
On Exceptions, Exception Handling, Requirements and Software Lifecycle

Alexander Romanovsky
Newcastle University, UK

alexander.romanovsky@ncl.ac.uk

Abstract

This is a position statement accompanying the

HASE-2008 panel on exception handling.

1. Introduction

It is often the case that faults and fault tolerance
are not dealt with left until late implementation
phases [1]. In a similar way, exceptions and excep-
tion handling are typically viewed as language fea-
tures. Fortunately, it is becoming clear now that ex-
ception handling should be an immanent part of all
development phases [2]. It is difficult to underesti-
mate the importance of identifying the correct and
complete set of requirements for exceptions and ex-
ception handling. Thus, at a meeting in Imperial Col-
lege, London in 2005 D. Parnas claimed that up to
80% of requirements may have to deal with excep-
tions and emphasized that there is no practical upper
bound on the number of things that can go wrong [3].

There is no widely accepted methodology for
eliciting these requirements but this is now clearly
becoming an area of very active research with several
groups already contributing: paper [4] extends use
cases to include a description of exceptional behav-
iour which uses sequences of actions performed by
the system; paper [5] does the same to express the
situations that can prevent the system from achieving
its goals; an approach in [6] is based on usage models
to allow specification and modeling of exception
handling using a requirement state machine language;
and paper [7] discusses a semi-formal specification of
fault-tolerance requirements using the concept of
deviation from requirements.

2. Issues

Several issues still need to be clarified and ad-
dressed to make the elicitation of exception handling
requirements a well-established practice.

Issue 1. What are exceptions and what is excep-
tion handling at the requirement level? These should
not be confused with the implementation level

mechanisms for forward error recovery. It is impor-
tant to understand what is normal and what is abnor-
mal for requirements. These concepts should be di-
rectly related to the concept of fault assumptions and
the system approach, perused considering the system
and its environment as potential sources of excep-
tions.

Issue 2. Why do we need these requirements?
Why not use standard features to express normal and
exceptional requirements? What are the important
differences and interplays between them which need
to be captured?

Issue 3. What are we not doing right at the mo-
ment? The existing solutions do not offer stepwise
guidelines to eliciting the requirements in a system-
atic and rigorous way, so that all stakeholders’ con-
cerns are taken into account, inconsistencies and in-
completeness avoided, and traceable requirements
which can be used at the later phases produced.

Issue 4. What do we do with these requirements?
How can they be smoothly transformed and used in
the later phases (e.g. architectural design, specifica-
tion)?

3. References
[1] A. Romanovsky. A looming fault tolerance software
crisis? ACM SIGSOFT SE Notes. 32(2). 2007.
[2] R. de Lemos, and A. Romanovsky. Exception handling
in the software lifecycle. Comp Syst Sci&Eng, 16(2). 2001.
[3] Requirements Quarterly. Newsletters of the RE Special
Group of the British Computer Society. RQ36, June 2005.
[4] C. M. F. Rubira, R. de Lemos, G. R. M. Ferreira, and F.
Castor Filho. Exception handling in the development of
dependable component-based systems. Software – Practice
and Experience. 35. 2005.
[5] A. Shui, S. Mustafiz, and J. Kienzle. Exception-Aware
Requirements Elicitation with Use Cases. Advanced Topics
in Exception Handling Techniques. LNCS-4119. 2006.
[6] W. Bail. An Approach to Defining Requirements for
Exceptions. Ibid.
[7] A. Berlizev, and N. Guelfi. Engineering Fault-tolerance
Requirements using Deviations and the FIDJI Methodol-
ogy. Workshop on Methods, Models and Tools for Fault
Tolerance, IFM-2007. Newcastle Un., CS-1032. UK. 2007.

