
 1

On the Verifiability of Programs Written in the Feature Language Extensions

Wu-Hon F. Leung
Computer Science Department, IIT

leung@iit.edu

Abstract
High assurance in embedded system software is

difficult to attain. Verification relies on testing. The
unreliable and costly testing process is made much
worse because the software base constantly changes:
Adding a feature is by changing the code of other
features, and the programs of the features entangle in
the same reusable program unit of the programming
language. For a large class of applications, including
those requiring exception handling, this entanglement
problem cannot be solved using existing general
purpose programming languages. The Feature
Language Extensions (FLX) is a set of language
constructs designed to enable the programmer to solve
the entanglement problem. It provides language
support for assertion based verification. The
satisfiability of first order assertions composed of
variables defined by FLX can be determined without
iterations of trials and errors. An executable FLX
program is compiled into a finite state machine even if
the state variables are unbounded.

1. Introduction

High assurance in embedded system software is
difficult to attain. Its verification relies on instance by
instance testing. The costly and unreliable testing
process is made much worse because the software base
constantly changes as new features are added. Changing
code is labor intensive and error prone. When a feature,
which denotes a functionality of the software, is
developed by changing the programs of other features,
the programs of the different features entangle in the
same reusable program unit (such as a method) of the
programming language. The entanglement often
scatters into many program modules. It also makes the
feature programs difficult to maintain, reuse and adapt
to different user needs.

The problem of program entanglement is best
illustrated with an example. With existing general
purpose programming languages, the programs of
normal processing and exception handling features are
entangled. If a device driver needs to throw a new
exception, all the programs that directly or transitively

call the device driver may have to be changed. In larger
development projects, this often means manually
reviewing millions of lines of code.

Java offers a partial solution as it can identify the
programs that need to be changed if its compiler
happens to type check the new exception. Most other
languages offer no help. The programmer either has to
manually go through a large amount of code, or leaves
the exception uncaught. Uncaught exceptions will crash
the application and even the system. It happens often in
some popular software. But that is not acceptable for
high assurance software.

A solution to high assurance software should,
therefore, enable the programmer to develop the
programs of a feature without entangling with the
programs of other features, and to verify his software
formally based on assertion instead of instance by
instance testing. These are the design objectives of the
Feature Language Extensions (FLX). FLX is a set of
programming language constructs with an
implementation on Java. The implementation is
analogous to C++ which added object oriented
programming language constructs to C.

In an earlier paper, we showed that the program
entanglement problem cannot be solved using existing
general purpose programming languages for a large
class of applications [17]. A main reason is that these
languages require the programmer to specify execution
flows. FLX supports nonprocedural programming that
does not ask the programmer to specify the execution
flows of program units. It provides language constructs
for the programmer to specify a feature and to integrate
features into feature packages.

There has been significant advances in the art of
verifying computer systems. It is becoming routine to
apply assertion based verifier to hardware design.
However hardware designs are mainly composed of
finite state machines and its assertions are Boolean
formulas (as its variables are binary variables). But in
software, a state variable may be unbound (such as
when it is an integer), and one must reason on predicate
logic asking questions such as whether a link list is
empty. Verification of software systems is therefore
much more difficult.

 2

Our approach is to use programming language
design to reduce the complexity. An executable FLX
program is compiled into a finite state machine with
relatively small number of states even if the state
variables used in the program are unbounded. Secondly,
FLX provides language facilities for the programmer to
provide semantic input such that determining the
satisfiability of first order predicate formulas composed
of variables defined using FLX does not require
iterations of trials and errors.

The paper is organized as follows. In section 2, we
discuss the nature of the program entanglement
problem and the challenges of applying assertion based
verification to software. The foundation constructs of
FLX are overviewed with examples in section 3. The
language support and algorithm to determine the
satisfiability of first order formulas written in FLX are
described in section 4, as well as the fact that an
executable FLX program is a finite state machine. The
paper concludes in section 5.

2. Program Entanglement and Verifiability

2.1 Program Entanglement and Feature
Interaction

The program entanglement problem is related to the
notion of feature interaction. Two features interact if
their behavior changes when they are integrated
together. Features are implemented by computer
programs, and for the purpose of this paper, the
behavior of a computer program is manifested in its
output and the sequence of program statements that gets
executed for a given input. The term feature interaction
was first introduced by developers of
telecommunications systems [13] to describe
circumstances like when a phone is called, the
programs of the plain old telephone service (POTS) will
ring the phone, but if call forwarding is added, the
combined program will give a ping-ring then forwards
the call to another phone. The concept is common place
and not confined to telecommunication software.

