

Combining Software Quality Analysis with
Dynamic Event/Fault Trees for High Assurance
Systems Engineering

Authors:
Joanne Bechta Dugan
Ganesh J. Pai
Hong Xu

IESE-Report No. 091.07/E
Version 1.0
September 21, 2007

A publication by Fraunhofer IESE

Fraunhofer IESE is an institute of the Fraun-
hofer Gesellschaft.
The institute transfers innovative software
development techniques, methods and
tools into industrial practice, assists compa-
nies in building software competencies
customized to their needs, and helps them
to establish a competitive market position.

Fraunhofer IESE is directed by
Prof. Dr. Dieter Rombach (Executive Director)
Prof. Dr. Peter Liggesmeyer (Director)
Fraunhofer-Platz 1
67663 Kaiserslautern

Copyright © Fraunhofer IESE 2007 v

Abstract

We present a novel approach for probabilistic risk assessment (PRA) of systems
which require high assurance that they will function as intended. Our approach
uses a new model i.e., a dynamic event/fault tree (DEFT) as a graphical and
logical method to reason about and identify dependencies between system
components, software components, failure events and system outcome modes.
The method also explicitly includes software in the analysis and quantifies the
contribution of the software components to overall system risk/ reliability. The
latter is performed via software quality analysis (SQA) where we use a Bayesian
network (BN) model that includes diverse sources of evidence about fault intro-
duction into software; specifically, information from the software development
process and product metrics. We illustrate our approach by applying it to the
propulsion system of the miniature autonomous extravehicular robotic camera
(mini-AERCam). The software component considered for the analysis is the re-
lated guidance, navigation and control (GN&C) component. The results of SQA
indicate a close correspondence between the BN model estimates and the de-
veloper estimates of software defect content. These results are then used in an
existing theory of worst-case reliability to quantify the basic event probability of
the software component in the DEFT.

Keywords: computer software – reliability, defect quantification, code metrics, quality as-
sessment, quality modeling, reliability analysis, software quality, Fault Tree
Analysis (FTA), Event Tree Analysis (ETA)

Copyright © Fraunhofer IESE 2007 vii

Table of Contents

1 Introduction and motivation 1

2 Research method 3
2.1 Dynamic event/fault trees 4
2.2 Software quality analysis 5
2.2.1 Process modeling 5
2.2.2 BN-based analysis 6

3 Example and application 8
3.1 The mini-AERCam system 8
3.2 DEFT model for the propulsion system 9
3.3 BN model for SQA 11

4 Analysis and discussion 13
4.1 SQA of the GN&C component 13
4.1.1 Estimating fault content 13
4.1.2 Worst-case failure intensity estimation 15
4.2 DEFT analysis 17
4.3 Discussion of results 17
4.4 Threats to validity 18

5 Related work 20

6 Conclusions 21

7 References 22

Introduction and motivation

Copyright © Fraunhofer IESE 2007 1

1 Introduction and motivation

Probabilistic risk assessment (PRA) is one among several analysis techniques of-
ten recommended for use when evaluating whether a system will function as
intended; especially so, in the domain of high-assurance systems [1]. Essentially,
PRA is a comprehensive and logical methodology with the dual goals of (a) risk
identification and reduction, and (b) cost-effective improvement of system
safety and performance. Although traditional PRA gives little guidance on how
to address the risks posed by the software components in the system, it is clear
that not doing so can lead to potentially unmitigated, hazardous system states
and/or disastrous consequences [2, 3].

Furthermore, given the fact that software is increasingly used as the central
control component in complex computerbased systems, it is important to un-
derstand not only the dependencies between the software and the system, but
also the software contribution to system failure. This is the primary motivation
for the work presented here. Specifically, there is a need for (1) techniques to
effectively include software into PRA, and (2) quantifying the risk presented by
the software components of the system. In this paper, we present a novel ap-
proach for system-level PRA that also considers the software components of the
system.

In particular, we use dynamic event/fault trees (DEFT) [4] to identify the rela-
tionships and dependencies between system components, including software.
DEFT are a new modeling mechanism which provide improved expressive capa-
bility over event trees (ET) or fault trees (FT) alone. Among its main ideas is the
notion that pivot events in ET can be modeled as dynamic fault trees (DFT).
DEFT allow the modeling of dependencies affecting a component, dependen-
cies between components, as well as dependencies between pivot events. Thus,
it provides a rich and sophisticated set of features to capture the relationship
between system components and software, in the context of PRA.

Within this framework, when we characterize software component risk and its
contribution to overall system risk, we are primarily interested in quantifying the
probability of software failure or software reliability. We use Bayesian networks
(BN) together with diverse sources of evidence from the software product and
the software development process to evaluate software quality e.g., in terms of
its defect content, reliability, failure intensity, etc.

