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Abstract—Even in the domain of safety critical systems, safety
and reliability are not the only goals and a developing engieer
is faced with the problem to find good compromises wrt. other
antagonistic objectives, in particular economic aspects foa
system. Thus there does not exist a single optimal design vant
of a system but only compromises each “best” in its own rights
With the rising complexity, especially of cyber-physical gstems,

the process of manually finding best compromises becomes ave

more difficult.

To cope with this problem, we propose a model-based opti-
mization approach which uses quantitative model-based safy
analysis. While the general approach is tool-independentywe
implement it technically by introducing well defined variation
points to a formal system model. These allow enough variabily
to cover whole families of systems while still being rigoros
enough for formal analysis. From the specification of this fanily
of system variants and a set of objective functions, we compel
Pareto optimal sets, which represent best compromises.

In this paper we present a framework which allows for op-
timization of arbitrary quantitative goal functions, in pa rticular
probabilistic temporal logic properties used for model-baed
safety analysis. Nevertheless, the approach itself is welpplicable
to other domains.

I. INTRODUCTION

Matthias Gudemann
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with very high dependability may simply be too expensive to
build, or its performance might be below expectations omneve
requirements. On the other hand, it will often be a goal tddbui

a system with the highest possible performance and lowest
cost, but at the same time with an appropriate safety to allow
for necessary certifications. Because of the often antatoni
nature of these different aspects, there is typically nglsin
optimal possibility to develop a cyber-physical system. In
general there exist different variants, where each is a best
compromise in the sense that only worsening one aspect can
augment another. The identification of such compromises is n
trivial task. It is traditionally performed manually by engers
during system development.

In this paper we propose a systematic model-based opti-
mization approach to find the set of best compromises for a
cyber-physical system. We implemented the approach using a
formal system modeling language (SAML) and multi-objeetiv
optimization algorithms to identify best system specifimag.

The antagonistic nature of reliability, availability, méain-
ability and safety (RAMS) is also context of standards like
IEC62278/EN50126. In general, this can be seen as a multi-

The term “cyber-physical system” describes a system wigbjective optimization problem, i.e. the identification lodst
a tight coupling between the computational units of a systes@mpromises among the four different objectives. Thus our
and its physical components. Computational units are alpproach is capable of targeting requirements according to
kinds of programmable devices such as micro controllelRAMS.
micro computers, embedded systems and computer systemshe remainder of the paper provides an introduction to
Physical components comprise all kind of sensors and actaffulti-objective optimization in Section Il. Section Il gvides
but also every mechanical interconnection between thema. Th prief introduction of SAML and introduces our formal
overall system behavior cannot be determined by analyhieg tanalysis techniques. We describe our optimization approéc
program code or the physical components in isolation; onlyfgrmal specifications in Section IV and provide an evaluatio

combined analysis of both explains the system behavior.

of our approach on a case study in Section V. Finally,

To cope with the safety requirements of complex reacti®ection VI provides some related approaches and Section VI
systems, model-based safety analysis methods were deygles an outlook on future work.

oped [1], [2]. These methods rely on a formal model which

consists of the software control, i.e., the behavior of the I

computational units, and its environment, i.e., all the gptgl

. MULTI-OBJECTIVE OPTIMIZATION

components interconnected with the computational untiss T  To optimize a system design wrt. different goals and to
model is then analyzed for safety aspects using deducti@entify the best compromises, we use a very abstract view
most often based on automatic model checking techniqueson a system. We consider the possible variations of a system
However, for most cyber-physical systems, safety is not tlas free parameters of an optimization problem and the diffter
only important aspect, even in safety critical domains.eDthcharacteristics of the system as its objective functionerev
aspects are for example system costs or performance. Asyst@ecisely, we consider it to be a multi-objective optimiaat



problem (MOP). Every possible configuration of the parame-

ters describes a specific system variant for which the dlegect Pri={xeX|-3Ix € X:f(x)=<f(x)} (3)

functions are evaluated. One of these is the probabiliafietg

analysis, which consists of the computation of the hazardThe set of images of the elements of the Pareto set defines

occurrence probability. the Pareto front, as the set of solutions that do not dominate
In general a MOP is described as follows: Alparameters €ach other, and are not dominated by any other available

of a system are denoted as a vector of decision variables solution:

