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Abstract—Autonomous planning in safety critical systems
is a difficult task where decisions must carefully balance
optimisation for performance goals of the system while also
keeping the system away from safety hazards. These tasks
often conflict, and hence present a challenging multi-objective
planning problem where at least one of the objectives relates to
safety risk. Recasting safety risk into an objective introduces
additional requirements on planning algorithms: safety risk
cannot be “averaged out” nor can it be combined with other
objectives without loss of information and losing its intended
purpose as a tool in risk reduction. Thus, existing algorithms
for multi-objective planning cannot be used directly as they
do not provide any facility to accurately track and update
safety risk. A common workaround is to restrict available
decisions to those guaranteed safe a priori, but this can be
overly conservative and hamper performance significantly. In
this paper, we propose a planning algorithm based on multi-
objective Monte-Carlo Tree Search to resolve these problems by
recognising safety risk as a first class objective. Our algorithm
explicitly models the safety of the system separately from the
performance of the system, uses safety risk to both optimise
and provide constraints for safety in the planning process, and
uses an ALARP-based preference selection method to choose an
appropriate safe plan from its output. The preference selection
method chooses from the set of multiple safe plans to weigh
risk against performance. We demonstrate the behaviour of
the algorithm using an example representative of safety critical
decision-making.

Keywords-Safety critical systems, Planning, Safety, POMDP,
Monte-Carlo Tree Search

I. INTRODUCTION

Safe decision making will always concern trade-offs be-

tween safety and other performance characteristics of the

system. This trade-off, naturally done by human decision-

makers, is challenging for autonomous systems of unmanned

vehicles and process industries.

The safety-performance trade-off has two goals: optimis-

ing the preformance-related attributes of the system when

they are within acceptably safe limits, and, to prioritise

safety over these performance-related attributes when safety

and performance conflict with each other. Additionally, it

is desirable that these safe limits still allow decisions to be

made safer if there is no prohibitively large cost associated

with the decision.

Traditionally, techniques based on Partially Observable

Markov Decision Processes (POMDP) have both theoretical

and practical limitations [1] in solving planning problems

with multiple objectives. In particular, these limitations

prevent any sensible method of combining safety attributes

along with performance attributes and hence it is difficult

to apply the safety-performance trade-off in single-objective

POMDP planning based on dynamic programming.

To tackle this problem, we apply a recently introduced

algorithm by Wang and Sebag [2] that enables using the

safety-performance trade-off within a practical POMDP-

based multi-objective planning algorithm. As shown in this

paper, the algorithm provides us with the necessary tools

to both treat safety as a first-class concept and objective

alongside other performance-related objectives as well as

select a final preference after gathering all possible solution

plans (i.e. a posteori).

Preference selection in safety critical systems involves

some concept of risk as it relates in safety – i.e. risk to

human life. We use the conceptual framework of the As Low

As Reasonably Practicable (ALARP) principle in this paper

to be used as a preference selection mechanism for planning

with objectives of cost and risk. The ALARP principle [3]

is used outside normal decision-making to make decisions

in safety-related systems in the UK and is typically defined

as the act of reducing risk such that further reduction of risk

is grossly disproportionate to the cost benefit gained.

Our paper builds upon the concept of decision-making

that is currently used in POMDP-literature and adapts it for

safety critical applications through the use of multi-objective

planning. We propose a variant of the Monte-Carlo Tree

Search algorithm that integrates methods to ensure that the

decisions made are safe.

II. THE SAFETY PLANNING PROBLEM

The safety planning problem is one where individual

decisions can be safety critical. Hence, the aim of a safety

planner is to generate a policy (as a solution for the safety

planning problem) that includes contingencies that take

into account the safety critical behaviour of the system.

We characterise safety as an objective separate from other

system performance objectives.

A. Problem Structure

As safety critical systems have to deal with real world

environments, we frame the safe decision-making problem

as a variant of a Partially Observable Markov Decision



Process (POMDP) which has the ability to model stochastic

real world processes. The role of the decision-maker is to

make a sequence of decisions which influences the safety of

the system: at runtime, risk may be increased or decreased

through a combination of decisions.

As POMDPs are only a mathematical abstraction of the

system, this section considers a number of characteristics

that are specific to the problem of safe decision-making. In

particular, we need to consider how to structure the state

space of the problem, how the planner is guided to search

for a good policy, and, what the practical and safety-related

requirements of the POMDP representation of the decision

problem and the planning algorithm are.