Feature interaction is common in embedded systems.
Take the Internet TCP protocol [23] as an example.
Before its congestion control feature is developed, a
duplicated acknowledgement will prompt its reliable
data transport feature to retransmit. After congestion
control is added, the same message may cause the
sender to retreat to slow start. Applications that desire
exception handling encounter feature interaction.
Without exception handling, a program running on
UNIX will crash when someone hits control-c. When
exception handling is added, the program does not
terminate and may even ask “why are you hitting

control-c?” Call forwarding, congestion control and
exception handling have been called features, services,
concerns or aspects interchangeably in the literature.

Feature interaction and program entanglement is
related in the following way [17]: If (C1) two features
interact, (C2) they are executed in the same sequential
process, and (C3) the implementation programming
language requires the programmer to specify execution
flows, then their programs will entangle. If the two
features do not interact, it is not necessary that their
programs entangle. In other words, feature interaction is
a main reason for program entanglement.

The above conditions imply that the entanglement
problem cannot be solved by software design alone.
The programs of TCP are notoriously entangled (e.g.
see [21]) and have frustrated many efforts to improve
them. It is not because their programmers lacked skill;
they could not help it. The entanglement conditions also
explain why existing general purpose programming
languages cannot separate normal processing and
exception handling features. C1 and C2 are often
dictated by the application such as in the case of TCP
and in exception handling. Changing C3 is then
essential in solving the program entanglement problem.

We call the conditions under which the behavior of
two interacting features will change their interaction
conditions. Presently, the programmer must examine
code line by line to determine when the conditions
become true and resolves the interaction by changing
feature code to specify the new behavior. Because the
features are integrated by changing the code of one
another, they are not easily separable and are not
reusable without one another. A solution to the program
entanglement problem should therefore meet these
requirements: (R1) The programmer can develop a
feature independent its interacting features; (R2) There
is a tool that can identify the interaction conditions
automatically; (R3) The features can be integrated and
with their interaction condition resolved without
requiring changing code; and (R4) The features can be
reused independent of other features.

Language facilities such as macros in C and Aspects
in AspectJ [15] separate the code of different features
textually but do not meet the above requirements. For
example, with AspectJ, the programmer in general must
go through the base code and the code of other Aspects
to determine where the joint points are. Often, they
need to change code to make the join points apparent.
Some had argued that separating code this way is
detrimental [1]. Empirical studies conducted over the
years (e.g. [21] and [11]) have shown that aspect
oriented programming (AOP) have not meaningfully
improved programmer productivity even though some
have shown that it can significantly reduce the number
of lines of code to be written (e.g. [18]).

 3

Recently, Service Oriented Architecture (SOA)
proposes to organize each service as a process. These
processes interact by requesting and providing services
to one another [5]. SOA thus relaxes the entanglement
condition C2. But it is not clear that it will lead to
adding new services without requiring changes in other
services. An analysis given in [6] showed that service
invocations in such a system exhibit a fractal structure
(a condition that may lead the system to become chaotic)
with significant complexity and performance
implications.

FLX relaxes C3 and supports nonprocedural
programming. A program unit in FLX consists of a
condition part and a program body. The program body
gets executed when its corresponding condition part
becomes true. The programmer does not specify the
execution order of the program units. A feature is
composed of a set of program units. With FLX, the
programmer develops a feature following a model
instead of the code of other features. FLX provides a
tool to detect interaction conditions among features.
Features are integrated in a feature package and have
their interaction resolved without requiring changing
code. Features and feature packages are reusable as
different combinations of them may be integrated and
have their interactions resolved differently to meet
different user needs.

2.2 Automatic Formal Software Verification

Advances in the model checking (e.g. see [8])
technology and in satisfiability (SAT) solvers of
Boolean formulas (e.g. see [20]) are mainly responsible
for the practical application of assertion based
verification of hardware designs. A model checker
systematically and exhaustively explores the state space
of a concurrent system to check for violation of
formally specified assertions. A SAT solver determines
whether there is a satisfying assignment to the variables
of a logical formula. Efficient SAT solvers can greatly
(exponentially) improve the efficiency of model
checkers [19].

