Onthe Verifiability of Programs Written in the Feature L anguage Extensions

Wu-Hon F. Leung
Computer Science Department, 11T
leung@iit.edu

Abstract

High assurance in embedded system software is
difficult to attain. Verification relies on testing. The
unreliable and costly testing process is made much
worse because the software base constantly changes:
Adding a feature is by changing the code of other
features, and the programs of the features entangle in
the same reusable program unit of the programming
language. For a large class of applications, including
those requiring exception handling, this entanglement
problem cannot be solved using existing general
purpose programming languages. The Feature
Language Extensions (FLX) is a set of language
constructs designed to enable the programmer to solve
the entanglement problem. It provides language
support for assertion based verification. The
satisfiability of first order assertions composed of
variables defined by FLX can be determined without
iterations of trials and errors. An executable FLX
program is compiled into a finite state machine even if
the state variables are unbounded.

1. Introduction

call the device driver may have to be changedargelr
development projects, this often means manually
reviewing millions of lines of code.

Java offers a partial solution as it can identhg t
programs that need to be changed if its compiler
happens to type check the new exception. Most other
languages offer no help. The programmer eithertbas
manually go through a large amount of code, ordsav
the exception uncaught. Uncaught exceptions wélslar
the application and even the system. It happees aft
some popular software. But that is not acceptabie f
high assurance software.

A solution to high assurance software should,
therefore, enable the programmer to develop the
programs of a feature without entangling with the
programs of other features, and to verify his saftv
formally based on assertion instead of instance by
instance testing. These are the design objectii/#seo
Feature Language Extensions (FLX). FLX is a set of
programming language constructs with an
implementation on Java. The implementation is
analogous to C++ which added object oriented
programming language constructs to C.

In an earlier paper, we showed that the program
entanglement problem cannot be solved using egistin

High assurance in embedded system software igeneral purpose programming languages for a large

difficult to attain. Its verification relies on itence by

class of applications [17]. A main reason is these

instance testing. The costly and unreliable testindanguages require the programmer to specify exatuti
process is made much worse because the softwaee bdlbws. FLX supports nonprocedural programming that
constantly changes as new features are added. iBgang does not ask the programmer to specify the exetutio

code is labor intensive and error prone. When tufea

flows of program units. It provides language camnss

which denotes a functionality of the software, isfor the programmer to specifyfeature and to integrate
developed by changing the programs of other festure features intdeature packages.

the programs of the different featurestangle in the

There has been significant advances in the art of

same reusable program unit (such as a method)eof thverifying computer systems. It is becoming routtoe

programming language. The entanglement

ofterapply assertion based verifier to hardware design.

scatters into many program modules. It also makes t However hardware designs are mainly composed of

feature programs difficult to maintain, reuse add

to different user needs.

finite state machines and its assertions are Bnolea
formulas (as its variables are binary variableg)t B

The problem of program entanglement is bestsoftware, a state variable may be unbound (such as
illustrated with an example. With existing generalwhen it is an integer), and one must reason onigaied
purpose programming languages, the programs dbgic asking questions such as whether a link ifist
normal processing and exception handling features aempty. Verification of software systems is therefor
entangled. If a device driver needs to throw a newmuch more difficult.

exception, all the programs that directly or tréimsly

Our approach is to use programming languageontrol-c?” Call forwarding, congestion control and
design to reduce the complexity. An executable FLXexception handling have been called features, sesyi
program is compiled into a finite state machinehwit concerns or aspects interchangeably in the litexatu
relatively small number of states even if the state Feature interaction and program entanglement is
variables used in the program are unbounded. Shcondrelated in the following way [17]: If (C1) two feats
FLX provides language facilities for the programrter interact, (C2) they are executed in the same sdiglien
provide semantic input such that determining theprocess, and (C3) the implementation programming
satisfiability of first order predicate formulasraposed language requires the programmer to specify exatuti
of variables defined using FLX does not requireflows, then their programs will entangle. If theotw
iterations of trials and errors. features do not interact, it is not necessary thair