We illustrate and evaluate our method by applying it to the propulsion subsys-
tem of the miniature autonomous extra-vehicular robotic camera (mini-
AERCam) system: first, we evaluate the quality of the software component of

Introduction and motivation

Copyright © Fraunhofer IESE 2007 2

the propulsion system via its estimated defect content and estimated residual
fault content. Then, these are used to compute worst-case failure intensity, us-
ing an existing theory [5, 6] that relates residual defect content to reliability.
This estimation of software component failure intensity is applied to the DEFT
model of the propulsion subsystem to compute overall risk.
The rest of this paper is organized as follows: in section 2, we describe our
overall research method, where each component of the method is explained.
Section 3 describes the mini-AERCam system and the application of the PRA
method. Section 4 presents the quantitative analysis from the methodology ap-
plication and discusses the corresponding results. In section 5 we identify the
relevant related work in the literature, and conclude the paper in section 6.

Research method

Copyright © Fraunhofer IESE 2007 3

2 Research method

Our overall research method comprises: (1) the modeling of the system and its
components as a DEFT (2) using software process and product evidence in a BN
model to characterize the software component failure probability (3) specifying
the failure probabilities for the remainder of the basic events (BE) in the DFT
that represent the pivot events, and (4) solving the DEFT to compute overall sys-
tem risk/ reliability. Since during system design hardwaresoftware partitioning
occurs, the activities of DEFT modeling and software quality analysis can occur
independently, and in parallel.

Figure 1 PRA framework including software with DEFT

Research method

Copyright © Fraunhofer IESE 2007 4

Figure 1 shows the overall picture of our approach for PRA. We note that each
component of this approach: namely the DEFT framework and the Probabilistic
software quality analysis element, can be used independently, or in conjunction
with other equivalent alternatives.
In our prior work [7, 8, 9] we have described each of these elements in detail;
the main contribution of this paper is the combination of these methods into a
cohesive PRA framework that (1) explicitly highlights the dependencies between
the software, the system, and other system components as DEFT and (2) in-
cludes and quantifies the software contribution in the overall system risk analy-
sis.
In the rest of this section, we describe the theory of DEFT (section 2.1), and the
BN based method for software quality analysis (section 2.2)

2.1 Dynamic event/fault trees

An ET is a graphical representation of mitigating or aggravating events that
may occur in response to some initiating event (IE) or perturbation in the system
[10]. In figure 1, an example ET is shown, where the possible scenarios ensuing
from the observed IE are expanded in terms of the occurrence or non-
occurrence of a series of pivot events (PE). The paths of the ET eventually termi-
nate in success or failure outcomes. If the probability of occurrence of each PE
is known, then the joint probability of a path is computed as the product of the
probabilities of all involved branches. mathematically, if j is a path in the ET, Pi
is the ith pivot event and Xi is the corresponding Boolean variable, we have [11]

2,)(
1

≥⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

=

nPpjp
n

i
iI (1)

where

TrueXXP
FalseXXP

iii

iii

==
==

,
,

Fault trees are another type of graphical representation with underlying logical
semantics to systematically reason about the potential causes of system or sub-
system failure. Thus, unlike an ET which starts with an IE and terminates in a
success or failure event, in a DFT we start with a failure event and reason about
the possible system components which may have caused it. DFT [12] are exten-
sions to classical static fault trees, that permit modeling of dynamic system
events e.g., sequential and/or functional dependencies, spares, etc. In figure 1,
we show a sample DFT (labeled as DFT-2) with four basic events (labeled as
BE1, BE2, BE3 and SW).
The rationale underlying DEFT stems from two main facts: first, that ET and DFT

Research method

Copyright © Fraunhofer IESE 2007 5

are both used in PRA to identify system inter-relationships with shared events;
and second, although they are both distinct formalisms, they are closely linked;
thus, some static fault trees can be represented as equivalent ET or vice-versa.
In our case, DFT are used to quantify system events that are part of the ET se-
quence tree (as shown in figure 1). The idea is that dynamic system events are
better captured by DFT and ET combinations as against combinations of static
FT and ET. Depending on whether or not the PE in the ET paths have depend-
encies, the solutions of the DEFT model use different strategies; in general we
convert the DFT into Markov chains and use modularization techniques. We re-
fer the interested reader to prior work [7], where solution strategies for DEFT
have been addressed in greater detail.

2.2 Software quality analysis

The ideas underlying our software quality assessment approach (shown in the
bottom half of figure 1) are (a) performing both evaluative and diagnostic
analysis, and (b) making assurance arguments that contain both deterministic
and probabilistic content.
We model the diverse sources that influence software fault introduction during
software development. Thus, we consider not only software product data e.g.,
software metrics and/or observations of software properties, but also software
development process (SDP) data e.g., software process metrics and/or qualita-
tive evaluations of process parameters. In general, our approach comprises two
main activities:

2.2.1 Process modeling

We first model the process and product together by building a dataflow model
of the SDP. This process model is intuitively closer to the domain of software
development; in figure 2, we show an abstract dataflow model for a process
activity. It identifies (a) the input entities to a process activity, (b) the output en-
tities generated, (c) the agents enacting the process, and finally (d) quantifiable
or qualifiable properties for each of the earlier entities. This abstract model
serves as the basis for building large process models.

