paths in the sys-
tem. For this current prototype implementation, we only
support explicit definitions of the error propagation paths
between arbitrary component instances (this will thus in-
clude all types of error propagations including backward
and unconnected). To explicitly define error propagation
paths, we need to consider the following: (1) the propaga-
tion originating component and its corresponding fault be-
havior, (2) the propagation target component and the cor-
responding internal vulnerability that gets affected by the
propagation, and (3) an optional condition on the outgoing
error propagation. Consider the example of an error propa-
gation rule corresponding to the backward error propagation
example we considered earlier-

ep_Rule Pipe31Prop = PipeBurst:Pipe3
PipeBurst_Cond(Green_IsolationValve.Pressure_Out)

-> PipeLeak:Pipe1;

The left-hand side of the arrow denotes the error propagat-
ing side that also has a propagating condition defined, and
the right-hand side specifies the target component and the
corresponding vulnerability definition.

4.5 Fault Model Example

Assume we have some basic fault behaviors defined as
shown in Section 4.1. In the fault model example (Fig-
ure 7), we then start by defining some basic component
types. We add the explicit internal fault behavior associ-
ations using the construct fm assoc. The vulnerabilities
(used as targets in the error propagation rules, ep Rule)
are also specified using fm assoc, but with no duration
or activation condition defined. An internal fault behavior
can be also used as a vulnerability, in which case only the
behavior is considered and the duration is dropped (excep-
tion is the use of a conditional activation association). In
the case where a vulnerability association is made to a com-
ponent type (PipeBurst:Pipe) and also a internal fault
association with the same name is made to an component in-
stance belonging to the same type (PipeBurst:Pipe3),

the component type association is overridden by the specific
component instance association.

For the unconnected error propagations between Pipe1
and Pipe2 can be captured as shown in Pipe12Prop.
The double sided arrow means that the error propagation
paths exist in both directions for the components with the
corresponding fault behaviors defined. priorities are
specified to resolve potential conflicts.

5 Discussion and Ongoing Work

With the simple fault modeling extensions that we have
defined in LustreFM, one can now model the system fault
model separate from the nominal system model. Though
we have performed these extensions for Lustre, we believe
they can be extended with minor modifications to other syn-
chronous dataflow notations, such as Simulink, that the en-
gineers are more familiar with.

We envision the practical system fault model defini-
tion process to use libraries of commonly used domain-
specific fault behaviors that that can then be specialized
(using fault hierarchies) for creating the system-specific
fault models. The reusable libraries should also include the
domain-specific error propagation rules that would capture
the implicit domain-specific constraints on the potential er-
ror propagation paths. In addition to having domain-specific
component types, for the specification of the generic er-
ror propagation rules, one would also need explicit speci-
fication of additional constraints on the direction of propa-
gation, and allowable intermediate component types. Our
ongoing work includes generalization of error propagation
rule definitions, and definition of fault hierarchies.

We are currently building an automatic composition tool
that will take the nominal system model in Lustre and the
fault model in LustreFM as inputs and output a complete
extended Lustre model with the fault behaviors added. In
addition to the syntactic information, the composition tool
must take into account semantic information such as, under-
lying architecture and data dependency information. This
fault modeling and composition technique is in the spirit
of aspect-oriented programming [11], where the fault mod-
els can be viewed as system aspects that can be statically
composed using an aspect weaver. Some of the composi-
tion issues are simplified in our domain due to the simpler
language semantics.

As a side note, the complexity of fault behavior typically
can be reduced by adding more complexity in the nomi-
nal behaviors, and vice-versa. Since most of the mechani-
cal component models are typically used only for the safety
analysis that analyzes their fault behaviors, we chose to add
most of the details in the system fault model and specify
only as much detail as needed in the nominal model to per-
form basic simulations and analysis of the nominal system



cType Pipe = Pipe1, Pipe2, Pipe3, Pipe4;
cType IsoValve = Green_IsolationValve, Blue_IsolationValve;

--Internal Faults
fm_assoc StuckOpen:IsoValve = permanent { Pressure_Out = Stuck_at_Open(PipePressure); }
fm_assoc StuckClosed:IsoValve = permanent { Pressure_Out = Stuck_at_Closed(); }
fm_assoc PipeBurst:Pipe3 = permanent { Out1 = Pipe_Burst(); }