The paper is organized as follows. In section 2, werograms entangle. In other words, feature interads
discuss the nature of the program entanglemerd main reason for program entanglement.
problem and the challenges of applying asserticetha The above conditions imply that the entanglement
verification to software. The foundation construofs problem cannot be solved by software design alone.
FLX are overviewed with examples in section 3. TheThe programs of TCP are notoriously entangled (e.g.
language support and algorithm to determine thesee [21]) and have frustrated many efforts to impro
satisfiability of first order formulas written inLiX are them. It is not because their programmers lackdy sk
described in section 4, as well as the fact that athey could not help it. The entanglement conditials®
executable FLX program is a finite state machinee T explain why existing general purpose programming
paper concludes in section 5. languages cannot separate normal processing and

exception handling features. C1 and C2 are often

2. Program Entanglement and Verifiability dictated by the application such as in the cas€GR
and in exception handling. Changing C3 is then

21 Program Entanglement and Feature essential in solving the program entanglement erabl
I nteraction We call the conditions under which the behavior of
two interacting features will change thénteraction
The program entanglement problem is related to thgor&dﬂuc_ms Erelgently, ':jhe prqgramrr?er thSt exg‘.m'”e
notion of feature interaction. Two featurednteract if code line by line to determine when the conditions
dbecome true andesolves the interaction by changing

their behavior changes when they are integratef " de t i th behavior. Becanee t
together. Features are implemented by compute ature code 1o specily the néw behavior. becanse

programs, and for the purpose of this paper, th eatures are integrated by changing the code of one

behavior of a computer program is manifested in itsanother, they are not easily separable and are not

output and the sequence of program statementgetst reusable without one another. A solution to thegpam
executed for a given input. The term feature intva entanglement problem should therefore meet these

was first introduced by developers of requirements: (R1) The programmer can develop a

telecommunications systems [13] to OIeSCribefeature independent its interacting features; (R&re

circumstances like when a phone is called, th s a tool that can identify the interaction corutit
programs of the plain old telephone service (POWif5) agtomanqally; (R3) _The featuf?‘s can be '”tegr‘“’."“’d
ring the phone, but if call forwarding is addede th with . }he|r interaction condition resolved without
combined program will give a ping-ring then forward requiring changing code; and (R4) The featureskan

the call to another phone. The concept is commacep| reuLsed mdep?nd_?r}t of oth;]ar feature;;.c dA
and not confined to telecommunication software. anguage facilities such asacros in C andAspects

Feature interaction is common in embedded system.én Aspect] [15] separate the code of differentuiest

Take the Internet TCP protocol [23] as an exampleFeXtually but do not meet the above requirements. F

Before its congestion control feature is developed, exarkllwple, ‘r:v'tr? AbspectJ,éhe prdogr:ammder |nfger:1er§;tsmu
duplicated acknowledgement will prompt its reliable 90 through the base code and the code of othercispe

data transport feature to retransmit. After corigast to determine where the joint pomt_s_are..Often,ythe
control is added, the same message may cause t ged to change code to make the join points apparen

sender to retreat to slow start. Applications thedire ome had argued that separating code this way is

exception handling encounter feature in'[eraction.demmem"’1I [1]. Empirical studies conducted ovee t

Without exception handling, a program running onY¢€ars (e.g. [21] af‘d [11]) have shown that. aspect
UNIX will crash when someone hits control-c. When pnented programming (AOP) .h_ave not meaningfully
exception handling is added, the program does n {nproved programmer productivity even though some

terminate and may even ask “why are you hittingo?}i/r?esshg]yvcrz);zitoi%gavcr;igzif(igzr.]tggﬁfjuce the bem