B. Guiding the Planner

The planner is guided through the search space by two

broad characteristics that need to be defined within the

POMDP representation:

• Using rewards until the algorithm converges and finds

a sequence of decisions maximise cumulative reward.

• Using costs (negative rewards) until the algorithm finds

a sequence of decisions that can reach a goal state with

the minimum costs.

Following the advice and reasoning stated by Hansen [4],

we take the approach of using both costs and goal states.

This approach is more suitable for safety critial real world

problems as the goals can be explicitly defined.

C. Structuring the Model

Constructing a model for a particular application is

domain-specific. Our particular modelling scheme explicitly

captures both the process and safety artifacts of the safety

critical system by structuring the model around safety-

related concepts of hazards and modes (the mode of opera-

tion of the system). We propose modelling the system using

three types of model to provide the necessary information for

the planning algorithm to determine safe decisions, namely:

• the process model: the model of the entire decision

process which defines the search space that the planner

needs to make performance-related decisions but not

necessarily be able to calculate safety-related ones

accurately.

• the mode model: derived from the process model, it

models the current mode of the system which dictates

the safety criticality of the system – this is necessary

to determine what risk models need to used to measure

the risks of hazards within the system, and

• the risk model(s): derived from the process model, it

models potential hazards of individual decisions and

provides the a measure of risk for failures of the system.

We recognise that there can be alternative formulations

of modelling. The process model and risk models could

be combined together to form one very complex model.

The merit of this idea is that the process model can be

easily supplemented with safety information. However, we

recognise there are two issues. Firstly, mixing both the

complexities of the process and risk models can hide the

important detail about safety. Secondly, a complex process-

risk model can only be updated approximately – keeping

them both separate allows an approximate update of the non-

safety related process model and an exact update of the risk

model that provides safety critical information.

Furthermore, this separation allows computational benefits

as it is effectively a factorisation (a minimisation of the

POMDP state search space) of the model representation

– we can update the process model approximately when

running expensive simulations in our planning algorithm,

whereas the safety and mode models are crucial to making

safe decisions, and can be updated accurately when needed.

As described later in Section III, this also avoids the problem

where a limited number of Monte-Carlo samples may never

capture low-probability events which are safety critical.

III. MULTIOBJECTIVE PARTIALLY OBSERVABLE MONTE

CARLO PLANNING

A. Modelling the Process

One of the difficulties with using POMDPs to model a

real decision process is providing a way to terminate the

planning process. The standard representations of POMDPs

and Goal-oriented POMDPs do have the ability to terminate,

but are very restrictive for the following reasons [4]:

1) Standard POMDPs rely on a discount factor and

tolerance parameters which make the assumption that

as decisions in the future are less likely to impact the

decision now; however, there is no guidance on how

to define these parameters. Furthermore, information

about future objectives is lost through repeated multi-

plying with the discount factor.

2) Decision processes in Goal-oriented POMDPs only

terminates when the probability that the decision pro-

cess is in goal states sum to one. Due to noisy sensors,

this may not always be the case. Using tolerance

parameters could solve the problem but they would

also need to be tuning to the problem.

We address this by using a slightly stricter variation of

Hansen’s “Partially Observable Markov Decision Process

with Action Termination” (POMDP-ACT) [4] to model the

process. The chief differences from the standard POMDP

representation are as follows:

1) All costs must be positive. Rewards (costs that are

negative) are often used traditionally as it matches the

concept of positive reinforcement and is sufficient for

many domains – in safety-critical systems, risk is the

predominant concept which requires costs.

2) POMDP-ACT has terminal states that explicitly model

states where the process being modelled stops. These



are not present in the standard POMDP explicitly, but

match the concept of goal states in Goal-POMDPs.

3) POMDP-ACT introduces termination actions that will

always transition to a terminal state from any state.

This differs from both standard and Goal-POMDPs,

and helps design decision processes which can always

terminate and return some policies.

More precisely, we can define a POMDP-ACT as a tuple

Mp : 〈S,A,Z, T,O,C〉 where:

• S,A,Z - are the sets of: discrete states, actions, and

observations, respectively.

• T (s′, s, a) - is the probability function that a state

s transitions to a state s′ given that an action a is

performed.

