
HAL Id: hal-00735640
https://inria.hal.science/hal-00735640

Submitted on 7 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multi-Objective Optimization of Formal Specifications
Simon Struck, Michael Lipaczewski, Frank Ortmeier, Matthias Güdemann

To cite this version:
Simon Struck, Michael Lipaczewski, Frank Ortmeier, Matthias Güdemann. Multi-Objective Optimiza-
tion of Formal Specifications. HASE 2012 - 14th High Assurance System Engineering Symposium,
Oct 2012, Omaha, United States. pp.201-208, �10.1109/HASE.2012.21�. �hal-00735640�

https://inria.hal.science/hal-00735640
https://hal.archives-ouvertes.fr

Multi-Objective Optimization of Formal
Specifications

Simon Struck, Michael Lipaczewski, Frank Ortmeier
Otto-von-Guericke University Magdeburg

Computer Systems in Engineering
Magdeburg, Germany

{simon.struck, michael.lipaczewski, frank.ortmeier}@ovgu.de

Matthias Güdemann
CONVECS

Inria Grenoble - Rhône-Alpes
Grenoble, France

matthias.gudemann@inria.fr

Abstract—Even in the domain of safety critical systems, safety
and reliability are not the only goals and a developing engineer
is faced with the problem to find good compromises wrt. other
antagonistic objectives, in particular economic aspects of a
system. Thus there does not exist a single optimal design variant
of a system but only compromises each “best” in its own rights.
With the rising complexity, especially of cyber-physical systems,
the process of manually finding best compromises becomes even
more difficult.

To cope with this problem, we propose a model-based opti-
mization approach which uses quantitative model-based safety
analysis. While the general approach is tool-independent,we
implement it technically by introducing well defined variation
points to a formal system model. These allow enough variability
to cover whole families of systems while still being rigorous
enough for formal analysis. From the specification of this family
of system variants and a set of objective functions, we compute
Pareto optimal sets, which represent best compromises.

In this paper we present a framework which allows for op-
timization of arbitrary quantitative goal functions, in pa rticular
probabilistic temporal logic properties used for model-based
safety analysis. Nevertheless, the approach itself is wellapplicable
to other domains.

I. I NTRODUCTION

The term “cyber-physical system” describes a system with
a tight coupling between the computational units of a system
and its physical components. Computational units are all
kinds of programmable devices such as micro controllers,
micro computers, embedded systems and computer systems.
Physical components comprise all kind of sensors and actors,
but also every mechanical interconnection between them. The
overall system behavior cannot be determined by analyzing the
program code or the physical components in isolation; only a
combined analysis of both explains the system behavior.

To cope with the safety requirements of complex reactive
systems, model-based safety analysis methods were devel-
oped [1], [2]. These methods rely on a formal model which
consists of the software control, i.e., the behavior of the
computational units, and its environment, i.e., all the physical
components interconnected with the computational units. This
model is then analyzed for safety aspects using deduction,
most often based on automatic model checking techniques.

However, for most cyber-physical systems, safety is not the
only important aspect, even in safety critical domains. Other
aspects are for example system costs or performance. A system

with very high dependability may simply be too expensive to
build, or its performance might be below expectations or even
requirements. On the other hand, it will often be a goal to build
a system with the highest possible performance and lowest
cost, but at the same time with an appropriate safety to allow
for necessary certifications. Because of the often antagonistic
nature of these different aspects, there is typically no single
optimal possibility to develop a cyber-physical system. In
general there exist different variants, where each is a best
compromise in the sense that only worsening one aspect can
augment another. The identification of such compromises is no
trivial task. It is traditionally performed manually by engineers
during system development.

In this paper we propose a systematic model-based opti-
mization approach to find the set of best compromises for a
cyber-physical system. We implemented the approach using a
formal system modeling language (SAML) and multi-objective
optimization algorithms to identify best system specifications.

The antagonistic nature of reliability, availability, maintain-
ability and safety (RAMS) is also context of standards like
IEC62278/EN50126. In general, this can be seen as a multi-
objective optimization problem, i.e. the identification ofbest
compromises among the four different objectives. Thus our
approach is capable of targeting requirements according to
RAMS.

The remainder of the paper provides an introduction to
multi-objective optimization in Section II. Section III provides
a brief introduction of SAML and introduces our formal
analysis techniques. We describe our optimization approach of
formal specifications in Section IV and provide an evaluation
of our approach on a case study in Section V. Finally,
Section VI provides some related approaches and Section VII
gives an outlook on future work.

II. M ULTI -OBJECTIVE OPTIMIZATION

To optimize a system design wrt. different goals and to
identify the best compromises, we use a very abstract view
on a system. We consider the possible variations of a system
as free parameters of an optimization problem and the different
characteristics of the system as its objective functions. More
precisely, we consider it to be a multi-objective optimization

problem (MOP). Every possible configuration of the parame-
ters describes a specific system variant for which the objective
functions are evaluated. One of these is the probabilistic safety
analysis, which consists of the computation of the hazard
occurrence probability.