Recently, Service Oriented Architecture (SOA)directly to real software programs. They have taken
proposes to organize each service as a processe Thalifferent approaches. Bandera [10] and SLAM [2]
processes interact by requesting and providingeesv automate program abstraction using program slicing
to one another [5]. SOA thus relaxes the entangiéme and predicate abstraction techniques respectivalya
condition C2. But it is not clear that it will leaid PathFinder [26] translates a Java program to thatin
adding new services without requiring changes lireot language of the pioneering model checker SPIN [14].
services. An analysis given in [6] showed that iserv VeriSoft[12], and CMC [21]) are highly optimized
invocations in such a system exhibit a fractalcitme model checkers that integrates with the softwarbeo
(a condition that may lead the system to becometi)a verified. SLAM is now a commercial product. CMC
with significant complexity and performance reported to have verified software subsystems teitls
implications. of thousands of lines of code. But all of them also

FLX relaxes C3 and supports nonproceduralreported significant limitations. For example, CMC
programming. Aprogram unit in FLX consists of a reported verification of an implementation of TCBtb
condition part and aprogram body. The program body not the properties of some of its most complexufesst
gets executed when its corresponding condition paruch as congestion control.
becomes true. The programmer does not specify the The root cause of the limitation is th@te explosion
execution order of the program units. féature is problem: the exponential increase in the state space that
composed of a set of program units. With FLX, thethe model checker must explore as the number &f sta
programmer develops &ature following a model variables in a program and their value set incretlse
instead of the code of other features. FLX provides problem is becoming a limiting factor even for
tool to detect interaction conditions among feaure hardware verifiers as the complexity of hardware
Features are integrated infeature package and have circuits grow. But it is much harder in software.
their interaction resolved without requiring chargyi Existing model checkers for software are highly
code. Features and feature packages are reusable gimized and some of their effort to compresssiiage
different combinations of them may be integrated an space are heroic (e.g. see [21]). It will not bHicient
have their interactions resolved differently to mee justto keep on improving model checking algorithms

different user needs. FLX uses programming language design to reduce
the state space: an executable FLX program isit fin
2.2 Automatic Formal Software Verification state machine; the number of states is proportitmal

the number of program units in the program. Thssilte

Advances in the model checking (e.g. see [8]will be described in Section 4.
technology and in satisfiability (SAT) solvers of Another approach to increase the capability of rhode
Boolean formulas (e.g. see [20]) are mainly resipdms checkers for software verification is to incorperan
for the practical application of assertion basedefficient SAT solver. This SAT solver must be cajgab
verification of hardware designs. A model checkerof handling first order predicate logic.
systematically and exhaustively explores the stpsee The first order SAT solver of FLX plays additional
of a concurrent system to check for violation ofimportant roles besides its usage in verificatidin.
formally specified assertions. A SAT solver deterasi identifies interaction conditions and participatesode
whether there is a satisfying assignment to thimbles generation. Its performance is, therefore, critical
of a logical formula. Efficient SAT solvers can gtiy ~ important and it must analyze first order formulas
(exponentially) improve the efficiency of model coming directly from FLX programs.
checkers [19]. The problem of determining the satisfiability afsfi

But software verification continues to rely on iegt order predicate formulas is in general undecidgbje
As discussed earlier, a condition variable in safev Most first order SAT solvers, including ours, tHere
may be unbounded and one must reason on predicaté®rk on a decidable subset of first order formuTese
of complex data structures. Consequently, easigults ~ main difficulty for first order SAT solver is due the
in assertion based software verification apply dalgn fact that the values of the variables in a firstiesr
abdraction of the actual software. The abstraction isformula have large ranges and may even be unbounded
done manually, translating complex software into aRecent results on first order SAT solver take tasib
simple model expressed in the input language of th@pproachesnstance method or predicate abstraction.

verification tool. The abstraction itself is a soairof The basic ideas for instance methods is to first
error and can rarely keep up with changes in theahc assign some values to the variables of a firserord
software. formula transforming it to a propositional formubnd

More recently, a number of research groupshen use a Boolean SAT algorithm to determine
developed model checking tools and applied thenwhether the nowinstantiated formula is satisfiable.