But software verification continues to rely on testing.
As discussed earlier, a condition variable in software
may be unbounded and one must reason on predicates
of complex data structures. Consequently, earlier results
in assertion based software verification apply only to an
abstraction of the actual software. The abstraction is
done manually, translating complex software into a
simple model expressed in the input language of the
verification tool. The abstraction itself is a source of
error and can rarely keep up with changes in the actual
software.

More recently, a number of research groups
developed model checking tools and applied them

directly to real software programs. They have taken
different approaches. Bandera [10] and SLAM [2]
automate program abstraction using program slicing
and predicate abstraction techniques respectively. Java
PathFinder [26] translates a Java program to the input
language of the pioneering model checker SPIN [14].
VeriSoft[12], and CMC [21]) are highly optimized
model checkers that integrates with the software to be
verified. SLAM is now a commercial product. CMC
reported to have verified software subsystems with tens
of thousands of lines of code. But all of them also
reported significant limitations. For example, CMC
reported verification of an implementation of TCP but
not the properties of some of its most complex features
such as congestion control.

The root cause of the limitation is the state explosion
problem: the exponential increase in the state space that
the model checker must explore as the number of state
variables in a program and their value set increase. The
problem is becoming a limiting factor even for
hardware verifiers as the complexity of hardware
circuits grow. But it is much harder in software.
Existing model checkers for software are highly
optimized and some of their effort to compress the state
space are heroic (e.g. see [21]). It will not be sufficient
just to keep on improving model checking algorithms.

FLX uses programming language design to reduce
the state space: an executable FLX program is a finite
state machine; the number of states is proportional to
the number of program units in the program. This result
will be described in Section 4.

Another approach to increase the capability of model
checkers for software verification is to incorporate an
efficient SAT solver. This SAT solver must be capable
of handling first order predicate logic.

The first order SAT solver of FLX plays additional
important roles besides its usage in verification. It
identifies interaction conditions and participates in code
generation. Its performance is, therefore, critically
important and it must analyze first order formulas
coming directly from FLX programs.

The problem of determining the satisfiability of first
order predicate formulas is in general undecidable [9].
Most first order SAT solvers, including ours, therefore
work on a decidable subset of first order formulas. The
main difficulty for first order SAT solver is due to the
fact that the values of the variables in a first order
formula have large ranges and may even be unbounded.
Recent results on first order SAT solver take two basic
approaches: instance method or predicate abstraction.

The basic ideas for instance methods is to first
assign some values to the variables of a first order
formula transforming it to a propositional formula, and
then use a Boolean SAT algorithm to determine
whether the now instantiated formula is satisfiable.

 4

This is basically a trials and errors procedure to search
for a satisfying assignment. Although many trials can
be conducted in parallel and the searching is systematic,
the search space (a Cartesian product of the values of
the variables) is huge for nontrivial formulas. To reduce
the search space, the search algorithms of partial
instantiation methods may branch on partially
instantiated formulas (e.g. [3]). Plaisted and his
colleagues devised a number of methods that allow the
user to provide guidance on the instantiation of the
variables (e.g. [22]).

There are four general steps in the predicate
abstraction method. The first step is to transform the
first order formula α to its conjunctive normal form
(CNF). In step two, syntactically identical predicates in
α are replaced by a Boolean variable, obtaining a
propositional formula B(α). Step three uses a Boolean
SAT solver to determine whether B(α) is satisfiable. If
it is not, α is not satisfiable. If it is, the satisfiable
condition γ obtained from the Boolean SAT solver is
used to test whether α is satisfiable. If it is, α is
satisfiable. If not, then we go to stepwise refinement of
setting B(α) = B(α) Λ¬γ and return to step three.
SLAM uses this method to obtain a Boolean abstraction
of the program under analysis before model checking.

Both partial instantiation and predicate abstraction
methods require iterations of solving NP complete
problems. In the worst cases, the number of iterations
can be exponential to the number of literals1 in the first
order formula being analyzed.

FLX provides language constructs and rules for the
programmer to provide semantic guidance to its first
order SAT solver. The semantic guidance is a decision
procedure (instead of variable instantiation as proposed
in [22]). While the complexity of the FLX first order
SAT solver is still NP complete, it does not require
iterations of trials and errors. The basic algorithm of the
FLX SAT solver is described in section 4.

3. The Foundation Constructs of FLX

A FLX program unit consists of a condition part and
a program body part. The program body gets executed
when its corresponding condition part becomes true.
FLX is event driven: the evaluation of program unit
condition parts is triggered by events, as the primary
input of many embedded system applications are
random and short-lived events such as in
telecommunication systems, sensor networks and in the
kernel of operating systems.