Figure 2 Abstract process dataflow model

Research method

Copyright © Fraunhofer IESE 2007 6

One of the purposes of building such a dataflow model is that it provides a
mechanism to either explicitly specify a process that is intended to be followed,
or to understand a process that is already being followed. In doing so, the dif-
ferent process and product parameters which can influence fault introduction
become more apparent.

2.2.2 BN-based analysis

From the process model we algorithmically construct the analysis model i.e., a
Bayesian network (BN). The analysis model is used for estimating the parame-
ters of interest e.g., software quality level, defect level, defect content, etc. Ad-
ditionally, we compute residual defect content and, in-turn, the worst case fail-
ure intensity.
A Bayesian network is a concise representation of a joint probability distribution
on a set of statistical variables, encoded as an acyclic graph of nodes and di-
rected edges [13]. The graph models the assumptions of conditional (in) de-
pendence among the variables in the domain; consequently, the presence of a
directed edge between a set of nodes can be interpreted as causal dependence
in the direction of the edge.
Each node in the network has an associated set of conditional probability distri-
butions that specify the probability of the node being in a particular state. The
task of modeling a domain with a BN involves: (1) identifying the parameters of
interest in the domain (2) specifying the BN structure by identifying the condi-
tional independence relationships between the domain variables, and (3) speci-
fying a conditional probability distribution over the variables in the BN.

Figure 3 Example BN model

Figure 3 shows the BN model generated algorithmically from the process model
of figure 2. In the figure, each node has an associated conditional prior prob-

Research method

Copyright © Fraunhofer IESE 2007 7

ability distribution, except for the parent nodes (nodes with no incoming arcs)
which have unconditional prior probability distributions.
We specify the latter using a parametric informative prior [8, 14]. Specifically,
we use the parametric form of the Gaussian or Beta distribution, using informa-
tion available from the domain and/or expert judgement to specify the parame-
ters.
The arcs between nodes can be interpreted as representing causal dependence
or influence. By assuming that this dependence relationship can be expressed
as a generalized linear model, we have shown that the conditional prior prob-
abilities for a node can be specified by using linear, Poisson or binomial logistic
regression [9].
Once such a BN model is obtained, solving it amounts to computing the mar-
ginal probability of the query nodes in the network. Thus, for a BN defined over
a finite set of random variables (r.v.) { }nXXXX ...;, 21= , the joint probability

distribution over X is encoded as

∏
=

=
n

i
ii PaxXpXp

1

)()((2)

where iPax are the immediate parents of a node iX Xi. Given this joint prob-

ability, the marginal probability of a query r.v. iX Xi is computed as

∑
=≠

=
n

jijx
i

j

XpXp
1,,

)()((3)

To tie these concepts into software quality assessment, the data flow model of
the process and the corresponding BN formalize our conceptual notion of the
dependencies between the process and product parameters, and software
quality. The numerical specification of the analysis model is obtained from
product and process measures, and model refinement is performed from obser-
vations of product parameters.
We are motivated to use BN as our (causal) model form since they can easily
handle data which are both quantitative and qualitative. They are also are well
suited to specifying variable relationships which may be either probabilistic or
deterministic. Additionally, once a BN has been specified, the underlying
mathematics permit evidence propagation in either direction in the network.
Thus, in our context, using a BN to model the relationship between product
metrics and quality permits us to explore the drivers of observed good quality;
the results can be used to benchmark subsequent development.

Example and application

Copyright © Fraunhofer IESE 2007 8

3 Example and application

In section 2, we discussed our overall approach for PRA briefly providing the
background on DEFT and the BN based approach for SQA. Now, we discuss the
application of our method to a real system i.e., the miniature autonomous ex-
tra-vehicular robotic camera (mini-AERCam), designed and developed at the
NASA Johnson Space Center.

3.1 The mini-AERCam system

The mini-AERCam system is a demonstration prototype of a small “nano-
satellite” class free-flyer. This vehicle is intended to provide remote viewing and
external inspection capabilities to support the operations on the international
space station. The eventual goal of system development was to provide the ca-
pabilities of remote and autonomous operation, free-flight and recharge. We
perform PRA on its propulsion system, which consists of twelve pressurized xe-
non-gas thrusters that provide six degrees of freedom in maneuvering (figure
4).
The propulsion system is controlled by the guidance, navigation and control
(GN&C) software, together with a global positioning system (GPS) receiver and
microelectromechanical system gyros for angular rate sensing [15]. In the appli-
cation of our PRA method, we make certain assumptions that simplify the sys-
tem structures and the resulting analysis; these are stated in the appropriate
places.