This is basically a trials and errors proceduredarch A FLX feature contains a set of program units that
for a satisfying assignment. Although many triad;rc perform the functionality of a feature. A feature i
be conducted in parallel and the searching is systie, developed according to model, which defines the
the search space (a Cartesian product of the valies condition space and the basic functionality of the
the variables) is huge for nontrivial formulas.Bduce application. The condition space is specified in a
the search space, the search algorithms of parti@lomain statement. The basic functionality is specified
instantiation methods may branch on partiallyin a feature called aanchor feature. Features designed
instantiated formulas (e.g. [3]). Plaisted and hisaccording to an anchor feature can be consideresh as
colleagues devised a number of methods that alhew t extension or enhancement of the anchor feature.
user to provide guidance on the instantiation &f th Features are integrated irfeature package without
variables (e.qg. [22]). requiring modification. The programmer may package
There are four general steps in the predicatalifferent combinations of features in a featurekpae,
abstraction method. The first step is to transféhe or he may change the way the integration works in
first order formulaa to its conjunctive normal form different feature packages to meet different useds.
(CNF). In step two, syntactically identical predesin For example, he may choose to use differ@etry
a are replaced by a Boolean variable, obtaining deatures on platforms equipped with different
propositional formula Bf). Step three uses a Boolean redundancy.
SAT solver to determine whether B(is satisfiable. If We will use programs from a telephony system
it is not, a is not satisfiable. If it is, the satisfiable implemented using FLX to illustrate the usage of th
conditiony obtained from the Boolean SAT solver is basic FLX constructs.
used to test whethes is satisfiable. If it is,a is Each phone object in the telephony system is
satisfiable. If not, then we go to stepwise refieatnof associated with two feature packages: one for digit
setting B¢) = B() A -y and return to step three. collection and analysis (allowing for features limeed
SLAM uses this method to obtain a Boolean abstracti calling), and the other for call processing (allogvifor
of the program under analysis before model checking features like call forwarding). Different phone edts
Both partial instantiation and predicate abstractio can have different sets of features in their featur
methods require iterations of solving NP completepackages.

problems. In the worst cases, the number of itamati The domain statement of the call processing feature
can be exponential to the number of literaisthe first ~ package declares tilemain variable state and a set of
order formula being analyzed. events that will be used in the condition part of a

FLX provides language constructs and rules for thédrogram unit. A domain variable is ofdamain data
programmer to provide semantic guidance to it firstype which must contain public predicate methods
order SAT solver. The semantic guidance is a datisi and/or Boolean members. It is extended from a Java
procedure (instead of variable instantiation appsed class with the addition of @ombination function,
in [22]). While the complexity of the FLX first oed needed to support the first order SAT solver of FLX
SAT solver is still NP complete, it does not requir The domain variabletate is declared to be of the
iterations of trials and errors. The basic algonitbf the ~ domain data typ@enum which is extended from the

FLX SAT solver is described in section 4. Javaenum class. It has values liK®OLE, RINGING,
TALKING and so on. In the digit analysis feature
3. The Foundation Constructs of FL X packages, we use condition variables with data type

extended from Java Integer which is unbounded. FLX
is not limited to defining finite state machinesher

A FLX program unit consists of @ondition part and q : for th I ing f .
a program body part. The program body gets executed omain statement for the call processing featuses |
shown in Figure 1.

when its corresponding condition part becomes true: X -
FLX is event driven: the evaluation of program unit 1n€ domain statement in Figure 1 also declares a se
of resources that the features using this domain

condition parts is triggered by events, as the gnm ,
input of many embedded system applications arstatement will operate on. When a feature package t

random and short-lived events such as inUses the domain statementis instantiated, theerefes

telecommunication systems, sensor networks aridein t [© the resources, in this case the phiome and router
kernel of operating systems. rt, are passed to the feature package. The domain

variable state is initialized in the domain statement.
Space is allocated to it when the feature package i

L A literal is either an atom or its negation irpgital formula. instantiated. Events are instantiated in featuoggams