{z1,...,21} € X. Thel objectives of the optimization are Definition 3 (Pareto Front): For a given multi-objective
functionsi = 0...1, f; : X — R. All [ objectives together optimization problemf(z) with x € X, and its Pareto Set
forming the vector-valued functiofi = (f1(x), ..., fi(x))", P~ the Pareto fronPF" is defined as:
the MOP is defined as the minimization of the vector-valued " «
objective function: PF={u=fx)[xeP} )
Finding the Pareto front is a non-trivial problem even for
.fl (X) . . . .
. _ _ analytic functions. In the past we did some experiments to
min (f (x)) = min : 1) approximate the Pareto set using evolutionary algorithdhs [
fi(x) They are well applicable and are widely used for MOP. Besides

. Lo . . ophisticated search algorithms, more pragmatic appesach
For such vector functions, it is in general impossible t . .
, . : . N . _are also feasible. In Section V we use brute force and non-
define a total order, in particular if the objective functon . . . -

. . dominated sorting to solve a MOP with a sufficiently small
fi are antagonistic to each other. Consider for example?garch space

system that moves goods from one point to another. Whi I el ts in the Paret timal set idered
designing such a system, the engineer needs to determine th’% elements In the Fareto oplimal Set are considered as
ually good solutions. To select a single one for the real-

maximum allowed speed. In this example, there might be twalY : o .
objectives functions that need to be considered: The irayel ization of one system variant, ’furthe_r criteria are re_cph_we
time and the systems hazard probability. Obviously with hese could either be an expe_rts ch(_)|_ce, or further hmlSt
higher speed, the traveling time decreases and the ha Pcnl_ever, these are very domain specific and thus not disdusse
probability increases. It is clear that there is no singlst be'nt IS paper.
solution considering the minimization of the hazard proligb m
and the traveling time at the same time.

To cope with antagonistic objective functions we rely on Model-based safety analysis forms the basis for the pro-
the Pareto dominance criterion. It is a partial order whidposed optimization approach. It starts from a formal descri
allows for optimality comparison of different solutionaufther tion of a model, its physical environment and the possible

. M ODEL-BASED SAFETY ANALYSIS

details are for example in [3]. failure modes and uses formal deduction techniques to amaly
Definition 1 (Pareto Dominance)A vector the system.
v = (ug,...,up,) € R"™ dominates another vector

v=(v1,...,0,) € R™ if and only if: A. Specification

We express models in the safety analysis modeling language
(SAML). Here, we only cover its syntax and semantics as far
If » dominatesy this is also denoted as < . as it is required to understand the optimization approach. A

Given two vectorsu and v, whereu < v means that all complete definition is presented in [5], [6]. It is derivedrir
elements inu are less than or equal to the correspondiri§e PRISM language [7], allows for modeling of finite state
e|ements |nU and at |east ohe e|ementmis Strict'y Sma"er automata a.nd uses a diSCI’ete t|me mOde|. The state automata
than the Corresponding element«dnIn other wordsx is for are eXeCUted in a SynChI’OI’]OUS parallel Way, the transitions
at least one goal function strictly better tharand not worse allow for the expression of combined probabilistic and non-
in all others. deterministic behavior.