Figure 4 Mini-AERCam thruster configuration

Example and application

Copyright © Fraunhofer IESE 2007 9

3.2 DEFT model for the propulsion system

Assuming that one thruster from the propulsion system fails (no.7, on the X-
axis, in figure 4), several PE represent the responses that lead to various termi-
nal scenarios. Figure 5 shows the corresponding DEFT model.
In the figure, the thruster failure has been identified as the IE. From here, the ET
branches into two possible responses: that the detector can successfully detect
or not detect such a hazard. In the latter, the system will enter a hazardous
state i.e., Potential injury to a crew-member or damage to the orbiter. If de-
tected, another PE i.e., Compensate via other working thruster(s) further splits
into two paths: Works or Fails to work. If the compensation is successful, no
further PE need to be considered and the outcome is a Success state. If the
compensation fails, two further PE i.e., Isolate fuel from the faulty thruster and
Retrieving the free-flyer via other working thruster(s), are extended. In the DEFT
model, the ET part of the considered IE indicates six paths with five different
system outcome modes.
In the basic quantitative analysis of this ET, we compute the probability of each
ET outcome mode without considering other issues such as common cause fail-
ure and imperfect coverage. We note that dependencies may or may not exist
between the different PE. In figure 5, if we assume that all the PE are inde-
pendent, then the probability of each outcome is given from equation (1). Thus,
if 4...1, =iiP are the pivot events and 6...1=j are each of the paths, then

)1()(== jpSuccessp (4)

)()()(21 WorksPpWorksPpSuccessp =⋅== (5)

Similarly, we may compute the probabilities of other paths in the ET.
To compute the quantity p(P1) i.e., the probability of the first PE, we build a
DFT (shown in figure 6, and labeled as DFT1 in figure 5), whose top event
represents the nondetection of the thruster failure.

Example and application

Copyright © Fraunhofer IESE 2007 10

Figure 5 DEFT for thruster failure event

In figure 6, the top event occurrence is adjudged due to (1) failure of the sensor
which directly detects thruster failure (event X2) and (2) failure of the system
which indirectly detects thruster failure (event X3). The former occurs if the de-
tecting sensor fails to self-test, whereas the latter may occur due to one of two
reasons: the first is related to the hardware, including GPS, gyros and the
power supply. The second is related to software failure. Similar DFT can be con-
structed for each of the remaining PE1. Note that the failure rates are supplied
for each of the BE in the DFT of figure 6, except for software; the computation
of software failure probability is discussed in detail next. We also note that for
this DFT, software is simply considered as a black-box, whose failure implies loss
of the desired functionality. Alternatively, we may also consider its internal
components as basic events in a separate DFT, whose failures lead to the occur-
rence of the top event i.e., event X3.

1 Due to space restrictions, in this paper we do not show the
remaining DFT.

Example and application

Copyright © Fraunhofer IESE 2007 11

Figure 6 DFT for PE1

3.3 BN model for SQA

Now, we apply the BN based method for evaluating the GN&C software com-
ponent quality in the mini-AERCam system. We initially assume that the soft-
ware is developed in a waterfall SDP, and consider the code development activ-
ity for constructing the data-flow representation. The choice of the process ac-
tivity was motivated by the availability of software product measures for that
phase. The resulting data-flow model is algorithmically converted to the BN
model, eventually used for SQA (shown in figure 7).
We also adapt an existing theory of worst-case failure intensity [6] as a BN; the
idea is that both quality analysis, performed in terms of its observable attrib-
utes, as well as worst-case reliability analysis can be unified into a single model.
In the figure, the model includes the sub-nets capturing the contribution of (1)
the process factors and (2) the available product metrics. The former are shown
as the nodes Testing process, Software specification quality, Code development
process, Developer, while the latter are modeled by the nodes Defect content,
SLOC, Essential complexity EV(G), Cyclomatic complexity V(G), respectively.

Example and application

Copyright © Fraunhofer IESE 2007 12

Figure 7 BN for SQA of the GN&C software component

The sub-net for process factors would ideally be expanded to include the rele-
vant process attributes. Observed measurements for these attributes quantify
the contribution of the respective process factors e.g., the quality of the code
development process may be quantified via the capability maturity model
(CMM) [16]. These were not explicitly available; hence, we quantified these
nodes using a parametric informative prior (as mentioned earlier in section
2.2.2). Similarly, only those quality attributes for which some data was available
have been shown in the analysis model i.e., the nodes Defect level, Correct,
Complete.
Each of the nodes in the BN model is assumed to be a discrete r.v. Except for
the nodes quantified from data, all others are assumed to have five states
mapped to a unit interval as:

[] (] (] (] (]18.0,8.06.0,6.04.0,4.02.0,2.00

,,,,

−−−−−

⇔VeryHighHighMediumLowVeryLow

Since the BN model is the main element for SQA, we have only presented this
aspect here2. Subsequently, we outline our analysis procedure and then de-
scribe each item in detail.

2 The details of the data-flow representation and the algorithm
to convert it to a BN are out of the scope of this paper, and we
refer the reader to reference [8].

Analysis and discussion

Copyright © Fraunhofer IESE 2007 13

4 Analysis and discussion

We begin the description of our analysis procedures with the BN based assess-
ment (section 4.1), followed by the DEFT analysis (section 4.2), since the failure
probabilities for all the basic events, except software, are provided in the DFT
model (figure 6). In practice, these can occur in parallel.