In a first order formula, an atom is either a Baoleariable ~ When they are needed.
or a predicate.

domai n Basi cTel ephony { checks that the condition statement of at least one
vari abl es: program unit in the anchor feature is true givea th
DTenum State {DI ALING OUTPULSI NG initial value of the domain variables.
Eluflé NéUD'D:ngbLQEE'T!\FDLE}; A compiled. a_nchor .featurg or feature package is
State state= State.|DLE //initial value executable. It is instantiated similar to an objmat its
events: program units are usually not called like the mdthof
gs;m nat i onRequest ; an object. We call an instantiated anchor feature o
Ri néi’ ng; feature package #eature object. The FLX compiler
Answver ; generates a number of standard methods for each
Di sconnect ; feature object. One of them is the method
ook SendEvent(e). The method is called by other programs
Digits, (it is also possible for itself) to send the everio the
Ti meQut ; feature object.
resour ces: The featureDoNotDisturb is shown in Figure 3. Its
Ega?zr ‘;ff‘e; program unitSayBusy returns a busy event whenever
} ’ the phone receives @erminationRequest event. A
Fiourel The Domain Statement for Call Proces feature by itself is not executable. It needs to be
. . integrated with its anchor feature in a featurekpge.
The anchor featurdOTS is given in Figure 2 It can be shown that if the conjunction of the

showing only two of its program unitdvlakeCall condition parts of two program units is satisfiatite
applies dial tone when the user picks up the phongiyo program units interact. When the satisfiable
RecelveCall responds to derminationRequest event condition, which is the interaction condition, bes
by updating the state of the call RINGING and {rye, ejther program units may get executed. The

telling the calling party of that fact. programmer is required to remove, or resolve, the
anchor feature Pots { ambiguity. Two features interact if some of their
domai n Basi cTel ephony; program units interact. The first order SAT soledr

MakeCal | { FLX detects interaction conditions.

condi tion: state.equal s(State.|DLE);
event: O fhook; {

fone. appl yDi al Tone() ;

state = State. DI ALI NG

} SayBusy {
{ condi tion: all;
event : Term nati onRequest e; {
Busy b = new Busy(e. FronPID);
rt.sendEvent (b);

feature DoNot Di sturb {
donai n Basi cTel ephony;
anchor POTS;

}
Recei veCal |
condition: state.equals (State.|DLE);
event: Term nati onRequest e; {
Ringing r = new Ringing (e.FronPlD);
rt.sendEvent (r);

state = State. RING NG) }

} } Figure3. The featurdDoNot Di st urb
} Figure 4 shows the code of the feature package
} QuietPhone integrating the featuresPOTS and

Fiaure 2. A Portion of theFLX POTS cod

DoNotDisturb. The two features interact in all their

The condition part of a program unit is composed ofProgram units triggered by thBerminationRequest
a condition statement and an event statement. TH@€SSage. The interaction is resolved by the
condition statement is a first order formula corgbef ~ PriorityPrecedence statement with the following
public Boolean members and predicates of domaisemantics: When_ an interaction condition becom&s tr
variables. We do not support the existential andh€ Program unit belonging to the feature with the
universal quantifiers explicitly. When the prograsim highest precedence in the list will get executedndre
has the need to say something like “there existseso N depth discussion of using precedence lists dolve
elements”, we ask him to write a predicate methant INteraction is given in [7]. . .
empty() instead. The event statement specifies a list of When the phone that us€aiietPhone receives the
events. Each event may be attached with a quaidica | &'minationRequest message, only the program unit
which is a first order formula on data carried et SayBusy of DoNotDisturb will be executed. But when
event. We further require that a domain variableosa ~ the phone receives @iffHook event and the phone is
function of other domain variables. The FLX compile

idle, then theMakeCall program unit ofPOTS gets
invoked and the user can make phone calls.

feature package Qui et Phone {
domai n: Basi cTel ephony;
features: DoNotDi sturb, POTS;