In general a MOP is described as follows: Allk parameters
of a system are denoted as a vector of decision variablesx =
{x1, . . . , xk} ∈ X . The l objectives of the optimization are
functions i = 0 . . . l, fi : X → R. All l objectives together
forming the vector-valued functionf = (f1(x), . . . , fl(x))

T ,
the MOP is defined as the minimization of the vector-valued
objective function:

min (f (x)) = min







f1(x)
...

fl(x)






(1)

For such vector functions, it is in general impossible to
define a total order, in particular if the objective functions
fi are antagonistic to each other. Consider for example a
system that moves goods from one point to another. While
designing such a system, the engineer needs to determine the
maximum allowed speed. In this example, there might be two
objectives functions that need to be considered: The traveling
time and the systems hazard probability. Obviously with a
higher speed, the traveling time decreases and the hazard
probability increases. It is clear that there is no single best
solution considering the minimization of the hazard probability
and the traveling time at the same time.

To cope with antagonistic objective functions we rely on
the Pareto dominance criterion. It is a partial order which
allows for optimality comparison of different solutions. Further
details are for example in [3].

Definition 1 (Pareto Dominance):A vector
u = (u1, . . . , un) ∈ Rn dominates another vector
v = (v1, . . . , vn) ∈ Rn if and only if:

∀i ∈ {1, . . . , n} : ui ≤ vi ∧ ∃j ∈ {1, . . . , n} : uj < vi. (2)

If u dominatesv this is also denoted asu ≺ v.
Given two vectorsu and v, whereu ≺ v means that all

elements inu are less than or equal to the corresponding
elements inv and at least one element inu is strictly smaller
than the corresponding element inv. In other words:u is for
at least one goal function strictly better thanv and not worse
in all others.

Applied to the example of the transportation system, the
Pareto dominance considers a solution with a short traveling
time and a high hazard probability to be equally good as a
system with a long traveling time and a low hazard probability.
Yet a solution with a high traveling time and a high hazard
probability is not optimal. This fits the idea of the best
compromises. All parameter settingsx that lead to Pareto
optimal solutions form the Pareto set:

Definition 2 (Pareto Set):For a given multi-objective op-
timization problem,f(x) with x ∈ X , the Pareto Set,P∗, is
defined as:

P∗ := {x ∈ X | ¬∃x′ ∈ X : f(x′) ≺ f(x)}. (3)

The set of images of the elements of the Pareto set defines
the Pareto front, as the set of solutions that do not dominate
each other, and are not dominated by any other available
solution:

Definition 3 (Pareto Front): For a given multi-objective
optimization problem,f(x) with x ∈ X , and its Pareto Set
P∗ the Pareto frontPF∗ is defined as:

PF∗ := {u = f(x) | x ∈ P∗} (4)

Finding the Pareto front is a non-trivial problem even for
analytic functions. In the past we did some experiments to
approximate the Pareto set using evolutionary algorithms [4].
They are well applicable and are widely used for MOP. Besides
sophisticated search algorithms, more pragmatic approaches
are also feasible. In Section V we use brute force and non-
dominated sorting to solve a MOP with a sufficiently small
search space.

All elements in the Pareto optimal set are considered as
equally good solutions. To select a single one for the real-
ization of one system variant, further criteria are required.
These could either be an expert’s choice, or further heuristics.
However, these are very domain specific and thus not discussed
in this paper.

III. M ODEL-BASED SAFETY ANALYSIS

Model-based safety analysis forms the basis for the pro-
posed optimization approach. It starts from a formal descrip-
tion of a model, its physical environment and the possible
failure modes and uses formal deduction techniques to analyze
the system.

A. Specification

We express models in the safety analysis modeling language
(SAML). Here, we only cover its syntax and semantics as far
as it is required to understand the optimization approach. A
complete definition is presented in [5], [6]. It is derived from
the PRISM language [7], allows for modeling of finite state
automata and uses a discrete time model. The state automata
are executed in a synchronous parallel way, the transitions
allow for the expression of combined probabilistic and non-
deterministic behavior.

constant double prob := 0.2;
module myMod

state : [1..3] init 1;
state = 1 -> choice:(1: (state’ = 2));
state = 2 -> choice:(prob: (state’ = 1) +

(1-prob): (state’ = 3));
state = 3 ->choice:(1: (state’ = 1)) +

choice:(1: (state’ = 2));
endmodule

Fig. 1. A minimalistic SAML model with only one module

Every automaton description is included in amodulethat
consists of one or more state variables and a set of update
rules. Figure 1 shows a brief example. The modulemyMod
contains one state variable namedstate, defined for the
interval of naturals from one to three and the initial value
one.