Applied to the example of the transportation system, the
F_’areto domingnce considers a §Qlution with a short trayeligonstant double prob := 0. 2;
time and a high hazard probability to be equally good asnsodule nmyMd
system with a long traveling time and a low hazard probabilit ~ state : [1..3] init 1; 1
Yet a solution with a high traveling time and a high hazard state = 1 ->choice( 1: (state’ = 2))

Vie{l,...,n}:u; <v;AJje{l,....,n}:u; <v. (2)

probability is not optimal. This fits the idea of the best state = 2 -> chome((gtgt);bg;,tl(sltsteat=e’1): g))
compromises. All parameter settings that lead to Pareto state = 3 ->choice{ 1. (state’ = 1)) + ’
optimal solutions form the Pareto set: choice{ 1: (state’ = 2));

Definition 2 (Pareto Set):For a given multi-objective op- endmodule
timization problem f(x) with x € X, the Pareto SetP*, is
defined as: Fig. 1. A minimalistic SAML model with only one module



Every automaton description is included inm@dulethat distributions over the successor states. Multiple digtidns
consists of one or more state variables and a set of updesém be assigned to every state. The exact semantics of SAML
rules. Figure 1 shows a brief example. The modujgvbd models can be found in [5].
contains one state variable nametlat e, defined for the = The MDP for the SAML model listed in Figure 1 is depicted
interval of naturals from one to three and the initial valugn Figure 2. Here every value of the single state variable
one. represents one state. The transitions are labeled aithp

Transitions are specified in update rules. Every update ruidnere i is the index of the non-deterministic choice that is
has an activation condition and one or more non-deternignisavailable in the originating state andis the probability of
choices. The activation condition is a propositional logithis transition in the selected choice.
formula. It denotes in which system states the update rule is
active. In the example there is one update rule for each of the
three possible states. If the activation condition evalsidb
true, one of the following non-deterministic choices (dewlo
by the keywordchoi ce) is selected. In the example, the first
update rule consists of one choice and a trivial probability
distribution. The third update rule consists of two choices
Within every non-deterministic choice a discrete prohgbil
distribution is given. The second update rule in the exam-A valid SAML model must fulfill the following require-
ple shows a non-trivial probability distribution. The ctanst Ments: (1) All the probabilities in a distribution must sum
(pr ob) denotes the probability of reaching one of the twéP One. This ensures that the distributions are valid pridibab
possible successor states. For a variable’ marks the value distributions. (2) The activation conditions in one modulest
in the next time step, i.e., the successor state. If the neodQE Pairwise exclusive. This assures that normalizatiorhef t
uses more than one state variable, the assignment is don@"fPabilities is not necessary, their intended value dags n
parallel. change and also that there is no unwanted non-determinism

Constantsare used as a generic concept to use nami&gthe model. (3) The transition relation must be total. This
aliases for certain numbers. Constants may be of floatingt possures that every modeled deadlock state is also deBherat
and integer types. Additional to the usage in the example igéegrated.
probabilities pr ob) they may also be used in the proposig Analysis

tional expressions of the activation conditions and in rstxte .
P For an actual analysis, SAML models are transformed

assignments. . .
9 "rQ]m the input languages of state of the art model checkers

Besides constants and modules, SAML supports a thi bl d del t ¢ i 51 C "
construct calledformulas which are propositional logic ex- using provably Sound model transiormations [5]. Currently

pressions over the state variables. In Summary, a SAML moaglplemented are NuSMvand PRISM. In this section we

consists of a set of constants, a set of formulas and a setDB?Vide a brief introduction to model based safety analgsis
modules: ' SAML models. A complete explanation of model-based safety

Definition 4 (SAML Model):A SAML model is syntacti- analysis is.out of Scope of this paper. .
cally (;elfilned a(s a tuple ) IS Sy I NuSMV is a symbolic model checker for Kripke structures.
It performs qualitative analysis, for which all the proHdasic
S=(C,F,M), (5) information in the SAML model is stripped and replaced
whereC is a set of constantsT is a set of formulas and( with non-determinism. The qualitative safety analysisnpmoi
is a set of modules ' out worst case scenarios. The properties are specified in
The semantics 01; a SAML model with one single modulcomputaltionalll tree logic (CTI.‘) [9]. I.f the mode! checker
is a Markov decision process (MDP). An MDP consists of 6|lnds a violation of a property in the given model, it presents