--Vulnerabilities
fm_assoc PipeLeak:Pipe = { Out1 = Pipe_Leak(); }
fm_assoc PipeBurst:Pipe = { Out1 = Pipe_Burst(); }

ep_Rule Pipe31Prop = PipeBurst:Pipe3 PipeBurst_Cond(Green_IsolationValve.Pressure_Out) -> PipeLeak:Pipe1;
ep_Rule Pipe42Prop = PipeBurst:Pipe4 PipeBurst_Cond(Blue_IsolationValve.Pressure_Out) -> PipeLeak:Pipe2;
ep_Rule Pipe12Prop = PipeBurst:Pipe1 <-> PipeBurst:Pipe2;
ep_Rule Pipe34Prop = PipeBurst:Pipe3 <-> PipeBurst:Pipe4;

priorities { Stuck_at_Open > Stuck_at_Closed; Pipe_Burst > Pipe_Leak; }

Figure 7. Example Fault Model in LustreFM

behavior. Thus, our fault modeling support lets one keep
the nominal models simple, especially those that are added
particularly for the safety analysis, but at the same time uses
any details already specified in the nominal model.

6 Related Work

There currently exist a number of notations to specify
fault models [22, 5, 6, 4, 19, 2]. Here, we discuss some of
the most closely related notations and tools.

In the context of the ESACS/ISAAC [14] methodology,
FSAP/NuSMV-SA [4] provides an automatic fault tree gen-
eration tool based on NuSMV models. The primary focus
of their work is on automating safety analysis, and the tool
allows specification of only simple base-level component
failure modes and their automatic injection in the nominal
system model. They do not support any of the more flexible
fault behaviors, such as error propagations or multiple fail-
ure modes. We believe our fault modeling and composition
technique can complement the back-end automated analysis
work in ISAAC.

Other notations, such as the AADL Error Annex [22]
and the Failure Propagation and Transformation Notation
(FPTN) [5], support flexible error modeling including ex-
plicit specification of error (failure in FPTN) transforma-
tion and propagation. In the AADL Error Annex there are
predefined error propagation rules that define potential error
propagation paths between various types of components and
connections; e.g., A processor can propagate error to the
process that is hosted on that processor. These error propa-
gations can only occur in the direction along the dataflow in
the architecture and cannot occur where the components are
not connected to each other either through direct connec-
tions (port or access) or through explicit bindings. The main
advantage of the AADL annex, is that it enables specifica-
tion of error annotations on the original AADL [21] archi-
tecture model which provides inherent support for bindings

between the physical and logical architectural components,
which is a critical consideration for system safety analysis.
The AADL Error Annex is quite a comprehensive notation
for architectural models, and our earlier experience with this
notation [10] has influenced some of our behavioral model-
ing extensions. FPTN is a simpler notation as compared
to the AADL Error Annex. It can explicitly specify and
transform failures between three categories - value failure,
commission, and omission.

The important distinction of our approach with respect
to the AADL and FPTN notations is that we constructively
specify the fault behaviors and hence can analyze how the
fault behaviors interact with each other, and also with the
underlying nominal component behaviors. Also, the fault
behaviors that can be captured in our approach are more
flexible, e.g., modeling error propagations in the reverse
direction to the dataflow and between unconnected com-
ponents. Since we can control the activation of the faults
through system inputs, our technique can enable simula-
tions of different fault scenarios and how the system re-
sponds to such faults. Based on the feedback from a simple
simulation demonstration illustrating our MBSA approach
to a practicing safety engineer, we realized that the safety
engineers find simulation appealing for getting quick in-
sights into the system’s response and fault tolerance.

One of the main drawbacks of our current approach
arises from the limitations of the behavioral notations when
it comes to capturing the architecture of the system. For ex-
ample, the physical-logical component bindings that can be
performed elegantly in architecture description languages,
such as AADL, are not supported in these notations. In
the future, we plan to integrate the higher-level architectural
and lower-level behavioral notations to be able to derive the
benefits of both classes of modeling notations for fault mod-
eling and safety analysis.



7 Conclusion

To make model-based safety approach based on behav-
ioral models feasible, there is a need for providing language
support for specifying simple yet realistic fault models and
also providing tool support for automatically composing
the fault models into the nominal system models for analy-
sis. This paper identifies the key requirements for flexible
behavioral fault modeling for model-based safety analysis.
Based on these requirements, fault modeling-specific exten-
sions to Lustre amenable to automatic composition are pro-
posed. Though these language extensions are defined for
Lustre, they could be applied to other synchronous dataflow
languages with minimal changes. We are in the process
of implementing a composition tool to automatically ex-
tend the nominal model based on the fault model, following
which our approach can be rigorously evaluated.
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