Transitions are specified in update rules. Every update rule
has an activation condition and one or more non-deterministic
choices. The activation condition is a propositional logic
formula. It denotes in which system states the update rule is
active. In the example there is one update rule for each of the
three possible states. If the activation condition evaluates to
true, one of the following non-deterministic choices (denoted
by the keywordchoice) is selected. In the example, the first
update rule consists of one choice and a trivial probability
distribution. The third update rule consists of two choices.
Within every non-deterministic choice a discrete probability
distribution is given. The second update rule in the exam-
ple shows a non-trivial probability distribution. The constant
(prob) denotes the probability of reaching one of the two
possible successor states. For a variablev, v′ marks the value
in the next time step, i.e., the successor state. If the module
uses more than one state variable, the assignment is done in
parallel.

Constantsare used as a generic concept to use named
aliases for certain numbers. Constants may be of floating point
and integer types. Additional to the usage in the example as
probabilities (prob) they may also be used in the proposi-
tional expressions of the activation conditions and in nextstate
assignments.

Besides constants and modules, SAML supports a third
construct calledformulas which are propositional logic ex-
pressions over the state variables. In Summary, a SAML model
consists of a set of constants, a set of formulas and a set of
modules:

Definition 4 (SAML Model):A SAML model is syntacti-
cally defined as a tuple

S = (C,F ,M) , (5)

whereC is a set of constants,F is a set of formulas andM
is a set of modules.

The semantics of a SAML model with one single module
is a Markov decision process (MDP). An MDP consists of a
finite set of states, one initial state and a non-empty set of
probability distributions over the successor states. A labeling
function assigns a set of atomic Boolean propositions to each
state. For a detailed definition see, e.g. [8].

If a model contains more than one module and thus more
than one state automaton, these are combined into one single
module by parallel composition of all modules, creating the
product automaton of all synchronous parallel automata.

Informally, a SAML model with a single module and a
single state variable maps to an MDP in the following way: All
possible values of the state variable form the set of states.The
initial value (stated with theinit keyword) denotes the initial
state. The update rules of the module contain the probability

distributions over the successor states. Multiple distributions
can be assigned to every state. The exact semantics of SAML
models can be found in [5].

The MDP for the SAML model listed in Figure 1 is depicted
in Figure 2. Here every value of the single state variable
represents one state. The transitions are labeled withk : p

wherek is the index of the non-deterministic choice that is
available in the originating state andp is the probability of
this transition in the selected choice.

1

20: 1

0: 0.2 3

0: 0.8

0 : 1
1 : 1

Fig. 2. The MDP for the SAML model in Figure 1

A valid SAML model must fulfill the following require-
ments: (1) All the probabilities in a distribution must sum
to one. This ensures that the distributions are valid probability
distributions. (2) The activation conditions in one modulemust
be pairwise exclusive. This assures that normalization of the
probabilities is not necessary, their intended value does not
change and also that there is no unwanted non-determinism
in the model. (3) The transition relation must be total. This
assures that every modeled deadlock state is also deliberately
integrated.

B. Analysis

For an actual analysis, SAML models are transformed
into the input languages of state of the art model checkers
using provably sound model transformations [5]. Currently
implemented are NuSMV1 and PRISM2. In this section we
provide a brief introduction to model based safety analysisof
SAML models. A complete explanation of model-based safety
analysis is out of scope of this paper.

NuSMV is a symbolic model checker for Kripke structures.
It performs qualitative analysis, for which all the probabilistic
information in the SAML model is stripped and replaced
with non-determinism. The qualitative safety analysis points
out worst case scenarios. The properties are specified in
computational tree logic (CTL) [9]. If the model checker
finds a violation of a property in the given model, it presents
a sequence of states (starting from the initial state) that
demonstrates the violation.

The results of the qualitative analysis are not directly
relevant for the optimization procedure, but can identify in-
feasible system variants. Still, they can provide very valuable
information about the behavior of the model to the system
engineer. Counter examples can be produced which show a
possible sequence of states, for further analysis by a human
analyst or engineer.

Qualitative analysis is very useful for safety analysis. The
deductive cause consequence analysis (DCCA) is a qualitative

1http://nusmv.fbk.eu/
2http://www.prismmodelchecker.org/

model-based safety analysis approach [10]. For DCCA, the
analyst must identify unique failure modes of system compo-
nents. The model is then extended with a set of automata
which represents the possible occurrence for every failure
mode. The functional part of the model is extended in such
a way that every component (module) has an appropriate
failure behavior if the corresponding failure automaton isin the
failure state. It is important to notice that the failure extended
model is path inclusion equivalent to the model without failure
extension [11]. Based on the failure extended model and a
specification of an hazard (a set of states which are considered
as hazardous), the DCCA automatically calculates all possible
failure combinations that can lead to a hazardous system state.
In general, qualitative analysis is used in our optimization
approach for identifying feasible solutions which satisfya set
of qualitative properties.