• O(z, s′, a) - is the probability function that an obser-

vation z is observed given that the state transitioned to

is s′ when the action a is performed.

• C(s, a) - is the cost of performing an action in state

s. This is also known as negative reward. It is a vector

corresponding to each objective.

B. Mode and Risk Models

Constructing mode and risk models separately from the

process model can easily lead to having them inconsistent

from each other. As the process model should be adequately

defined to contain the information required to distinguish

modes of the system as well as the risk present within the

system, the mode and risk models can be defined through

a transformation from the process model (we recognise

that this is a separate and difficult problem within itself).

The chief difference is the ability to update the mode and

risk models accurately and efficiently to detect the safety-

criticality of the system and allow the planner to perform

accordingly. As these models do not have any decision-

making ability of their own, they are defined as Hidden

Markov Models (HMM) rather than POMDPs.

The mode model is defined as a tuple: Mm :
〈Sm, Zm, Om〉 where:

• Sm - is the set of discrete states that are sufficient to

represent the different modes of the system’s process.

• Zm - is the set of discrete observations that can be

observed that influence the belief of the mode.

• Om(zm, s′m, sm) - is the probability function that an

observation zm ∈ Zm is observed given that the state

transitioned to from sm ∈ Sm is s′m ∈ Sm.

The risk model(s) is defined as a tuple: Mx :
〈Sx, Zx, Ox, Sm′ , V,H〉 where:

• Sx - is the set of discrete states representing the safety

aspects i.e. hazardous states in system’s process.

• Zx - is the set of discrete observations that can be

observed that influence the belief of the hazard.

• Ox(zx, s
′

x, sx) - is the probability function that an

observation zx ∈ Zx is observed given that the state

transitioned to from sx ∈ Sx is s′x ∈ Sx.

• V - is a set of hazard severities.

• Sm′ - is a set of such that Sm′ ⊆ Sm, i.e. it is subset

of the mode state set where the risk model is active.

• H : Sx → V - is function of state to hazard severity.

To complete the definition, a group of functions are

needed to transform the process model to the mode and

risk models. We call this mapping tuple φm and define it

as 〈αm, βm, γm〉, where:

• αm : S → Sm is a surjective (many-to-one) function

from the process state space to the mode state space.

• βm : A × Z → Zm is a surjective (many-to-one)

function from the action and observation state space

to the observations required to detect the mode.

• γm : T ×O → Om which is a function that transforms

the conditional probability tables (CPTs) of the transi-

tions and observations in the process model to a CPT

of the observations in the mode model.

Likewise, for each risk model Mx, there is a mapping

tuple φx which defines the mapping of the process model to

the risk model. This tuple is 〈αx, βx, γx〉, where αx, βx, and

γx are defined similarly to αm, βm, and γm respectively.

C. Adequacy Properties of Models

We define an adequate model in a safe decision-making

context to be one that leads to decision-making behaviour

that has an acceptable level of safety risk. To aid discussion,

we use the concept of ground truth, which is the true or

real process which we are attempting to model. This is

used in the context of comparing our models, which are

approximations, with it.

Using this definition, the models must have these high

level properties to be adequate:

1) The mode model is acceptably accurate relative to

the ground truth: it has a significant impact on safety

because it activates and deactivates risk models.

2) The risk model calculates an exact or pessimistic risk

values (relative to the ground truth) for the system to

be safe.

3) The mode model and risk model is consistent with the

process model.

As a result of these properties, (3) implies that the process

model maintains a degree of independence from the safety-

related properties of the system and can be used solely

for the purpose of optimising performance-related system

behaviour.

These properties give a ‘separation of concerns’ with

regards to verification and validation of models separating

out what models need to be consistent with the ground truth.

As, by definition, the ground truth relates to the reality of

some domain-specific problem, the adequacy of the mode

and risk models involves showing that they are accurate, well

tested, validated using known theory of the domain and that

the risk of the runtime plan execution to detect the mode
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Figure 1: Standard Monte-Carlo Tree Search Stages (based

on diagrams in [5] and [6])

wrongly is acceptably low. We do not go into verification

and validation further in this paper – this is an avenue for

future work.