(StrictPartialOrder). The list of predicates, namely
largerThan and lessThan, that the combination
function can handle, are given after the keyword
combines. The combination function class contains
exactly one method and the list of literals is pds® it

as a set of strings.

priorityPrecedence (DoNotDisturb, POTS);

Figure4. TheQui et Phone feature packa¢

This simple example shows that the two interactir]
features can be integrated together without changi
each other's code. The feature resolution fadlitie
provided by FLX are general. Besides using precssler|

Publ i ¢ conbinationFunction StrictPartial Order
conbi nes {l argerThan, |essThan} {
Public static Bool ean combi nati onFunc
(HashSet <string> group) {
/'l code

Figure5. The declaration of a combination funci

lists, the programmer can use program units tolveso
interaction for any specific condition. More comple
examples of using FLX are given in [17], including
those that uses the exception handling and ininegta
constructs of FLX.

4. FL X Support for direct verification

41 FL X support for first order SAT solver

Determining the satisfiability of a first order foula

A combination function can be associated with
different domain data types. For example, the
combination function for strict partial order preslies
can be associated with a domain data type thatekeh
node in a PERT chart used in a project management
application, or with one that defines a node in the
syntax tree of a compiler. Figure 6 shows the
declaration of a domain data type (a node in a PERT
chart). It is simply a Java class with an addition
declaration of its association to a combinationcfiam.

The association is indicated with the keywaosds.

in general is not decidable [9]. First order forasl
from the condition parts of FLX program units arg
quantifier free and do not contain functional sytsbo
Determining the satisfiability of first order forhas

with these properties is decidable [4] and simyarl
assumed by many other algorithms. Importantly, th
variables of first order formulas from FLX program

Publ i c cl ass PERTNode uses StrictPartial Order

.... Il Data structure here

public bool ean | arger Than (Nodel nPERT v){ }

public Bool ean | essThan (Nodel nPERT v) { }
// Cther methods

Fiaure 6 The declaration of a domain data t

are defined by abstract data types and

interpretations of their predicates are well untierg

by the programmer of the abstract data type.
Existing first order SAT solver methods use a grial

the We are now in position to describe the basic

algorithm of the FLX first order SAT solver. Given
first order formula from the condition part of aaxgram
unit, we first derive its disjunctive normal forIF).

and errors approach to search for a satisfyindeach clause of the DNF is a conjunction of literals
assignment. We avoid that by taking advantage ef thwhose variables belong to different domain datasyp
knowledge of the programmer. We ask the programmefFaking advantage of the associative property of the

to associate acombination function class for each
domain data type. The combination function takésta

conjunction operator, we partition each clause into
subgroups. Each subgroup contains only literalsseho

of literals of the domain data type as argumend anvariables belong to the same domain data type.hafe t
returns whether the conjunction of the literals isuse the combination function of the domain data tigp

satisfiable. The decision procedure for the contiina
function is typically well understood. For exampfie,

the data type integer, the conjunction of a settof
predicates (greater than, equal to etc.) shouabkst a
partial ordering of the variables. If not (e.gwi¢ have a
> b AND b > a), the conjunction of the set of poedés
is not satisfiable. We have not come across a daga

that we cannot readily come up with a decision

procedure for its combination function.

determine whether the subgroup is satisfiable. The
clause is satisfiable if each subgroup is satiiabhe
formula is satisfiable if any clause of the DNF is
satisfiable. When this algorithm is used to idsntif
interaction conditions, the algorithm goes throwah
the clauses in the DNF to see whether they are
satisfiable.

The above procedure is NP-Complete because
deriving the DNF is NP-Complete. But once the DNIF i

Figure 5 shows the declaration of the combinatiorderived, the algorithm requires no iterations a#lsr

function class for strict partial order predicaf{@d].

and errors. The algorithm was first described i6][1

The combination function class is given a namebut this is the first time that it is reported. The

implementation is described in [25] together with About forty different features and feature packages
several extensions including a modified algorithon t were written in FLX for the telephony system ddsed
treat predicates that may contain variables okdiffit earlier. These features and feature packages were
types. There is also a more extensive discussion omainly developed as test cases for the compiler. A
related work. feature is typically developed and integrated wwither

features in a few days to a couple of weeks, a
4.2 An executable FL X program is a finite state significant improvement compared to the author’s
machine experience from the industry.