The quantitative safety analysis is performed using a proba-
bilistic model checker. It is of fundamental importance forthe
optimization. Quantitative properties exploit the probabilistic
information in the SAML models. Their result is not only a
simpleyesor no but a probability stating how likely it is that a
trace of the model is chosen on which a certain temporal logic
property holds . The specification of properties is expressed
in PCTL probabilistic temporal logic [12]. For safety analysis
we use the probabilistic deductive cause consequence analysis
(pDCCA) [13], [5]. It computes the occurrence probability
of the system hazard, if the occurrence probabilities of all
possible failures are specified. The approach allows for a
sensible combination of per-time failure modes specified by
failure rates and per-demand failure modes specified by failure
probabilities.

IV. OPTIMIZATION OF A SPECIFICATION

A. Syntax and Semantics

Qualitative and quantitative analysis can be performed on
SAML models. Using this, a system can be optimized for
multiple goals by extending the specification with certain
variation points. We now propose a modifier keyword (param)
to SAML, used in the context of constants and modules. We
named the new language optimizable-SAML (OSAML).

• Param Module: describes a set of interchangeable mod-
ules. Each of the modules must have the same signature
in terms of the state space (i.e. Alternative modules
must have the same state variables). However, the state
transitions may differ. Thus variants of similar behavior
can be expressed.

• Param Constant: describes constants in a model that
may be changed. Throughout one analysis this value is
constant, but another analysis may be performed with
different values for the constant.

The idea behindparam moduleis to model parts with a sim-
ilar purpose but different architecture or technique. Consider
the configuration of a car where several different tachometers
are available; all do measure the speed, but one does this by
measuring the rotational speed of the wheels and another is

based on satellite navigation. Both will differ in accuracy,
reliability and costs. In a formal model such a component
might be modeled with a state variable representing the current
reading. The rotational measurement can immediately present
coarse results, while the satellite-based measurement presents
very accurate results but with a slower update interval. In both
cases the state variables are the same, but the update rules
differ.

A very minimalistic example with one param constant
and one param module is depicted in Figure 3. The first
variant of the param module (variantA) is the same as the
module depicted in Figure 1. The second variant (variantB)
possesses the same definition for the state variable (state
: [1..3]), but has other update rules. The constant used in
the example from Figure 1 is now also turned into a param
constant. This means, that it specifies no specific value but an
interval of allowed/valid values.

param constant double p := [0.2 .. 0.5];
param module myMod

module variantA
state : [1..3] init 1;
state = 1 -> choice:(1: (state’ = 2));
state = 2 -> choice:(p: (state’ = 1) +

(1-p): (state’ = 3));
state = 3 -> choice:(1: (state’ = 1)) +

choice:(1: (state’ = 2));
endmodule
module variantB

state : [1..3] init 1;
state = 1 -> choice:(p: (state’ = 2) +

(1-p): (state’ = 3));
state = 2 -> choice:(1: (state’ = 3));
state = 3 -> choice:(1: (state’ = 1));

endmodule
endparam

Fig. 3. Minimalistic OSAML model

An OSAML model is a tuple of sets of all the elements. In
addition to the SAML model there are two more sets for the
param modules and the param constants:

Definition 5: An OSAML model is syntactically defined as
a tuple

OS =
(

CO,PCO,FO,MO,PMO
)

, (6)

whereCO is a set of constants,FO is a set of formulae,MO

is a set of modules,PCO is a set of sets of param constants
andPMO is a set of param modules.

HerePCO is a finite set of param constants. Every param
constant may cover an infinite set of values. SimilarlyPMO

is a finite set of param modules where every param module
contains a finite number of (normal) modules.

On the semantic layer, an OSAML model is a family of
SAML models (which matches a family of MDPs). Based
on the assumption that a family can contain good and bad
candidates there is no point in analyzing a whole family. For
a meaningful analysis one specific variant for each param
module and a certain value for every param constant must be

chosen. Thus only members of the model family are analyzed.
We call the process of selecting one specific SAML model
from a family the instantiation of an OSAML model.

Definition 6 (Instance of an OSAML model):An SAML
modelS is an instance of a OSAML modelOS if and only
if all of the following rules apply:

1) For every param constant in the OSAML modelOS
a constant (with the same name) exists in the SAML
modelS.

2) The types of the param constants in the OSAML model
OS must match with the corresponding constants in the
SAML modelS.

3) The values of the constants corresponding to the param
constants must fit in the domain of the param constants.

4) For every param module in the OSAML modelOS one
module exists in the SAML modelS that equals one
module in the corresponding param module group.

5) Every constant, formula and module in the SAML model
S is also in the OSAML modelOS.

6) The SAML modelS contains no additional constants,
formulas and modules except the above mentioned.