4.1 SQA of the GN&C component

The GN&C component has 54 modules built in the C programming language;
the measurement data available for these modules were obtained from the
quality assurance summary reports which were provided to us by the develop-
ers. Specifically, we considered the metrics of cyclomatic complexity V (G),
module design complexity IV (G), essential complexity EV (G) and module size
measured using source lines of code (SLOC).
These metrics are exactly the nodes which will be included in the BN sub-net
capturing the contribution of the product factors (figure 7). The metrics that ac-
tually appear in the model are chosen via traditional correlational analysis and
stepwise backward linear regression. The latter also forms the parametric form
of the conditional prior distribution for the node Fault content in the BN model
(figure 7).

4.1.1 Estimating fault content

We note that the actual fault content data for the GN&C component was not
provided. However, we had access to fault content and metrics data from an
orbital satellite system which had some similarity to mini-AERCam system, and
was also built in the C programming language. Assuming the overlap in func-
tionality of the navigation software in both systems, we built a regression
model relating fault content to the available product metrics (table 1). This was
then used to specify the conditional probability distribution for the node Fault
content in the sub-net Product factors of figure 7. The remaining nodes in the
sub-net were quantified directly from the available data.
As mentioned earlier, we also assumed informative priors for the process fac-
tors. In particular, we assumed a “high quality” software specification, and a
“medium” level of contribution from the code development process, the devel-
opers and the testing process. These correspond to the Beta priors shown in ta-
ble 2.
The conditional distribution for the node Code Quality (CQ) was specified with

Analysis and discussion

Copyright © Fraunhofer IESE 2007 14

a Gaussian prior and weights assumed to reflect our prior belief regarding the
contribution of the process. Thus, we have

10/)234(

)01.0,)~),,,(

DCDPSSQTP

NDTPCDPSSQCQp

cq

cq

+++=µ

µ

Table 1 Multiple linear regression model for fault content estimation

Table 2 Prior distributions for process factors

Figure 8 shows the results of BN analysis for the GN&C software component,
indicating the code quality given the defect level, and information regarding
correctness and completeness. It also shows the distribution of defect content
per module given the product metrics for the GN&C component i.e., the model
estimates that (1) a module picked at random from the GN&C component will
have a “medium” to “high” code quality, and (2) there is about a 75% chance
that the module will have between 0 − 5 defects.

Figure 8 SQA for GN&C component

Analysis and discussion

Copyright © Fraunhofer IESE 2007 15

Figure 9 compares the estimated defect content produced from our approach
(shown in the figure as a line graph), with the developer estimations (shown in
the figure as the bar graph) for the GN&C component. From the figure, we see
that the trend in defect content as estimated by our approach, although pessi-
mistic, follows the trend shown by the developers’ estimations. Although this
comparison is not a statistical validation of our approach, it provides a reason-
able initial baseline estimate for the fault content of the modules in the GN&C
software component.

Figure 9 Comparison of fault content estimations - BN Model Vs. Developer model

4.1.2 Worst-case failure intensity estimation

The estimates of fault content from our model are used in the BN for worst
case failure intensity estimation (figure 7). Underlying this BN is a deterministic
relationship developed by Bishop et al. [6]. Mathematically,

πσ
λ

2..t
N

W ≤ (6)

where N is the residual defect content, Wλ is the worst case failure intensity

bound, σ (the node sigma in figure 7) is the spread of the log-normal distribu-
tion and t is the time for which the software was tested (the node Test time in
figure 7). Empirically, for complex software, we have 5.3084.1 << σ [17].

Analysis and discussion

Copyright © Fraunhofer IESE 2007 16

To compute the residual defect content, we first estimate the number of faults
FT found in testing as a binomial distribution, with parameters initial fault con-
tent FC and a probability f of finding a fault. Corresponding to our assumption
of a “medium” level of testing process contribution, we use a Gaussian prior
for the probability of fault detection)1.0,5.0(~.,. Nfei Thus we have

),(~),(fFCFFCFTp Β (7)

With 54=n modules in the GN&C component, then we compute the residual
defect content (N) as

[]∑ −=))()(.(FTpFCpnN (8)

Equations (6), (7) and (8), are essentially encoded in the BN for worst-case fail-
ure intensity estimation (figure 7). Table 3 shows the estimated residual fault
content from our model.

Table 3 Residual defect content

Table 4 shows the corresponding range of estimations for worst case failure in-
tensity, given assumptions for σ and testing time, t hours.

Table 4 Worst-case failure intensity estimates

For the DEFT analysis, detailed next, we use the results of table 4 and consider
that the software component has a failure probability of the order of 310− .