We attribute the observed improvement to the fact

The domain variables and events declared in théhat using FLX, one is able to focus on one feaatra
domain statement define the state space of thBme. While writing the programs for, say, call virag,
application which can be unbounded as we allow théhe programmer does not need to be concerned with
programmer to use unbounded domain data types, su€lgsigning hooks for three way calling and othetufiess.
as integers. But one can always discern a finagest Integration of features does not require going ugto
machine from an executable FLX program. and changing code. Interaction conditions are

The initial state is given by the initial valuestoe ~ automatically detected and most are resolved by
domain variables in the domain statement. AnPrecedence lists. Interaction resolution is doneain
executable anchor feature or feature package csntaisSingle program module (a feature package) instéad o
finite number of program units. The condition paft ~scattering into many program modules.
each program unit defines a state space which is a The generated code of a FLX program looks a lot
subset of the state space defined in the domailke how one may write the program in Java. We
statement. The state space of a program unit meg hatherefore suggest that the performance of FLX
nonempty intersection with the state space of othePrograms will be comparable to those written inaJav
program units if they interact. The first order SAT The FLX code written for the prototype is seveialets
solver identifies these intersections. For the psepof ~ less than its generated code. This is partly dutheo
analyzing the executable FLX programs, we can counfionprocedural nature of the language and partlytdue
each of the nonempty intersections and theishort hands, such as the keywoatls supported by the
complements as distinct states. Hence, we hawsita fi 1anguage. Consider the DoNotDisturb feature given i
number of states. State transition of the finitatest Figure 3. Its code will have to be duplicated mémes
machine is triggered by events. A program unit mayf the feature is written in a procedural language.
update the value of some domain variables. If that We started to use FLX to produce useful code.
happens, the next state is defined by change iresaif Recently, we used it to develop the essential feataf
the domain variables. a call center built on top of the voice over IPtfolam,

The nonempty intersections are the interactionSkype. We are in the process of using FLX to rewrit
conditions among program units and they are redolvethe scheduler of the Linux kernel, and have statted
either by another program unit or by a precedeisténl deyelopment of an assertion based verifier for g
the feature package. If we lump all intersectionswritten in FLX. . .
covered by a precedence list as one state, theetushb A research version of the FLX compiler, example
states of the finite state machine is roughly equ#he code, FAQ and other documents are available for
number of program units in the feature packageitsnd download ahttp://www.openfix.org
features plus the number of precedence lists in the
feature package. 6. Acknowledgment

5. Conclusions The author wishes to acknowledge the contribution
of Lu Zhao and Yimeng Li in the development of the

FLX has two design objectives: (1) to enable thecurrent version of the FLX first order SAT solvend

development of interacting features as separate arlgl Zhao for her research into the prior art oftfosder

reusable program modules, and (2) to facilitateSAT solvers. The full scope of their contributiorllw

assertion based verification of programs writtefrixx. ~ appear in a forthcoming paper.

FLX meets the requirements for objective (1). For

objective (2), we have developed a first order SAT7. References

solver and the FLX compiler generates a finite estat

machine from an executable FLX program. [1] Alexander, R., “The Real Costs of Aspect-Oréht
Programming,” IEEE Software, November/December3200

[2] Ball, T., and Rajamani, S. K., “The SLAM Projec
Debugging System Software via Static Analysis,”
Proceedings of Principles of Programming Langua2@®2.

[3] Baumgartner, P. and Tinelli, C., “The Model Hwion
Calculus,” The 19 International Conference on Automated
Deduction, Volume 2741 of Lecture Notes in Artiéiti
Intelligence (2003).