. o a.sequence of states (starting from the initial state) that
finite set of states, one initial state and a non-empty set é’f o
emonstrates the violation.

probability distributions over the successor states. Alialy The results of the qualitative analysis are not directly

function assigns a set of atomic Boolean propositions tt eac L . I
state. For a detailed definition see, e.g. [8]. relevant for the optimization procedure, but can identiy i

feasible system variants. Still, they can provide very ahla

If @ model contains more than one module and thus m%ﬁormation about the behavior of the model to the system

than one state automaton, these are combined into one sine(;he. .
. . gineer. Counter examples can be produced which show a
module by parallel composition of all modules, creating the

product automaton of all synchronous parallel automata possible sequence of states, for further analysis by a human
, .analyst or engineer.

Informally, a SAML model with & single module and a Qualitative analysis is very useful for safety analysise Th
single state variable maps to an MDP in the following way: All Y y y y

possible values of the state variable form the set of states. deductive cause consequence analysis (DCCA) is a quaitati

initial value (stated with theni t keyword) denotes the initial  1ptp:/usmv.fok.eus
state. The update rules of the module contain the probgabilit 2http:/mww.prismmodelchecker.org/

Fig. 2. The MDP for the SAML model in Figure 1



model-based safety analysis approach [10]. For DCCA, tbased on satellite navigation. Both will differ in accuracy

analyst must identify unique failure modes of system compeeliability and costs. In a formal model such a component

nents. The model is then extended with a set of automatéght be modeled with a state variable representing theatirr

which represents the possible occurrence for every failuading. The rotational measurement can immediately ptese

mode. The functional part of the model is extended in sudwoarse results, while the satellite-based measuremesemie

a way that every component (module) has an appropriatery accurate results but with a slower update interval.dtinb

failure behavior if the corresponding failure automatoimithe cases the state variables are the same, but the update rules

failure state. It is important to notice that the failureanded differ.

model is path inclusion equivalent to the model withoutufeel A very minimalistic example with one param constant

extension [11]. Based on the failure extended model andaad one param module is depicted in Figure 3. The first

specification of an hazard (a set of states which are coregidevariant of the param module/ér i ant A) is the same as the

as hazardous), the DCCA automatically calculates all péessi module depicted in Figure 1. The second variamtr(i ant B)

failure combinations that can lead to a hazardous systebm stpossesses the same definition for the state variailat(e

In general, qualitative analysis is used in our optimizatio. [ 1.. 3] ), but has other update rules. The constant used in

approach for identifying feasible solutions which satiafget the example from Figure 1 is now also turned into a param

of qualitative properties. constant. This means, that it specifies no specific valuetbut a
The quantitative safety analysis is performed using a probaterval of allowed/valid values.

bilistic model checker. It is of fundamental importance floe

optimization. Quantitative properties exploit the proliahc  haram constant double p := [0.2 .. 0.5];

information in the SAML models. Their result is not only garam module myMd

simpleyesor no but a probability stating how likely itis thata  module vari ant A

trace of the model is chosen on which a certain temporal logic ~ state @ [1..3] init 1; o
property holds . The specification of properties is expmsse Z: gig _ % ; gﬂg:g? 1; EZ: g: g, _ ig);
in PCTL probabilistic temporal logic [12]. For safety ansily (g; p): (state’ = 3));
we use the probabilistic deductive cause consequencesimaly state = 3 -> choice( 1: (state’ = 1)) +
(pDCCA) [13], [5]. It computes the occurrence probability choice( 1: (state’ = 2));
of the system hazard, if the occurrence probabilities of all €ndmodule
possible failures are specified. The approach allows for a modlsjltea;/:r.l a[niB 3] init 1:
sensible combination of per-time failure modes specified by state = 1 -> choice{ p:’ (state’ = 2) +
failure rates and per-demand failure modes specified byréail (1-p): (state’ = 3));
probabilities. state = 2 -> choice{ 1: (state' = 3));

state = 3 -> choice( 1: (state’ = 1));