Analysis and discussion

Copyright © Fraunhofer IESE 2007 17

4.2 DEFT analysis

Using the worst-case failure intensity for the software component in the DFT
model for the first pivot event (figure 6), we compute a top-event probability
p (Fails to detect) = 999996008.0)(=Xp . We also assume that pivot events 2

and 4 have dependencies. To solve the DFT for the PE which have dependen-
cies, we combine both to form a new model from which we construct an
equivalent Markov chain. The details of this solution are out of the scope of this
paper, and are provided in reference [18]. Table 5 shows the results of this
DEFT analysis, indicating the probability of each path and outcome of figure 5.
Thus, given the failure of one thruster in the propulsion system of the mini-
AERCam as the IE, we have computed the probabilities of different outcomes.

4.3 Discussion of results

To summarize the analysis performed in this section, we first considered the
GN&C software component of the mini- AERCam system. Starting with the
code-development process we derived a BN model for analysis, which considers
both process factors and product factors (figure 7). To address the validation of
the BN model, we informally validate the data-flow process model in discussion
with the developers since the latter is intuitively closer to the domain compared
to the BN model.
The software (code) quality was evaluated mainly in terms of its defect content
using software product metrics as well as prior information about the process
factors (table 2). The product metrics are the independent variables in a BN sub-
net that essentially represents a linear regression model (table 1). At the same
time, other quality influencing properties have also been considered i.e., defect
level, correctness and completeness. The results of the BN analysis provide a
distribution of the expected fault content per module in the software compo-
nent. As per our estimations, we compute that the GN&C component contains
about 240 faults (figure 8 and table 3).
The distribution of faults per module was pessimistic but closely followed the
developers’ estimations (figure 9). Although this is not a statistical validation of
our approach (since we are comparing two different models), it provides an ini-
tial starting point to perform the remainder of the PRA analysis. Assuming a
“medium” quality testing process, a correspondingly appropriate probability of
fault detection, the model computes that approximately 194 faults are found in
testing, with about 46 residual faults (table 3). Then, using an existing theory of
worst-case failure intensity and a range of testing times, the GN&C component
is expected to have failure intensity of the order of 310− (table 4).
Second, we performed the DEFT analysis as part of our PRA method. The DEFT
model for the propulsion system of the mini-AERCam (figure 5), indicates five
distinct outcome modes in six paths, with a thruster failure as an IE. The prob-
ability of occurrence of the pivot events considered on each of the paths is

Analysis and discussion

Copyright © Fraunhofer IESE 2007 18

computed using a DFT model i.e., the top event of the DFT model is essentially
the pivot event.

Table 5 Mini-AERCam Propulsion system: DEFT analysis

As an example, we showed the DFT for the first PE (figure 6). The failure inten-
sity of the software basic event in this DFT is now supplied from the BN based
SQA performed earlier (or in parallel). In the overall DEFT analysis, we consid-
ered the dependence between PE2 and PE4, and computed the probability of
each outcome mode (table 5). It is also possible to perform sensitivity, diagnos-
tic, and uncertainty analysis within the DEFT framework for PRA [11, 18].
For this paper, however, our primary intention has been to show how we per-
form a relatively comprehensive PRA for a system, including software compo-
nents. The overall PRA analysis, as a combination of the DEFT model and the BN
based SQA shows (1) the structure and nature of dependencies between the
system components and the software components (2) quantifies the probability
of occurrence of system outcomes given an initiating event, and (3) quantifies
the contribution of the software component in the overall system risk.

4.4 Threats to validity

We address the two main threats to the validity of our results; namely internal
validity and external validity. Internal validity concerns the degree to which we
can draw conclusions from our models regarding (a) the dependence between
the software and hardware components expressed using the DEFT model and
(b) the contribution of the software component to overall system risk. The idea
of DEFT extends the traditional combination of static FT and ET, which has al-
ready been addressed in the literature [19]. One of the main differences with
our work is the inclusion of dynamic system events which cannot be handled by
traditional combinatorial models such as static FT.
ET and DFT are, traditionally, constructed using domain expertise and human
reasoning. Hence it is possible to overlook some scenarios within the DEFT
model which may not be easily conceivable and there is some threat to the in-
ternal validity of the DEFT models. However, this threat is reduced by inspection
of the DEFT models by domain experts, system and software requirements as
well as by automatic construction of the reliability models from system design
[20].

Analysis and discussion

Copyright © Fraunhofer IESE 2007 19

There is significantly greater threat to the internal validity of our analysis of the
software contribution to system risk. In this work, specifically, we did not have
actual fault content data for the GN&C component; instead we compared the
results of our model with the fault content estimates that the developers used.
We believe that the threat to the internal validity of our analysis is reduced due
to the relatively close correspondence between our estimates of fault content
per module, and theirs.
Secondly, we did not also have quantitative information regarding the process
which was followed during the SDP; consequently, in the process factors sub-
net (figure 7), we have made certain assumptions regarding the contribution of
process factors to overall quality. Thus, this aspect also threatens the internal
validity of our SQA. We note that the most significant approach to reduce this
risk is to obtain process metrics with which process contribution to overall
product quality can be examined. The BN-based approach intuitively provides a
mechanism to evaluate process assertions about product quality; by providing
evidence from product and process measures, we can refine the model and the
initial assumptions or beliefs that it encodes.
 External validity concerns the degree to which our results can be generalized to
other research settings, within the domain being addressed, or the population
being studied. Since our analysis is applied to one system, the external validity
of our results are threatened. Specifically, we cannot generalize the results of
PRA on this system to another avionics or space system, without a careful con-
sideration of the system and software requirements, operational and environ-
mental criteria. However, the independent methodologies i.e., ET, DFT, and the
BN-based SQA approach have been applied and validated successfully in differ-
ent domains. Thus, we believe that our PRA approach which combines these
independently applicable and valid methods is externally valid.