1 A literal is either an atom or its negation in a logical formula.
In a first order formula, an atom is either a Boolean variable
or a predicate.

A FLX feature contains a set of program units that
perform the functionality of a feature. A feature is
developed according to a model, which defines the
condition space and the basic functionality of the
application. The condition space is specified in a
domain statement. The basic functionality is specified
in a feature called an anchor feature. Features designed
according to an anchor feature can be considered as an
extension or enhancement of the anchor feature.

Features are integrated in a feature package without
requiring modification. The programmer may package
different combinations of features in a feature package,
or he may change the way the integration works in
different feature packages to meet different user needs.
For example, he may choose to use different Retry
features on platforms equipped with different
redundancy.

We will use programs from a telephony system
implemented using FLX to illustrate the usage of the
basic FLX constructs.

Each phone object in the telephony system is
associated with two feature packages: one for digit
collection and analysis (allowing for features like speed
calling), and the other for call processing (allowing for
features like call forwarding). Different phone objects
can have different sets of features in their feature
packages.

The domain statement of the call processing feature
package declares the domain variable state and a set of
events that will be used in the condition part of a
program unit. A domain variable is of a domain data
type which must contain public predicate methods
and/or Boolean members. It is extended from a Java
class with the addition of a combination function,
needed to support the first order SAT solver of FLX.
The domain variable state is declared to be of the
domain data type Denum which is extended from the
Java enum class. It has values like IDLE, RINGING,
TALKING and so on. In the digit analysis feature
packages, we use condition variables with data type
extended from Java Integer which is unbounded. FLX
is not limited to defining finite state machines. The
domain statement for the call processing features is
shown in Figure 1.

The domain statement in Figure 1 also declares a set
of resources that the features using this domain
statement will operate on. When a feature package that
uses the domain statement is instantiated, the references
to the resources, in this case the phone fone and router
rt, are passed to the feature package. The domain
variable state is initialized in the domain statement.
Space is allocated to it when the feature package is
instantiated. Events are instantiated in feature programs
when they are needed.

 5

The anchor feature POTS is given in Figure 2

showing only two of its program units: MakeCall
applies dial tone when the user picks up the phone;
ReceiveCall responds to a TerminationRequest event
by updating the state of the call to RINGING and
telling the calling party of that fact.

The condition part of a program unit is composed of

a condition statement and an event statement. The
condition statement is a first order formula composed of
public Boolean members and predicates of domain
variables. We do not support the existential and
universal quantifiers explicitly. When the programmer
has the need to say something like “there exists some
elements”, we ask him to write a predicate method non-
empty() instead. The event statement specifies a list of
events. Each event may be attached with a qualification
which is a first order formula on data carried in the
event. We further require that a domain variable is not a
function of other domain variables. The FLX compiler

checks that the condition statement of at least one
program unit in the anchor feature is true given the
initial value of the domain variables.

A compiled anchor feature or feature package is
executable. It is instantiated similar to an object but its
program units are usually not called like the methods of
an object. We call an instantiated anchor feature or
feature package a feature object. The FLX compiler
generates a number of standard methods for each
feature object. One of them is the method
SendEvent(e). The method is called by other programs
(it is also possible for itself) to send the event e to the
feature object.

The feature DoNotDisturb is shown in Figure 3. Its
program unit SayBusy returns a busy event whenever
the phone receives a TerminationRequest event. A
feature by itself is not executable. It needs to be
integrated with its anchor feature in a feature package.

It can be shown that if the conjunction of the
condition parts of two program units is satisfiable, the
two program units interact. When the satisfiable
condition, which is the interaction condition, becomes
true, either program units may get executed. The
programmer is required to remove, or resolve, the
ambiguity. Two features interact if some of their
program units interact. The first order SAT solver of
FLX detects interaction conditions.

Figure 4 shows the code of the feature package

QuietPhone integrating the features POTS and
DoNotDisturb. The two features interact in all their
program units triggered by the TerminationRequest
message. The interaction is resolved by the
priorityPrecedence statement with the following
semantics: when an interaction condition becomes true,
the program unit belonging to the feature with the
highest precedence in the list will get executed. A more
in depth discussion of using precedence lists to resolve
interaction is given in [7].