Firstly, we consider the mode model. The mode model

is constructed using a transformation mapping φm. αm

transforms the state space from the process model to the

mode model. This effectively partitions the process model

state space into a number of modes. For this to be consistent,

the transitions between states in the mode model must be

consistent with the transitions between the corresponding

subsets of the process model state space: ∀s, s′ ∈ S, a ∈
A, z ∈ Z,Om(αm(s), βm(a, z)) = T (s′, s, a)×O(z, s′, a).

Secondly, we consider the risk model. The risk model

must be consistent with the process model when the risk

model is ‘active’ according to the mode model. Recall that

for a given risk model Mx, it is active when there is a state

s ∈ Sm′ that is also s ∈ Sm in the process model Mp.

Hence, for an active risk model Mx, ∀s, s′ ∈ S, a ∈ A, z ∈
Z,Ox(αx(s), βx(a, z)) = T (s′, s, a) × O(z, s′, a) ∧ s′′ ∈
Sm′ ∧ s′′ ∈ Sm, provided the process model’s transition

function is consistent with the mode model.

D. Algorithm

The Monte-Carlo Tree Search is a search technique that

builds a search tree of results by making random decisions

and evaluating their outcomes through stochastic simulations

[5]. Here, we consider this algorithm in terms of a planning

technique. A set of four typical stages (Fig. 1) is run

each search iteration to build this search tree incrementally

[6]: Selection, Expansion, Simulation and Backpropagation.

After many simulations, the set of best policies (i.e. the

pareto-front over all policies searched) can be inferred from

this search tree [6] that can be used for execution of the plan

at runtime.

We propose an adaptation of the Multi-objective Monte

Carlo Tree Search algorithm [2] for safe decision-making

in partially observable domains called Multi-Objective

Monte-Carlo Tree Search for Safety Critical Applications

(MOMCTS-SC). Our algorithm is specifically adapted to

use the POMDP-ACT representation. We define two types

of node rather than one: an action node and an observation

node because the state is no longer fully observable after

each action and depends on the observation following the

action. Like Silver and Veness [7], we maintain beliefs as

a particle filter (a sampled representation of the belief) but,

as opposed to storing with each node, we store the particle

filter with just each observation node.

The general operation of this algorithm is described in this

section and, for reference, the pseudo code of MOMCTS-

SC is shown in Algorithm 1, 2 and 3. The notation used is

defined as follows:

• N (node), Na (action node), No (observation node).

• nX (visit count of a node X), BX (belief of node X).

• Mm (mode model), Mx (risk model).

• Heuristic PW (n) is used to widen the search tree [8].

• r is a reward vector (i.e. costs in our case).

To simplify discussion, we consider the behaviour of

the algorithm from two conditions: firstly, we consider the

behaviour without the mode and risk models, and secondly,

we consider the behaviour when the mode and risk models

actively constrain the actions that are admissible for plan-

ning. Finally, we provide a brief description on how the

safety objective is optimised.

In the first condition, the behaviour of the algorithm

is much the same as Wang’s MOMCTS algorithm[8]. It

chooses between whether to apply exploration and exploita-

tion in the expansion stage of the algorithm by using the

hypervolume-based UCT heuristic (HV-UCT). Exploitation

within the algorithm involves walking down the search tree

to exploit existing nodes that have been previously visited

if they seem promising. Exploitation involves exploring less

visited nodes by performing new playout (a Monte-Carlo

run) simulations to expand the search tree. The Algorithm 2

illustrates this. The chief difference from the original al-

gorithm in this condition is that the algorithm is POMDP-

ACT aware: it terminates on termination actions AT and

can handle partially observable states by keeping track of

observations and the associated beliefs.

Under this condition, low probability events may never

be sampled. Take, for example, events regarding failures

of components: the IEC 61580 standard [9] defines Safety

Integrity Levels which define the probabilities that a failure

can occur for a component in continuous operation to be in

the range of 10−5 and 10−9h−1. For “failures” in decisions

made hourly, this would only be optimistically sampled

once every 100,000 and 1,000,000,000 samples respectively

(only if every event can be accounted for and tracked).

Having a satisfactory magnitude of samples to be confident

that the algorithm has found any of these low probability

events would not be possible with current hardware. Instead,

the behaviour of the algorithm under the second condition

tackles this problem.