We omit a complete formal definition because it is rather
complicated to express, while the meaning is pretty straight
forward. Instantiating an OSAML model is done in the follow-
ing way: In a first step, all modules, constants and formulas are
transferred from the OSAML model to an empty SAML model
that is going to become the instance. In a second step, every
param constant is turned into an appropriate constant of the
same type and with a value from the domain of the param con-
stant. The specific values of the generated constants depends
on the desired instance. The newly generated constants are
added to the list of constants in the SAML model. In the third
step, one module is picked out of every param module and
added to the list of modules in the SAML model. Obviously,
now every instance of an OSAML model can be analyzed as
every other SAML model.

We extended the existing SAML grammar [5] with rules
for the param keyword and used the ANTLR [14] parser
generator for the creation of a OSAML parser. After parsing
all constants, formulas, modules, param constants and param
modules they are stored in an abstract syntax tree consisting
of instances as Java objects. Given the abstract syntax treethe
instantiation of a OSAML model is then a trivial procedure.

B. Optimization Framework

We extended the existing implementation of the SAML
framework towards optimization. The software concept is
depicted in Figure 4. An OSAML model is covered by
a SamlSystemClusterinstance. ThegenerateInstancemethod
performs the instantiation. The resulting SAML model is
represented by aSamlSystemobject.

All objectives for the optimization must implement the
IObjective interface. In Figure 4 this is exemplary shown for
the PRISM model checker based safety analysis. This class
(PrismObjective) contains the model transformation and also
handles the invocation of the model checker.

SAML_Optimizer SAML_Simplepackage []

+SamlSystem: generateInstance(parameter)
...

SamlSystemCluster

+evaluate(system : SamlSystem)
...

IObjective

PrismObjective

+initialize()
+run()

IOptimizer

SamlSystem

BruteForceNSGA2

´«use´»

´«use´»

´«create´»

´«use´»

Fig. 4. Simplified software architecture of the SAML optimizer

All optimization algorithms must implement theIOptimizer
interface. Currently there are implementations of a brute force
enumeration algorithm and the fast non-dominated sorting
genetic algorithm (NSGA2) [15] available. The optimizer
implementations use theSamlSystemClusterto create instances
of the OSAML model and theIObjectiveinterface to evaluate
the optimization objectives. In general, the architectureof the
framework provides two ways to specify objectives for the
optimization.

• Use one or more CTL/PCTL formulas with the (already
existing) PRISM or NuSMV objectives.

• Generic objectives can be expressed in Java code that
implements theIObjective interface. These objectives
can access both the SAML instance and the parameter
configuration used to generate the instance.

Both methods can be used in the same optimization prob-
lem. It is therefore possible to optimize two ore more PCTL
properties and several Java based objectives at the same time.

V. EVALUATION

We evaluated the approach on a case study of a redundant
data processing system. The goal was to identify optimal
design solutions by minimizing the hazard probability and the
system costs at the same time.

A. Case Study

The following case study from model-based safety analysis
is taken from literature. It was first presented in [16].

The case study consists of the measuring of an input signal,
its computational processing, and the generation of an output
signal. For higher reliability certain components are redundant.
A block diagram is depicted in Figure 5. The two sensors
S1 and S2 measure an input signal. The sensor values are
then processed by the arithmetical unitsA1 andA2. The first
arithmetical unit uses both sensor signals and the second one
only uses one sensor signal. The second arithmetical unit is
disabled by default. A monitorM observesA1 and activates

the second algorithmic unit if the first one fails. The outputunit
O selects the proper signal from the two redundant arithmetical
units. A quantitative and qualitative analysis of the modelmay
be found in [10] and [13].

Fig. 5. A System with Redundant Components

For optimization, we introduced three parameters in addition
to the original case study. This turns the specification intoa
family of specifications. All parameters are expressed in the
OSAML model with param constantsand param modules.
The parameters are as follows:

• Instead of using a separate sensorS1 and arithmetical
unit A1, one unit that combines the functionality of the
sensor and the arithmetical unit can be used. In Figure 5
this is indicated by the dashed box aroundS1 andA1.

• Analogously toS1 and A1 also S2 and A2 may be
combined into one unit. In the figure this is indicated
with the second dashed box.

• For the monitor there are 5 different realizations available,
which differ in the failure probability:.1 · 10−4, 5 · 10−4,
1 · 10−5, 5 · 10−5, 1 · 10−6 and5 · 10−6.

The failure of all other components is modeled with a
probability of10−5. We did not assign a distinct time model to
our formal state-based model. Thus all stated probabilities are
per-step probabilities. If the analysis results shall be evaluated
for a real system, a sampling interval∆t must be specified.
The relation between failure rates and the per-step probability
is defined in [5].

The first two parameters are realized with theparam module
feature in OSAML. The third parameter can be expressed as
param constantor also asparam module. A param constant
would allow the setting of arbitrary values between the lower
and upper bounds. Thus we used aparam moduleto express
the logarithmic scaling of the failure probability parameter.