Related work

Copyright © Fraunhofer IESE 2007 20

5 Related work

In this paper, we have combined different techniques into one novel approach
for PRA. Specifically, we use ET and DFT together in a new model i.e., a DEFT to
reason about the dependencies, outcomes and causes of system failures. ET
and static FT have been examined in combination by Andrews et al. [19], while
DFT have been examined extensively by Dugan et al. [12]. In our prior work, Xu
and Dugan [11, 7] first examined the combination of DFT with ET.
Our approach for PRA explicitly considers software components using the DEFT
to show possible dependencies between the software components, system
components and system outcomes. The inclusion of software into PRA has
been addressed by Li and Smidts [21]: their approach first considers taxonomy
of failure modes, and uses a test-based approach to quantify the probabilities
of software component failure in different modes.
Their work is similar to ours in consider software components either as basic
events or pivot events in FT and ET. The primary difference lies in PRA approach
the fact that they consider static FT, while we consider DFT. The second differ-
ence in our work and theirs lies in our combining ET with DFT, whereas their
approach considers software components in ET or DFT separately. Thirdly, their
approach uses software testing and software fault trees to quantify software
contribution to system risk, whereas we consider process and product evidence
from the SDP to quantify software failure intensity.
The use of BN together with diverse sources of evidence to assess software
quality has been studied by Fenton et al. [22, 23, 24], in an industrial setting by
Gras et al. [25, 26], and more recently by Pai and Dugan [9].
Our approach for BN based SQA is similar to existing work in the use of product
metrics, and the idea of using diverse sources of evidence to reason about fault
introduction into software. However, our approach differs from existing work in
the way we construct and specify our BN model. Specifically, we use the SDP
and a dataflow representation of the same, from which we algorithmically con-
struct the BN model. The numerical specification is obtained from data, and by
considering the relationship between the dependent and independent r.v. as a
generalized linear model.

Conclusions

Copyright © Fraunhofer IESE 2007 21

6 Conclusions

The main contribution of this paper is a novel approach for PRA which explicitly
highlights the dependencies between system components, including software,
and quantifies the software contribution to overall system risk/ reliability.
Specifically, we use DEFT to identify system outcomes, failure events and reason
about their potential causes. In this reasoning, we logically identified the de-
pendencies between the system components and explicitly include software
components into the analysis. Then we quantify the contribution of the soft-
ware components to overall system risk by performing software quality analysis
using BN. In the SQA, we use diverse sources of evidence, including process
factors and product metrics to estimate software quality in terms of its observ-
able properties related to quality e.g., defect content, defect level, correctness,
etc. Within the BN model itself, we include an existing theory for worst-case re-
liability which uses an estimate of residual defect content.
We illustrated our approach by applying it to the propulsion functionality of the
mini-AERCam system. Using one thruster failure as an example of an initiating
event, we constructed the DEFT model, identified the PE at which DFT would be
used, and illustrated one DFT as an example. The GN&C software component
which controls the system propulsion was considered as the software compo-
nent whose failure may lead to loss of propulsion or navigation. We quantified
the worst-case failure intensity of this software component using data available
from product metrics, and assumptions regarding SDP contributions to overall
quality. The results of our BN analysis produced defect content estimates that
closely followed developer estimates. Finally, we considered dependencies be-
tween PE in the DEFT and quantified the probabilities of system outcome
modes and individual paths in the DEFT.

Acknowledgements.

 We thank the NASA Johnson Space Center, which supported this work under
grant NNJ05JL56A. Opinions, findings, conclusions and recommendations ex-
pressed in this paper are not necessarily the views of NASA.

References

Copyright © Fraunhofer IESE 2007 22

7 References

[1] M Stamatelatos et al., “Probabilistic risk assessment procedures guide for
NASA managers and practitioners,” Technical Report ver 1.1, NASA
Office of Safety and Mission Assurance, Aug. 2002.

[2] N.G. Leveson, Safeware: System Safety and Computers, Addison-Wesley,
1995.

[3] J.L. Lions, “Ariane 5: flight 501 failure,” Inquiry board report, European
Space Agency, July 1996.

[4] J.B. Dugan and H. Xu, “Method and system for dynamic probability risk as-
sessment,” Provisional patent application serial no. 60/750,001,
2004.