In the second condition, under the mode and risk models,

the algorithm also updates the admissible actions accord-

ing to these dynamically updated risk models. When the

algorithm is in the expansion stage, an admissible action



Input: root node N , sample size L

Output: pareto front P

for i← 1 to L do

Sample state s from BN

r, P ← TREEWALK(N, ∅, s)
end

return P
Algorithm 1: MOMCTS-SC

is chosen. The admissible actions are actions that can be

performed from the current playout’s state because they

are valid for the process model (e.g. physically possible)

and constrained by the active risk model(s) (i.e. constrained

otherwise it is too dangerous). Before the simulation of the

playout occurs, the least visited action is chosen. The mode

and active risk models are updated with this choice of action

and this is used to validate whether the action is indeed

admissible (and removing it from the set of admissible

actions if necessary). If it is admissible, the simulation

playout proceeds. Otherwise this process of checking least

visited actions, removing if inadmissible, and updating the

risk models will proceed recursively.

The update of the mode model also activates or deactivates

new risk models based on whether they are appropriate for

the new belief in the mode (i.e. whether the model should

be activated for the belief of the system). Thus, for low

probability events such as failures, activated risk models can

give an evaluation of risk without invoking many simulation

playouts as would the first condition.

Finally, optimising a safety-related objective is achieved

by using the risk models to provide a risk value that is

passed as one of the multiple objectives. The algorithm will

then proceed to plan using this additional risk objective and

provide solutions that do optimise for this objective.

E. Updating Mode and Risk Models

To prevent recalculation of the beliefs at each traversal

of the search tree, a particle filter of each belief can be

maintained in each observation node. Thus, the beliefs in

the search tree only need to be updated when a new node

is created – and this can be done using a single-step belief

update [10].

When the current belief is updated, both the mode and

risk model may be updated. The mode model is updated

first as it may activate and deactivate risk models depending

whether they are still relevant to the current belief. The mode

model is updated before the risk models because the mode

belief state may change when the action and observation pair

update the current belief. Hence, if the state of the system

moves into a new mode, other risk models may be activated

whereas others would be deactivated as they are no longer

relevant.

However, this leads to the question: what is the initial

belief of the risk model. Several approaches may be taken:

Input: node N , pareto front P

Output: reward vector r, pareto front P

// if N has children and no PW needed

if CHILDREN(N) 6= ∅ ∧ ¬PW (nN ) then

// Selection stage

c∗ ← argmaxc{∀c ∈
CHILDREN(N),HV-UCT(rc, P )};
r, P ← TREEWALK(N,P, c);

else

// Expansion and Simulation stage

Recursively try and select the least visited action a

from AN which is admissible subject to the models

Mp, Mm and Mx whilst updating Mm and Mx

before each of these selections.

s′, o, r, P ← SIMULATE(N,P, a);
if ¬∃Na, Na ∈ CHILDREN(N) then

Create new node Na as child of N ;

CHILDREN(N)← CHILDREN(N) ∪Na;

end

if ¬∃No, No ∈ CHILDREN(Na) then

Create new node No as child of Na;

Update belief BNo
with s′;

CHILDREN(Na)← CHILDREN(Na) ∪No;

Store updated Mm and Mx in No;

end

Increment visit count nNa
and nNo

;

// Backpropagate rewards

Update rNo
with reward r and risk model(s) Mx;

end

return P
Algorithm 2: TREEWALK

Input: node T , pareto front P , action a

Output: first state s, first obs. o, total reward vector r,

pareto front P

trace← run simulation with action a;

s, o, r ← first step of trace;

// update pareto front

if ∀rp ∈ P, r � rp then

P ← (P \ {∀rp ∈ P, r ≻ rp}) ∪ {r};
end

return s, o, r, P
Algorithm 3: SIMULATE

1) the initial state is predefined by the mode change,

2) the previous history of observations before the risk

model is used to initialise the state, and

3) the risk model begins uninitialised with a special ‘un-

certainty’ state linked with an ‘uncertainty’ objective

which drives the tree search to update sensor values.

The first two approaches are fairly trivial to implement

and are domain specific, whereas the latter is more general

but incurs the penalty of another search objective. We opted

for the first approach in our example.
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IV. EXAMPLE

We have applied our algorithm to a variant of “Cliff

World” [11][12]. The purpose of this example is to demon-

strate the behaviour of the algorithm under normal circum-

stances and a circumstance that is particularly concerning

with respect to safety critical planning: low probability

events with catastrophic consequences. As mentioned in

section III, existing Monte-Carlo planning algorithms cannot

cope with these types of events due to sampling, whereas

exact algorithms, such as dynamic programming, lose infor-

mation about the risk when it is encoded into the reward

value. In the first scenario, we consider “usual” behaviour

where the bad outcomes can be easily determined. The

second and third scenarios consider low probability events

that have catastropic consequences. In latter scenario, it is

shown that the risk model can be used to avoid this catas-

trophic consequence – the risk model approach naturally also

handle the “usual” behaviour and is not included due to

space constraints. We have made the algorithm and example

available at: https://github.com/raedwulf/libysp.