When the phone that uses QuietPhone receives the
TerminationRequest message, only the program unit
SayBusy of DoNotDisturb will be executed. But when
the phone receives an OffHook event and the phone is

 anchor feature Pots {
 domain BasicTelephony;

MakeCall {

condition: state.equals(State.IDLE);
event: Offhook; {

fone.applyDialTone();
state = State.DIALING;

 }
}

ReceiveCall {
condition: state.equals (State.IDLE);
event: TerminationRequest e; {

 Ringing r = new Ringing (e.FromPID);
 rt.sendEvent (r);

state = State.RINGING;
 }

}
}
}

Figure 2. A Portion of the FLX POTS code

feature DoNotDisturb {
domain BasicTelephony;
anchor POTS;

SayBusy {
condition: all;
event: TerminationRequest e; {

Busy b = new Busy(e.FromPID);
rt.sendEvent (b);

 }
 }
}

Figure 3. The feature DoNotDisturb

domain BasicTelephony {
 variables:

DTenum State {DIALING, OUTPULSING,
 BUSY, AUDIBLE,TALKING,

 RINGING, DISCONNECT,IDLE};
 State state= State.IDLE; //initial value

events:
TerminationRequest;

 Busy;
 Ringing;
 Answer;
 Disconnect;
 Onhook;
 Offhook;
 Digits;
 TimeOut;

resources:
 Phone fone;
 Router rt;
}

Figure 1 The Domain Statement for Call Processing

 6

idle, then the MakeCall program unit of POTS gets
invoked and the user can make phone calls.

This simple example shows that the two interacting
features can be integrated together without changing
each other’s code. The feature resolution facilities
provided by FLX are general. Besides using precedence
lists, the programmer can use program units to resolve
interaction for any specific condition. More complex
examples of using FLX are given in [17], including
those that uses the exception handling and inheritance
constructs of FLX.

4. FLX Support for direct verification

4.1 FLX support for first order SAT solver

Determining the satisfiability of a first order formula
in general is not decidable [9]. First order formulas
from the condition parts of FLX program units are
quantifier free and do not contain functional symbols.
Determining the satisfiability of first order formulas
with these properties is decidable [4] and similarly
assumed by many other algorithms. Importantly, the
variables of first order formulas from FLX programs
are defined by abstract data types and the
interpretations of their predicates are well understood
by the programmer of the abstract data type.

Existing first order SAT solver methods use a trials
and errors approach to search for a satisfying
assignment. We avoid that by taking advantage of the
knowledge of the programmer. We ask the programmer
to associate a combination function class for each
domain data type. The combination function takes a list
of literals of the domain data type as argument, and
returns whether the conjunction of the literals is
satisfiable. The decision procedure for the combination
function is typically well understood. For example, for
the data type integer, the conjunction of a set of its
predicates (greater than, equal to etc.) should establish a
partial ordering of the variables. If not (e.g. if we have a
> b AND b > a), the conjunction of the set of predicates
is not satisfiable. We have not come across a Java class
that we cannot readily come up with a decision
procedure for its combination function.

Figure 5 shows the declaration of the combination
function class for strict partial order predicates [24].
The combination function class is given a name

(StrictPartialOrder). The list of predicates, namely
largerThan and lessThan, that the combination
function can handle, are given after the keyword
combines. The combination function class contains
exactly one method and the list of literals is passed to it
as a set of strings.

A combination function can be associated with

different domain data types. For example, the
combination function for strict partial order predicates
can be associated with a domain data type that defines a
node in a PERT chart used in a project management
application, or with one that defines a node in the
syntax tree of a compiler. Figure 6 shows the
declaration of a domain data type (a node in a PERT
chart). It is simply a Java class with an addition
declaration of its association to a combination function.
The association is indicated with the keyword uses.

We are now in position to describe the basic

algorithm of the FLX first order SAT solver. Given a
first order formula from the condition part of a program
unit, we first derive its disjunctive normal form (DNF).
Each clause of the DNF is a conjunction of literals
whose variables belong to different domain data types.
Taking advantage of the associative property of the
conjunction operator, we partition each clause into
subgroups. Each subgroup contains only literals whose
variables belong to the same domain data type. We then
use the combination function of the domain data type to
determine whether the subgroup is satisfiable. The
clause is satisfiable if each subgroup is satisfiable. The
formula is satisfiable if any clause of the DNF is
satisfiable. When this algorithm is used to identify
interaction conditions, the algorithm goes through all
the clauses in the DNF to see whether they are
satisfiable.