IV. OPTIMIZATION OF A SPECIFICATION endmodule
endparam

A. Syntax and Semantics

Qualitative and quantitative analysis can be performed on Fig. 3. Minimalistic OSAML model
SAML models. Using this, a system can be optimized for
multiple goals by extending the specification with certain An OSAML model is a tuple of sets of all the elements. In
variation points. We now propose a modifier keywqgod(anm) addition to the SAML model there are two more sets for the
to SAML, used in the context of constants and modules. Vggram modules and the param constants:

named the new language optimizable-SAML (OSAML). Definition 5: An OSAML model is syntactically defined as
« Param Module: describes a set of interchangeable mod tuple O O o O o
ules. Each of the modules must have the same signature 0S8 = (C , PCT, F2, ME,PM ) J (6)

in terms of the state space (i.e. Alternative modul&§herec? is a set of constants© is a set of formulagM©
must have the same state variables). However, the stale set of modulesPc® is a set of sets of param constants
transitions may differ. Thus variants of similar behaviognd P A€ is a set of param modules.
can be expressed. Here PCY is a finite set of param constants. Every param
» Param Constant: describes constants in a model thagonstant may cover an infinite set of values. Similgpiy1©
may be changed. Throughout one analysis this valueiis, finite set of param modules where every param module
constant, but another analysis may be performed wiflyntains a finite number of (normal) modules.
different values for the constant. On the semantic layer, an OSAML model is a family of
The idea behinggaram modulés to model parts with a sim- SAML models (which matches a family of MDPs). Based
ilar purpose but different architecture or technique. @igrs on the assumption that a family can contain good and bad
the configuration of a car where several different tachorseteandidates there is no point in analyzing a whole family. For
are available; all do measure the speed, but one does thisabyneaningful analysis one specific variant for each param
measuring the rotational speed of the wheels and anothemiedule and a certain value for every param constant must be



chosen. Thus only members of the model family are analyze [ package AL Opiimizet |&] SAVL Simple]
We call the process of selecting one specific SAML mod 10ptimizer O
from a family the instantiation of an OSAML model. "
Definition 6 (Instance of an OSAML modelin SAML /f’ R
model S is an instance of a OSAML modéDS if and only
if all of the following rules apply: <
1) For every param constant in the OSAML modelS RPN \“use ’ "
a constant (with the same name) exists in the SAM p——— - ~ N
mOde|S. IObjective O
2) The types of the param constants in the OSAML mod | |57/ eererensance(parmeten e
OS must match with the corresponding constants in tf “«create’) 7
SAML model S. ! |
3) The values of the constants corresponding to the par: o wse»
constants must fit in the domain of the param constan —— _

4) For every param module in the OSAML mod®2§ one
module exists in the SAML mode$ that equals one
module in the corresponding param module group.

5) Every constant, formula and module in the SAML model
S is also in the OSAML modeDsS.

6) The SAML modelS contains no additional constants All optimization algorithms must implement th®ptimizer
formulas and modules except the above mentioned Interface. Currently there are implementations of a brated

. L L enumeration algorithm and the fast non-dominated sorting
We omit a complete formal definition because it is rath