A. Cliff World Definition

Consider a simple agent (robot) that travels from a starting

square to a goal square in a two dimensional X by Y grid

which has a slope towards the cliff edge. The journey has

an element of risk such that the agent may slip off the edge

of the cliff squares in grid if it is too close. This slipping

occurs under some probability when the agent attempts to

leave the square – i.e. in this example, if the robot travels

right and slips at the same time, it is a diagonal movement

that only falls if the target square is a cliff square. The goal

is to minimise the cost of travelling to the goal and reduce

the risk of falling off the edge of the cliff.

To simplify the discussion, the agent cannot leave the X

by Y grid; actions that would take the agent outside the

grid are inadmissable. The intelligent agent has five actions:

up, down, left, right and terminate. It has observations

which indicate whether the actions successfully occurred,

whether the robot slipped, whether it falls of a cliff (die) or

reaches a goal. (right & slip) is an observation that the robot

successfully moved right and slipped down one square. A

four by four Cliff World is illustrated in the Fig. 2 where S

is the starting square, G is the goal square, V are the squares

where the robot can slip down one square and C are cliff

squares.

S GC C

V V

V V

V V

Figure 3: A Cliff World Policy that reaches goal safely

B. With highly probable slip and no risk model

We demonstrate behaviour of the algorithm without the

need for a risk model; the probability of slipping is high

(0.5) such that the MOMCTS sampling will be able to plan

for the contingency of slipping towards the goal. This was

run with the number of Monte-Carlo samples set to 105.

Here the algorithm makes a good decision. Fig. 3 (graph-

ical interpretation) and Fig. 4 (policy tree) show one of

the policies from the solution set which optimised both

objectives.

C. With low probability slip and no risk model

We now consider the problem where the risk of falling that

is acceptable is 10−8. The Cliff World structure remains the

same but the probability of slipping is changed to 10−6.

In this scenario, the MOMCTS-SC without a risk model

would produce an optimistic policy as it unlikely to en-

counter a simulation that shows the catastrophic falling off

a cliff. Since the number of samples set was to 105, the

probability of simulating a single catastrophic event is 0.1
in the best case if all simulations are (and can be) tracked, or,

5×10−6 in the worst case if the simulations were not tracked

at all. In either case, expecting an event to be simulated at

these low probabilities is not feasible.

The action sequence in the produced policy that reached

the goal was: up→ right→ right→ right→ down. This

ends up being the shortest path to the goal using squares on

the cliff’s edge – not very safe if the risk of falling with

10−6 is not acceptable.

D. With low probability slip and risk model

Now, we use a risk model Mx to constrain the search

algorithm to solve the problem in Section IV-C.

The risk model would need to behave such that it con-

strains the actions of the POMDP planner by calculating the

probability that an action enters a hazardous state. In this

example, it is easy to see that since the only approach into

the cliff are the squares above the cliff square, the probability

of slipping into the cliff will only exceed the acceptable

threshold if these squares above the cliff are entered.

To create a HMM-based model we define two approaches:

one with additional information-sharing through adding ob-

servations, and one without.

In the case without additional information, a HMM-

encoding of the risk model would match the process model

where the action and observation pairs of the process model

are combined to be observations in the risk model. This

follows from the representation defined in Section III-B.



u
p

u
p

u
p

u
p

ri
g

h
t

ri
g

h
t

ri
g

h
t

ri
g

h
t 

&
 s

li
p

ri
g

h
t

ri
g

h
t

ri
g

h
t

g
o

al

d
o

w
n

g
o

al

te
rm

in
at

e

te
rm

in
at

e

te
rm

in
at

e

te
rm

in
at

e

ri
g

h
t

ri
g

h
t 

&
 s

li
p

ri
g

h
t

d
o

w
n

g
o

al

te
rm

in
at

e

te
rm

in
at

e

d
o

w
n

d
o

w
n

d
o

w
n

g
o

al

te
rm

in
at

e

te
rm

in
at

e

Figure 4: Policy generated by MOMCTS-SC with contingencies to avoid the cliff.