The above procedure is NP-Complete because
deriving the DNF is NP-Complete. But once the DNF is
derived, the algorithm requires no iterations of trials
and errors. The algorithm was first described in [16],
but this is the first time that it is reported. The

feature package QuietPhone {
domain: BasicTelephony;
features: DoNotDisturb, POTS;

priorityPrecedence (DoNotDisturb, POTS);
}

Figure 4. The QuietPhone feature package
Public combinationFunction StrictPartialOrder

combines {largerThan, lessThan} {
 Public static Boolean combinationFunc
 (HashSet <string> group) {
 //code
 }
}

Figure 5. The declaration of a combination function

Public class PERTNode uses StrictPartialOrder
{

.... // Data structure here
public boolean largerThan (NodeInPERT v){ }
public Boolean lessThan (NodeInPERT v) { }
.... // Other methods

}

Figure 6 The declaration of a domain data type

 7

implementation is described in [25] together with
several extensions including a modified algorithm to
treat predicates that may contain variables of different
types. There is also a more extensive discussion on
related work.

4.2 An executable FLX program is a finite state
machine

The domain variables and events declared in the
domain statement define the state space of the
application which can be unbounded as we allow the
programmer to use unbounded domain data types, such
as integers. But one can always discern a finite state
machine from an executable FLX program.

The initial state is given by the initial values of the
domain variables in the domain statement. An
executable anchor feature or feature package contains
finite number of program units. The condition part of
each program unit defines a state space which is a
subset of the state space defined in the domain
statement. The state space of a program unit may have
nonempty intersection with the state space of other
program units if they interact. The first order SAT
solver identifies these intersections. For the purpose of
analyzing the executable FLX programs, we can count
each of the nonempty intersections and their
complements as distinct states. Hence, we have a finite
number of states. State transition of the finite state
machine is triggered by events. A program unit may
update the value of some domain variables. If that
happens, the next state is defined by change in values of
the domain variables.

The nonempty intersections are the interaction
conditions among program units and they are resolved
either by another program unit or by a precedence list in
the feature package. If we lump all intersections
covered by a precedence list as one state, the number of
states of the finite state machine is roughly equal to the
number of program units in the feature package and its
features plus the number of precedence lists in the
feature package.

5. Conclusions

FLX has two design objectives: (1) to enable the
development of interacting features as separate and
reusable program modules, and (2) to facilitate
assertion based verification of programs written in FLX.
FLX meets the requirements for objective (1). For
objective (2), we have developed a first order SAT
solver and the FLX compiler generates a finite state
machine from an executable FLX program.

About forty different features and feature packages
were written in FLX for the telephony system described
earlier. These features and feature packages were
mainly developed as test cases for the compiler. A
feature is typically developed and integrated with other
features in a few days to a couple of weeks, a
significant improvement compared to the author’s
experience from the industry.

We attribute the observed improvement to the fact
that using FLX, one is able to focus on one feature at a
time. While writing the programs for, say, call waiting,
the programmer does not need to be concerned with
designing hooks for three way calling and other features.
Integration of features does not require going through
and changing code. Interaction conditions are
automatically detected and most are resolved by
precedence lists. Interaction resolution is done in a
single program module (a feature package) instead of
scattering into many program modules.

The generated code of a FLX program looks a lot
like how one may write the program in Java. We
therefore suggest that the performance of FLX
programs will be comparable to those written in Java.
The FLX code written for the prototype is several times
less than its generated code. This is partly due to the
nonprocedural nature of the language and partly due to
short hands, such as the keywords all, supported by the
language. Consider the DoNotDisturb feature given in
Figure 3. Its code will have to be duplicated many times
if the feature is written in a procedural language.

We started to use FLX to produce useful code.
Recently, we used it to develop the essential features of
a call center built on top of the voice over IP platform,
Skype. We are in the process of using FLX to rewrite
the scheduler of the Linux kernel, and have started the
development of an assertion based verifier for programs
written in FLX.

A research version of the FLX compiler, example
code, FAQ and other documents are available for
download at http://www.openflx.org.

6. Acknowledgment

The author wishes to acknowledge the contribution
of Lu Zhao and Yimeng Li in the development of the
current version of the FLX first order SAT solver, and
Lu Zhao for her research into the prior art of first order
SAT solvers. The full scope of their contribution will
appear in a forthcoming paper.