[4] Bernays, P. and Schonfinkel, M,
Entscheidungsproblem der mathematischen
Mathematische Annalen 99: 342-72, 1929.

"Zum

[5] Bloomberg, J., “The Lego Model of SOA,” ZapTkjn
December 11, 2006yww.zapthink.com/report

[6] Bussler, C., “The Fractal Nature of Web Sersite
Computer, March 2007.

[7] Chavan, A. et. Al., “Resolving Feature Intefaot with

[18] Lippert, M., and C.V. Lopes, “A Study on Extiem
Detection and Handling using Aspect-Oriented
Programming,” Proceedings of International Confeeeion
Software Engineering ICSE 2000.

[19] McMillan, K. L., “Applying SAT Methods in
Unbounded Symbolic Model Checking,” Proceedingd 4%
International Conference on Computer Aided Vertfaa,
July, 2002.

Logik,"[20] Moskewicz, M. W., et al, “Chaff: Engineeringna

Efficient SAT Solver,” Proceedings of the 38th [gsi
Automation Conference (DAC 2001).

[21] Murphy, G.C. et. Al., “Evaluating Emerging Swfre
Development Technologies: Lesson Learned from Assgs
Aspect-Oriented Programming,” |EEE Transactions on
Software Engineering 25 (4) 1999.

[21] M. Musuvathi, D. Park, A. Chou, D. Engler, abdDill,

Precedence Lists in the Feature Language Extensions“CMC: A pragmatic approach to model checking rezdies”

Proceedings of ' International Conference in Feature
Interactions, September, 2007.

[8] Clarke, E. M., Grumberg, O., Peled, D. A., “Mzd
Checking,” The MIT Press, 1999.

[9] Church, A., “A Note on the Entscheidungsprobfem
Joumal of Symblic Logic, 1(1936).

[10] Corbett, J. C., et al, “Bandera: Extractingiti-state
models from Java source code,” In Proc. 22nd lat@nal
Conference on Software Engineering (ICSE), Jun®200

[11] Filho, F., C. Rubira, and A. Garcia, “A Quaative
Study on the Aspectization of Exception Handling,”
Proceedings of ECOOP Workshop on Exception Handifing
OO Systems, July, 2005.

[12] Godefroid, P., “Model Checking for Programming
Languages using VeriSoft,” Proceedings of POPL 1997

[13] Harr, J.A., E.S. Hoover, and R.B. Smith, Origation fo
the No. 1 ESS Stored Program. The Bell System Teghn
Joumal, 1964.

[14] Holzmann, G. J., “The SPIN Model Checker: Rmimand
Reference Manual,” Addison-Wesley Professionalti@eper,
2003.

[15] Kiczales, G., et al, “An Overview of Aspettd,
Proceedings of European Conference on Object @dent
Programming (ECOOP 2001), Springer-Verlag, 2001.

[16] Leung, W.-H., “Method to Add New Software Faes
without Modifying Existing Code,” United States eat
application, August, 2002.

[17] Leung W. H., “Program Entanglement, Feature
Interaction and the Feature Language Extensidbayiputer
Networks, February, 2007 issue 2.

Usenix Association, OSDI 2002.

[22] Plaisted, D. and Zhu, Y., “Ordered Semanticpkty
Linking,” Proceeding of 1% National Conference on
Artificial Intelligence, 1997.

[23] Postel, J., Transmission Control Protocol, RFE3, Sept.
1981.http://www.refceditor.org/rfc793.txt

[24] http://en.wikipedia.org/wiki/Partial_order

[25] Zhao, L., “A First Order Satisfiability Solvefor the
Feature Language Extensions,” M.S. these, ECE Depat,
IIT, May, 2006.

[26] Lindstrom, P. et. al., “Model Checking Reahta Java
Using JavaPathfinder”, Proceedings of tH IBternational
Symposium on Automated Technology for Verificatiand
Analysis (ATVA), October, 2005.