: . o . genetic algorithm (NSGAZ2) [15] available. The optimizer
complicated to express, while the meaning is pretty sttaig

implementations use tigamISystemClustés create instances

forward. Instantiating an OSAML model is done in the foIIow-of the OSAML model and théDbjectiveinterface to evaluate

ing way: In a first step, all modules, constants and formuias ;he optimization objectives. In general, the architectfréhe
trans_ferre_d from the OSAML '_“Ode' to an empty SAML mod ramework provides two ways to specify objectives for the
that is going to become the instance. In a second step, evi Efimization.
param constant is turned into an appropriate constant of the .
same type and with a value from the domain of the param con-* Us_e one or more CTL/PCTL fqrml_JIas with the (already
stant. The specific values of the generated constants depend eX|st|n_g) PRISM or NUSMV objectives. .
on the desired instance. The newly generated constants ark Qenerlc objectives can be, expressed in Java.CO(_je that
added to the list of constants in the SAML model. In the third implements thelObjective mt(_erface. These objectives
step, one module is picked out of every param module and can access both the SAML mstan(_:e and the parameter
added to the list of modules in the SAML model. Obviously, configuration used to generate the instance.
now every instance of an OSAML model can be analyzed asBoth methods can be used in the same optimization prob-
every other SAML model. lem. It is therefore possible to optimize two ore more PCTL
We extended the existing SAML grammar [5] with ruleProperties and several Java based objectives at the same tim
for the param keyword and used the ANTLR [14] parser
generator for the creation of a OSAML parser. After parsing
all constants, formulas, modules, param constants andrpara We evaluated the approach on a case study of a redundant
modules they are stored in an abstract syntax tree comgistfiata processing system. The goal was to identify optimal
of instances as Java objects. Given the abstract syntathieeedesign solutions by minimizing the hazard probability ahnel t
instantiation of a OSAML model is then a trivial procedure System costs at the same time.

B. Optimization Framework A. Case Study

We extended the existing implementation of the SAML The following case study from model-based safety analysis
framework towards optimization. The software concept is taken from literature. It was first presented in [16].
depicted in Figure 4. An OSAML model is covered by The case study consists of the measuring of an input signal,
a SamISystemClustenstance. Thegeneratelnstancenethod its computational processing, and the generation of anubutp
performs the instantiation. The resulting SAML model isignal. For higher reliability certain components are rethnt.
represented by &amlISysternbject. A block diagram is depicted in Figure 5. The two sensors

All objectives for the optimization must implement theS1 and S2 measure an input signal. The sensor values are
IObjectiveinterface. In Figure 4 this is exemplary shown fothen processed by the arithmetical units and A2. The first
the PRISM model checker based safety analysis. This clasghmetical unit uses both sensor signals and the secoad on
(PrismObijectivé contains the model transformation and alsonly uses one sensor signal. The second arithmetical unit is
handles the invocation of the model checker. disabled by default. A monitoM observesAl and activates

Fig. 4. Simplified software architecture of the SAML optimiz

V. EVALUATION



the second algorithmic unit if the first one fails. The outpoit  formula’:

O selects the proper signal from the two redundant arithraketic

units. A quantitative and qualitative analysis of the madaly Pmazy(H) = Pmaz—s[trueU<FH] 7)
be found in [10] and [13].

This objective is evaluated with the PRISM model checker.
For the optimization we assumed a mission time= 360
steps.

The second objective calculates the costs of the system. It i
based on the assumption that a system with less components
is cheaper and that components with lower failure proksbili
are more expensive. The combination of a sensor and an
arithmetical unit into one component is assumed to dgst
whereas the separation in two components castBor the
Monitor module the costs arg, 2, 4, 8 and 16 in sequence
of decreasing failure probability. The overall system saate
then defined as the sum of the costs of all chosen system

For optimization, we introduced three parameters in aolditi components. This objective function is implemented diyect
to the original case study. This turns the specification mtoas Java method.
family of specifications. All parameters are expressed & th

Fig. 5. A System with Redundant Components

OSAML model with param constantsand param modules 20 ‘
The parameters are as follows: sl
« Instead of using a separate sensdr and arithmetical 16

unit A1, one unit that combines the functionality of the
sensor and the arithmetical unit can be used. In Figure 5
this is indicated by the dashed box arousitland Al.