7. References

[1] Alexander, R., “The Real Costs of Aspect-Oriented
Programming,” IEEE Software, November/December, 2003.

 8

[2] Ball, T., and Rajamani, S. K., “The SLAM Project:
Debugging System Software via Static Analysis,”
Proceedings of Principles of Programming Languages, 2002.

[3] Baumgartner, P. and Tinelli, C., “The Model Evolution
Calculus,” The 19th International Conference on Automated
Deduction, Volume 2741 of Lecture Notes in Artificial
Intelligence (2003).

[4] Bernays, P. and Schonfinkel, M., "Zum
Entscheidungsproblem der mathematischen Logik,"
Mathematische Annalen 99: 342-72, 1929.

[5] Bloomberg, J., “The Lego Model of SOA,” ZapThink,
December 11, 2006; www.zapthink.com/report.

[6] Bussler, C., “The Fractal Nature of Web Services,”
Computer, March 2007.

[7] Chavan, A. et. Al., “Resolving Feature Interaction with
Precedence Lists in the Feature Language Extensions,”
Proceedings of 9th International Conference in Feature
Interactions, September, 2007.

[8] Clarke, E. M., Grumberg, O., Peled, D. A., “Model
Checking,” The MIT Press, 1999.

[9] Church, A., “A Note on the Entscheidungsproblem,”
Journal of Symblic Logic, 1(1936).

[10] Corbett, J. C., et al, “Bandera: Extracting finite-state
models from Java source code,” In Proc. 22nd International
Conference on Software Engineering (ICSE), June 2000.

[11] Filho, F., C. Rubira, and A. Garcia, “A Quantitative
Study on the Aspectization of Exception Handling,”
Proceedings of ECOOP Workshop on Exception Handling in
OO Systems, July, 2005.

[12] Godefroid, P., “Model Checking for Programming
Languages using VeriSoft,” Proceedings of POPL 1997.

[13] Harr, J.A., E.S. Hoover, and R.B. Smith, Organization fo
the No. 1 ESS Stored Program. The Bell System Technical
Journal, 1964.

[14] Holzmann, G. J., “The SPIN Model Checker: Primer and
Reference Manual,” Addison-Wesley Professional, Septmeber,
2003.

[15] Kiczales, G., et al., “An Overview of AspectJ,”
Proceedings of European Conference on Object Oriented
Programming (ECOOP 2001), Springer-Verlag, 2001.

 [16] Leung, W.-H., “Method to Add New Software Features
without Modifying Existing Code,” United States patent
application, August, 2002.

[17] Leung W. H., “Program Entanglement, Feature
Interaction and the Feature Language Extensions,” Computer
Networks, February, 2007 issue 2.

[18] Lippert, M., and C.V. Lopes, “A Study on Exception
Detection and Handling using Aspect-Oriented
Programming,” Proceedings of International Conference on
Software Engineering ICSE 2000.

[19] McMillan, K. L., “Applying SAT Methods in
Unbounded Symbolic Model Checking,” Proceedings of 14th
International Conference on Computer Aided Verification,
July, 2002.

[20] Moskewicz, M. W., et al, “Chaff: Engineering an
Efficient SAT Solver,” Proceedings of the 38th Design
Automation Conference (DAC 2001).

[21] Murphy, G.C. et. Al., “Evaluating Emerging Software
Development Technologies: Lesson Learned from Assessing
Aspect-Oriented Programming,” IEEE Transactions on
Software Engineering 25 (4) 1999.

[21] M. Musuvathi, D. Park, A. Chou, D. Engler, and D. Dill,
“CMC: A pragmatic approach to model checking real code,”
Usenix Association, OSDI 2002.

[22] Plaisted, D. and Zhu, Y., “Ordered Semantic Hyper
Linking,” Proceeding of 14th National Conference on
Artificial Intelligence, 1997.

[23] Postel, J., Transmission Control Protocol, RFC 793, Sept.
1981. http://www.refceditor.org/rfc793.txt

[24] http://en.wikipedia.org/wiki/Partial_order

[25] Zhao, L., “A First Order Satisfiability Solver for the
Feature Language Extensions,” M.S. these, ECE Department,
IIT, May, 2006.

[26] Lindstrom, P. et. al., “Model Checking Real Time Java
Using JavaPathfinder”, Proceedings of the 3rd International
Symposium on Automated Technology for Verification and
Analysis (ATVA), October, 2005.