B. Pareto Optimization of the Case-Study

For multi-objective optimization of the case study, we
introduced two different objective functions. The first oneis
the occurrence probability of the hazard withink time-steps,
wherek is also referred as mission time. This hazard is defined
as the state when the system is not able to generate a proper
output signal. WithH describing the hazardous state (i.e.,
when the system does not report a proper output signal) the
failure probability objective using pDCCA is defined as PCTL

formula3:

Pmaxk(H) := Pmax=?[trueU
≤kH] (7)

This objective is evaluated with the PRISM model checker.
For the optimization we assumed a mission timek = 360
steps.

The second objective calculates the costs of the system. It is
based on the assumption that a system with less components
is cheaper and that components with lower failure probability
are more expensive. The combination of a sensor and an
arithmetical unit into one component is assumed to cost1,
whereas the separation in two components costs2. For the
Monitor module the costs are1, 2, 4, 8 and 16 in sequence
of decreasing failure probability. The overall system costs are
then defined as the sum of the costs of all chosen system
components. This objective function is implemented directly
as Java method.

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 5e-08 1e-07 1.5e-07 2e-07 2.5e-07 3e-07 3.5e-07 4e-07 4.5e-07

S
ys

te
m

 C
os

ts

Hazard Probability

Fig. 6. The Pareto Front

This leads to two binary parameters and one parameter with
up to five different values. All in all this gives a total of20
different parameter configurations. The interesting question is,
which of these configurations lead to Pareto optimal systems.

Due to the fact that the search space of the problem is
rather small we decided to solve the problem with brute force
via the enumeration of the design space. However, the current
implementation also contains an evolutionary algorithm for
dealing with larger or infinite families.

The Pareto front for the example is depicted in Figure 6,
the failure probability on thex axis and the system costs on
they axis. All ten exact parameter configurations of the Pareto
optimal solutions are listed in Table I. For the example, only
half of all available parameter configurations lead to optimal
systems. This means that for every non optimal parameter
configuration a different configuration exists, that is both
cheaper and has a lower hazard probability at the same time.

3The =? in the formula belongs to PCTL syntax and applies to the
quantitative aspect of PCTL. It denotes that the formula evaluates to the
occurrence probability of the subsequent CTL formula.

Design Variant S1/A1 S2/A2 P (Monitor Failure) Pmaxk(H) Costs
1 combined combined 1 · 10−4 4.1656893 · 10−7 3
2 separate combined 5 · 10−4 2.1063764 · 10−7 5
3 combined combined 5 · 10−4 2.4509865 · 10−7 4
4 separate separate 1 · 10−5 7.0649944 · 10−8 8
5 separate combined 1 · 10−5 7.0775668 · 10−8 7
6 combined combined 1 · 10−5 1.0572783 · 10−7 6
7 separate separate 5 · 10−5 5.3059304 · 10−8 12
8 separate combined 5 · 10−6 5.3153742 · 10−8 11
9 separate separate 1 · 10−6 3.8964419 · 10−8 20
10 separate combined 1 · 10−6 3.9033802 · 10−8 19

TABLE I
PARETO OPTIMAL PARAMETER COMBINATIONS AND RESULTING HAZARD PROBABILITY AND SYSTEM COSTS

By further analyzing the results in Figure 6 it seems like
there are dominated points in the front. However, Table I
clarifies that they are all non-dominated. It turns out that the
affected pairs of design variants ({4, 5}, {7, 8} and {9, 10})
only differ in the realization ofS2 andA2. This leads only to
a very small decrease in the hazard probability while causing a
strong impact on the costs. All other parameter configurations
differ rather strongly in both, the hazard probability and the
system costs. This means that in theory, all these solutions
must be considered equally good. In reality of course, one of
the variants must be chosen for the implementation.

If there is only a minor impact on one objective while there
is a strong impact on the other objective it is straight forward
to pick the cheaper one. To choose a variant when a stronger
compromise is required, further strategies are needed. Oneway
is to prioritize the objective functions, e.g., setting a threshold
for the hazard probability and then taking the system with the
lowest cost which is below that threshold. Another approach
is to identify regions where the increase of one objective
function leads to a rather large deterioration in at least one
other [17]. According to this rule, solution number 5 seems
to be a good choice. There are of course other methods and
heuristics to chose a single design variant from a Pareto set,
often dependent on the nature of the problem domain.

VI. RELATED WORK

A first safety optimization approach which uses hazard
probabilities as objectives was presented in [18]. This a-
posteriori approach used an analytic mathematical model of
all objectives for the optimization. Even though this method
is computationally efficient, it relies heavily on stochastic
independence which is not a very realistic assumption in more
complex models.

The underlying idea of the SAML based multi-objective
optimization was presented in [4]. In this paper the authors
applied an evolutionary algorithm on a parametric SAML
specification. To speed up the optimization process, artificial
neural networks where proposed. However, it was on a very
prototypical level without a grammar nor specific semanticsof
the parameters used in the specification. OSAML continues
this initial idea, and introduces proper syntax and semantic
as well as a proper implementation and a framework for the
objective functions.