« Analogously toS1 and Al also S2 and A2 may be
combined into one unit. In the figure this is indicated

14

12 x

System Costs
x

10 +

with the second dashed box. x

« For the monitor there are 5 different realizations avadabl °r ) .
which differ in the failure probability:1-10=4, 5-107%, af x
1-107°,5-107°,1-10% and5- 1076, ) -

I I I I I I I I
0 5e-08  1le-07 1.5e-07 2e-07 25e-07 3e-07 3.5e-07 4e-07 4.5e-07

The failure of all other components is modeled with a Hazard Probabilty
probability of 10~5. We did not assign a distinct time model to
our formal state-based model. Thus all stated probalsildie
per-step probabilities. If the analysis results shall beleated ) i _
for a real system, a sampling intervAl must be specified. This leads to two binary parameters and one parameter with

The relation between failure rates and the per-step prétyabiUP to five different values. All in all this gives a total af
is defined in [5]. different parameter configurations. The interesting aess,

The first two parameters are realized with fazam module which of these configurations lead to Pareto optimal systems

feature in OSAML. The third parameter can be expressed adue to the fact t.hat the search space of the problem is
param constanbr also asparam moduleA param constant rather small we decided to solve the problem with brute force
would allow the setting of arbitrary values between the low&/i@ the enumeration of the design space. However, the durren
and upper bounds. Thus we usegi@am moduleto express implementation also contains an evolutionary algorithm fo

the logarithmic scaling of the failure probability paraeret ~ dealing with larger or infinite families. _ o
The Pareto front for the example is depicted in Figure 6,

o the failure probability on the: axis and the system costs on
B. Pareto Optimization of the Case-Study they axis. All ten exact parameter configurations of the Pareto
ptimal solutions are listed in Table I. For the exampleyonl

introduced two different objective functions. The first ose alf of all avgilab le parameter configurations I_ead to optim
the occurrence probability of the hazard wittintime-steps, systems. This means that for every non optimal parameter

wherek is also referred as mission time. This hazard is defin& nfiguration a different configuration ??“Sts’ that is bqth
as the state when the system is not able to generate a pr per and has a lower hazard probability at the same time.

output signal. WithH describing the hazardous state (i.e., SThe —7 in the formula belongs to PCTL syntax and applies to the

When the SySFgm dqes .nOt rgport a prop_er ou_tDUt Signal) mfantitative aspect of PCTL. It denotes that the formulauatas to the
failure probability objective using pDCCA is defined as PCTlccurrence probability of the subsequent CTL formula.

Fig. 6. The Pareto Front

For multi-objective optimization of the case study, w



Design Variant S1/A1 S2/A2 P(Monitor Failure) Pmaxy(H) Costs
1 combined combined 1-107% 4.1656893 - 10— 3
2 separate combined 5.104 2.1063764 - 10~7 5
3 combined combined 51074 2.4509865 - 1077 4
4 separate separate 1-10-5 7.0649944 - 10~8 8
5 separate combined 1-10-5 7.0775668 - 108 7
6 combined combined 1-107° 1.0572783 - 10~ 7 6
7 separate separate 5.107° 5.3059304 - 10—8 12
8 separate combined 5.10~6 5.3153742 - 10~8 11
9 separate separate 1-10-6 3.8964419 - 10~8 20
10 separate combined 1-10-6 3.9033802 - 10~8 19

TABLE |
PARETO OPTIMAL PARAMETER COMBINATIONS AND RESULTING HAZARD PROBABILITY AND SYSTEM COSTS

By further analyzing the results in Figure 6 it seems like Another optimization approach of formal specifications is
there are dominated points in the front. However, Tablepresented in [19]. In this case Markov reward models of
clarifies that they are all non-dominated. It turns out tih&t t embedded systems are optimized along reliability and gnerg
affected pairs of design variant$4( 5}, {7,8} and{9,10}) consumption objectives. However, this approach is limited
only differ in the realization 052 and A2. This leads only to to quantitative analysis. By using SAML as specification
a very small decrease in the hazard probability while cauain language we can perform qualitative and quantitative amaly
strong impact on the costs. All other parameter configunatioon the same model.
differ rather strongly in both, the hazard probability al¢t A completely different approach of analyzing parametric
system costs. This means that in theory, all these solutiddarkov models is presented in [20]. The parametric Markov
must be considered equally good. In reality of course, one miodel and a PCTL property is transformed into a polynomial
the variants must be chosen for the implementation. formula, that states the dependency between the paranadter v