[5] P.G. Bishop and R.E. Bloomfield, “A conservative theory for long-term reli-
ability growth prediction,” IEEE Transactions on Reliability, vol. 45,
no. 4, pp. 550–560, 1996.

[6] P. Bishop and R. Bloomfield, “Worst case reliability prediction based on a
prior estimate of residual defects,” in Proceedings of the 13th IEEE
International Symposium on Software Reliability Engineering, Nov.
2002.

[7] H. Xu and J.B. Dugan, “Combining dynamic fault trees and event trees for
probabilistic risk assessment,” in Proceedings of the Annual Reli-
ability and Maintainability Symposium, 2004.

[8] G.J. Pai, Probabilistic software quality assessment, Ph.D. thesis, University of
Virginia, Dept. of Electrical and Computer Engineering, Feb. 2007.

[9] G.J. Pai and J.B. Dugan, “Empirical analysis of software fault content and
fault proneness using Bayesian methods,” IEEE Transactions on
Software Engineering, vol. 33, no. 10, Oct. 2007.

[10] W.R. Dunn, Practical design of safety-critical computer systems, Reliability
Press, 2002.

 [11] H. Xu, “Combining dynamic fault trees and event trees for probabilistic
risk assessment,” M.S. thesis, University of Virginia, Dept. of ECE,
May 2004.

References

Copyright © Fraunhofer IESE 2007 23

[12] J.B. Dugan, S.J. Bavuso, and M.A. Boyd, “Dynamic fault tree models for
fault tolerant computer systems,” IEEE Transactions on Reliability,
vol. 41, no. 3, pp. 363–373, Sept. 1992.

[13] F.V. Jensen, An Introduction to Bayesian Networks, Springer, 1996.

[14] J.O. Berger, Statistical Decision Theory and Bayesian Analysis, Springer-
Verlag, 2nd edition, 1993.

[15] S. Fredrickson et al., “NASA Johnson Space Centre’s miniature autono-
mous extravehicular robotic camera,” Technical summary docu-
ment, NASA Johnson Space Centre, 2002, Accessible at
http://aercam.jsc.nasa.gov/.

[16] M.C. Paulk, B. Curtis, M.B. Chrissis, and C.V. Weber, “Capability maturity
model, version 1.1,” IEEE Software, vol. 10, no. 4, pp. 18–27, July
1993.

[17] P.G. Bishop and R.E. Bloomfield, “Using a log-normal failure rate distribu-
tion for worst case bound reliability prediction,” in Proceedings of
the International Symposium on Software Reliability Engineering
(ISSRE), Nov. 2003, pp. 237–245.

[18] H. Xu, DEFT: Dynamic Event Fault Trees for Probabilistic Risk Assessment of
Computer-Based systems, Ph.D. thesis, University of Virginia, Dept.
of ECE., Jan. 2008.

[19] J.D. Andrews and S.J. Dunnett, “Event tree analysis using binary decision
diagrams,” IEEE Transactions on Reliability, vol. 49, pp. 230–238,
June 2000.

[20] G.J. Pai and J.B. Dugan, “Automatic synthesis of dynamic fault trees from
UML system models,” in Proceedings of the 13th IEEE International
Symposium on Software Reliability Engineering, Nov. 2002.

[21] B. Li, M. Li, S. Ghose, and C. Smidts, “Integrating software into PRA,” in
Proceedings of the 14th International Symposium on Software Reli-
ability Engineering, Nov. 2003.

[22] M. Neil and N.E. Fenton, “Predicting software quality using Bayesian belief
networks,” in Proceedings of the 21st Annual Software Engineer-
ing Workshop, NASAGoddard Space Flight Center, Dec. 1996.

[23] N.E. Fenton et al., “Software quality prediction using Bayesian networks,”
in Software Engineering with Computational Intelligence, T.M.
Khoshgoftaar, Ed. Kluwer Academic Publishers, 2003.

References

Copyright © Fraunhofer IESE 2007 24

[24] N.E. Fenton, M. Neil, P. Hearty, W. Marsh, P. Krause, and R. Mishra, “Pre-
dicting software defects in varying development lifecycles using
bayesian nets,” Information and Software Technology, vol. 49, pp.
32–43, Jan. 2007.

[25] J. Gras, “End-to-end defect modeling,” IEEE Software, vol. 21, no. 5, pp.
98–100, Sept./Oct. 2004.

[26] E.P. Minana and J. Gras, “Improving fault prediction using bayesian net-
works for the development of embedded software applications,”
Software Testing, Verification and Reliability, vol. 16, no. 3, pp.
157–174,

Document Information

Copyright 2007 Fraunhofer IESE.
All rights reserved. No part of this publication may
be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means including,
without limitation, photocopying, recording, or
otherwise, without the prior written permission of
the publisher. Written permission is not needed if
this publication is distributed for non-commercial
purposes.

Title: Combining Software Qual-
ity Analysis with Dynamic
Event/Fault Trees for High
Assurance Systems Engi-
neering

Date: September 21, 2007
Report: IESE-091.07/E
Status: Final
Distribution: Public