Another optimization approach of formal specifications is
presented in [19]. In this case Markov reward models of
embedded systems are optimized along reliability and energy
consumption objectives. However, this approach is limited
to quantitative analysis. By using SAML as specification
language we can perform qualitative and quantitative analysis
on the same model.

A completely different approach of analyzing parametric
Markov models is presented in [20]. The parametric Markov
model and a PCTL property is transformed into a polynomial
formula, that states the dependency between the parameter val-
ues and the analysis result. However, translating a parametric
model into a polynomial formula is a complex problem. Even
if it is solvable for complex case studies the complexity still
remains an issue. Also the approach presented by Hahn et al.
does not fully support Markov decision processes (as SAML
does).

Design space exploration (DSE) is another important topic
for identifying ideal system configurations. DSE based ap-
proaches are presented for example in [21] and [22]. These
approaches use either UML or proprietary modeling languages
for system description and a explanatory algorithm to seek
optimal solutions. In contrast to our Approach, DSE uses a
set of variation rules to alter the model. The proposed mod-
eling formalisms support the expression of complex and large
structural models, but miss the support for the verification
of functional aspects and non-deterministic behavior. From a
theoretical point of view our approach should be able to cover
the objectives aimed by the DSE approaches.

VII. C ONCLUSION AND OUTLOOK

We proposed an approach to optimize formal specifications
wrt. objective function expressed either as PCTL properties
or directly via Java methods. As the objectives can be antag-
onistic, there exists no single optimal solution but only best
compromises. We defined optimality in terms of minimization
of a multi-objective optimization problem and used the Pareto
dominance criterion to compare different design variants.

On the specification layer we used the SAML specification
language. To express whole families of specifications in one
model we extended the language with the new keyword
param. The new version of the language is namedoptimizable
safety analysis modeling language(OSAML). Parameters of

a specification family can be the variation of the values of
constants or the specification of alternative modules.

On the analysis layer we rely on sound model transforma-
tions from SAML into the specification languages of NuSMV
and PRISM [5]. This allows for using PCTL properties as
objectives for the optimization process. Our software archi-
tecture allows the implementation of further Objectives inthe
Java programming language.

We evaluated our approach on a case study from model
based safety analysis. Our optimization along costs and hazard
probability identified10 Pareto optimal candidates. Despite the
rather small case study in this paper we also implemented a
evolutionary algorithm to efficiently cover a large search space
in more complex models.

Particularly motivated by the fact that probabilistic model
checking is time consuming, we are going to further investi-
gate optimization algorithms. Brute force enumeration, asused
for the case study in this paper, is only feasible for very small
search spaces. Nevertheless we believe that often a reduction
of the search space is possible by exploiting meta information
from the application domain of the optimization problem.
Very often the parameters represent physical quantities of
components in the system. Due to tolerances these cannot
be manufactured with an arbitrary precision. Thus it is not
necessary to operate with a finely grained search space, if this
does not map to the parameters of the real system. A possible
approach could be the specification of logarithmically scaled
parameters (similar to the failure probability parameter of the
monitor module in the case study).

A second approach for the reduction of model checking time
is to integrate stochastic estimation algorithms into the opti-
mization procedure. We are currently busy with the evaluation
of artificial neural network and simulation based estimation
of PCTL formulas. For artificial neural networks the basic
idea (as laid out in [4]) is the usage of previous function
evaluations to train the estimation network. It can then be
used to estimate further function evaluations. Instead creating
an independent estimation model we are evaluating the usage
of the verification models in terms of Monte Carlo simulation
as estimator. We expect a relevant speed-up due to the usage
of estimation techniques.

ACKNOWLEDGMENTS

Michael Lipaczewski is sponsored by the Deutschen Min-
isterium für Bildung und Forschung in the ViERforES project
(BMBF, project-Nr.: 01IM08003C).

Simon Struck is sponsored by the German Research Foun-
dation (DFG) within the ProMoSA project.

REFERENCES

[1] P. A. Abdulla, J. Deneux, G. Stalmarck, H. Agren, and O.Åkerlund,
“Designing safe, reliable systems using SCADE,” inProceedings of
the1st International Symposium on Leveraging Applications of Formal
Methods, Verification and Validation (ISoLA 04). Springer, 2004.

[2] M. Bozzano and A. Villafiorita, “Improving system reliability via
model checking: the FSAP/NuSMV-SA safety analysis platform,” in
Proceedings of the22nd International Conference on Computer Safety,
Reliability and Security (SAFECOMP 2003). Springer, 2003, pp. 49–
62.