If there is only a minor impact on one objective while therees and the analysis result. However, translating a paramet
is a strong impact on the other objective it is straight faxdva model into a polynomial formula is a complex problem. Even
to pick the cheaper one. To choose a variant when a stronget is solvable for complex case studies the complexityl sti
compromise is required, further strategies are neededw@ye remains an issue. Also the approach presented by Hahn et al.
is to prioritize the objective functions, e.g., setting eethold does not fully support Markov decision processes (as SAML
for the hazard probability and then taking the system with tldoes).
lowest cost which is below that threshold. Another approachDesign space exploration (DSE) is another important topic
is to identify regions where the increase of one objectivier identifying ideal system configurations. DSE based ap-
function leads to a rather large deterioration in at least oproaches are presented for example in [21] and [22]. These
other [17]. According to this rule, solution number 5 seemapproaches use either UML or proprietary modeling langsiage
to be a good choice. There are of course other methods dod system description and a explanatory algorithm to seek
heuristics to chose a single design variant from a Pareto sgitimal solutions. In contrast to our Approach, DSE uses a
often dependent on the nature of the problem domain. set of variation rules to alter the model. The proposed mod-
eling formalisms support the expression of complex andelarg

] o . structural models, but miss the support for the verification
A first safety optimization approach which uses hazag fnctional aspects and non-deterministic behaviornFeo

probabilities as objectives was presented in [18]. This georetical point of view our approach should be able to cove
posteriori approach used an analytic mathematical model gt objectives aimed by the DSE approaches.
all objectives for the optimization. Even though this metho

is computationally efficient, it relies heavily on stochast VII. CONCLUSION AND OUTLOOK
independence which is not a very realistic assumption inemor We proposed an approach to optimize formal specifications
complex models. wrt. objective function expressed either as PCTL propertie
The underlying idea of the SAML based multi-objectiver directly via Java methods. As the objectives can be antag-
optimization was presented in [4]. In this paper the authoosistic, there exists no single optimal solution but onlstbe
applied an evolutionary algorithm on a parametric SAMkompromises. We defined optimality in terms of minimization
specification. To speed up the optimization process, aaificof a multi-objective optimization problem and used the Rare
neural networks where proposed. However, it was on a vetgminance criterion to compare different design variants.
prototypical level without a grammar nor specific semantics On the specification layer we used the SAML specification
the parameters used in the specification. OSAML continukmguage. To express whole families of specifications in one
this initial idea, and introduces proper syntax and sermanthodel we extended the language with the new keyword
as well as a proper implementation and a framework for thgaram The new version of the language is nanogdimizable
objective functions. safety analysis modeling languag®SAML). Parameters of
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a specification family can be the variation of the values of3]

constants or the specification of alternative modules.

On the analysis layer we rely on sound model transforma-
tions from SAML into the specification languages of NuSMV
and PRISM [5]. This allows for using PCTL properties asl4]
objectives for the optimization process. Our software iarch

tecture allows the implementation of further Objectivesha
Java programming language.

We evaluated our approach on a case study from model
based safety analysis. Our optimization along costs anartiaz
probability identifiedl 0 Pareto optimal candidates. Despite thel®]
rather small case study in this paper we also implemented a

evolutionary algorithm to efficiently cover a large searphee
in more complex models.

Particularly motivated by the fact that probabilistic mbde
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gate optimization algorithms. Brute force enumerationysed
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