[3] K. Miettinen, “Some methods for nonlinear multi-objective optimiza-
tion,” in Evolutionary Multi-Criterion Optimization, ser. Lecture Notes
in Computer Science, E. Zitzler, L. Thiele, K. Deb, C. CoelloCoello,
and D. Corne, Eds. Springer Berlin / Heidelberg, 2001, vol. 1993, pp.
1–20.

[4] M. Güdemann and F. Ortmeier, “Model-Based Multi-Objective Safety
Optimization,” in Proceedings of the30th International Conference on
Computer Safety, Reliability and Security (SAFECOMP 2011). Springer
LNCS, 2011, pp. 423–436.

[5] M. Güdemann and F. Ortmeier, “A framework for qualitative and
quantitative model-based safety analysis,” inProceedings of the12th

High Assurance System Engineering Symposium (HASE 2010), 2010,
pp. 132–141.

[6] M. Güdemann and F. Ortmeier, “Towards Model-driven Safety
Analysis,” in Proceedings of the 3rd international Workshop on
Dependable Control of Discrete Systems (DCDS 2011). IEEE, 2011,
pp. 53–58. [Online]. Available: http://www.dcds11.uni-saarland.de/

[7] G. Norman, D. Parker, and M. Kwiatkowska. (accessed: June
2010) The PRISM language - semantics. [Online]. Available:
http://www.prismmodelchecker.org/doc/semantics.pdf

[8] L. de Alfaro, M. Faella, T. A. Henzinger, R. Majumdar, and
M. Stoelinga, “Model checking discounted temporal properties,” The-
oretical Computer Science, vol. 345, pp. 139–170, 2005.

[9] E. Clarke, O. Grumberg, and D. Peled,Model Checking. MIT Press,
2000.

[10] M. Güdemann, F. Ortmeier, and W. Reif, “Computing ordered min-
imal critical sets,” inProceedings of the7th Symposium on Formal
Methods for Automation and Safety in Railway and AutomotiveSystems
(FORMS/FORMAT 2008), E. Schnieder and G. Tarnai, Eds., 2008.

[11] F. Ortmeier, M. Güdemann, and W. Reif, “Formal failuremodels,”
in Proceedings of the1st IFAC Workshop on Dependable Control of
Discrete Systems (DCDS 2007). Elsevier, 2007.

[12] H. Hansson and B. Jonsson, “A logic for reasoning about time and
reliability,” Formal Aspects of Computing, vol. 6, pp. 102–111, 1994.

[13] M. Güdemann and F. Ortmeier, “Probabilistic model-based safety anal-
ysis,” in Proceedings of the8th Workshop on Quantitative Aspects of
Programming Languages (QAPL 2010). EPTCS, 2010, pp. 114–128.

[14] T. Parr, The Definitive ANTLR Reference: Building Domain-Specific
Languages, ser. Pragmatic Programmers. Pragmatic Bookshelf, 2007.

[15] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multi-objective genetic algorithm: NSGA-II,”IEEE Transaction on
Evolutionary Computation, pp. 181–197, 2002.

[16] M. Walker, L. Bottaci, and Y. Papadopoulos, “Compositional Temporal
Fault Tree Analysis,” inProceedings of the26th International Confer-
ence on Computer Safety, Reliability and Security (SAFECOMP 2007),
2007.

[17] J. Branke, K. Deb, H. Dierolf, and M. Osswald, “Finding knees in multi-
objective optimization,” inParallel Problem Solving from Nature - PPSN
VIII , ser. Lecture Notes in Computer Science, X. Yao, E. Burke, J.A.
Lozano, J. Smith, J. J. Merelo-Guervs, J. A. Bullinaria, J. Rowe, P. Tino,
A. Kabn, and H.-P. Schwefel, Eds. Springer Berlin / Heidelberg, 2004,
vol. 3242, pp. 722–731.

[18] F. Ortmeier and W. Reif, “Safety optimization: A combination of
fault tree analysis and optimization techniques,” inProceedings of
the Conference on Dependable Systems and Networks (DSN 2004).
Florence: IEEE Computer Society, 2004.

[19] I. Meedeniya, B. Buhnova, A. Aleti, and L. Grunske, “Architecture-
driven reliability and energy optimization for complex embedded sys-
tems,” Research into Practice–Reality and Gaps, pp. 52–67, 2010.

[20] E. Hahn, H. Hermanns, B. Wachter, and L. Zhang, “Param: Amodel
checker for parametric markov models,” inComputer Aided Verification.
Springer, 2010, pp. 660–664.

[21] A. Hegedus, A. Horváth, I. Ráth, and D. Varró, “A model-driven
framework for guided design space exploration,” inAutomated Software
Engineering (ASE), 2011 26th IEEE/ACM International Conference on.
IEEE, 2011, pp. 173–182.

[22] D. Knorreck, L. Apvrille, and R. Pacalet, “Formal system-level de-
sign space exploration,” inNew Technologies of Distributed Systems
(NOTERE), 2010 10th Annual International Conference on. IEEE,
2010, pp. 1–8.