Input: policy set P = {p0, p1, . . . , pN}
Output: policy po
Sort P according to lowest risk first;

for i← 1toN do

riskdiff ← risk difference between pi−1 and pi;

rewarddiff ← reward diff. between pi−1 and pi;

if g(riskdiff , rewarddiff ) then
return pi−1

end

end

return pN
Algorithm 4: POLICY-PREFERENCE

In the case of adding additional observations to the

problem definition (i.e. add sensors, which may or may

not be physical), a much simpler risk model can be cre-

ated. For example, we let the risk model ‘see’ the cliff

edge by maintaining the value of the manhattan distance

to the cliff. This would allow the risk model to define

a state space based on the distance to the cliff edge:

Sx = {normal,nearcliffedge,cliffedge}. The transition func-

tions based on this additional observation would give the

risk model the equivalent power as our previous one.

The policy generated by the algorithm using either risk

model is up→ up→ right→ right→ right→ down→
down. Thus, the algorithm generates a plan that has a ‘safety

margin’ of one square from the edge of the cliff as dictated

by the risk model.

V. PREFERENCE SELECTION

Preference selection of objectives a priori, i.e. before

the planning process, typically involves some mathematical

combination of the components in the vector of objectives to

produce a scalar value, for example, a linear weighted sum

of objective values. A posteori preference selection involves

selecting the preferences after the planning process has taken

place and yielded a set of viable policies.

As our planning algorithm gives an output a set of safe

policies, it enables a posteori preference selection. For

safe decision-making, a preference selection mechanism is

required that selects the policies that do not seek reward

at the expense of excessive risk. Seeking reward with some

acceptable amount of risk is fine, as long as it is limited and

not minimised or maximised unnecessarily.

We give one possible two-objective preference selection

mechanism based on As Low As Reasonably Practicable

(ALARP) principle. This is shown in Algorithm 4. The

ALARP principle is often used to make safety-related deci-

sions in the UK and utilises the concept of grossly dispro-

portionate to refer to a factor (function g in Algorithm 4)

whereby the cost of risk reduction is far greater than the

benefit gained. Such a factor is normally expressed as a limit

of the cost per life saved; for example, it may be considered

disproportionate to spend more than £5M per life saved.

VI. FURTHER WORK

There are two main directions for further work.

Firstly, our algorithm is only part of a planner; other

concerns not addressed here include real-time concerns –

it is difficult for pure Monte-Carlo Tree Search algorithms

to guarantee when it has found a safe policy as this is

highly dependent on the search space. This may require

deterministic fallbacks and further work must consider how

this can be integrated with our solution.

Secondly, our work lays some foundations for separate

process and risk models. However, a method to construct

these risk models such that they are both valid for the domain

and sufficient to represent the risk for a particular decision-

making problem is still an open avenue for research.

VII. RELATED WORK

The planner we introduced in this paper operates using

a searching algorithm to generate the policy. It builds upon

seminal work in POMDP-solving by Kaelbling, Cassandra

and Littman [10], concepts of state factorisation [13], goal-

oriented (and state-based termination) POMDPs [14][4] and

modern Monte-Carlo Tree Search-based planners [7][8].

This latter choice in technology is important as it avoids the

explosion of computational complexity when using dynamic

programming [10] as opposed to MCTS-based planners and

is able to plan with respect to multiple objectives [8].

We are not alone in considering that single objective

utilities are not suitable for some applications [15]; a survey

by Roijers et.al. [1] provides a thorough treatment on clas-

sifying the underlying problems of these applications. The



majority of existing POMDP algorithms rely on dynamic

programming using the Bellman equation [10] which im-

plicitly assumes that the objectives are represented by scalar

values that can be combined linearly. Fortunately, Wang

and Sebag [2] have overcome this difficulty by utilising a

measure called the hypervolume indicator [16]: they devel-

oped a new multi-objective planning algorithm that uses the

Monte-Carlo Tree Search to optimise the sets of the best

policies. This provides the ability for a planner based on

this multi-objective search to select policies based on their

relative quality after the search has been performed. For our

work, this is crucial for an a posteori preference selection:

in an autonomous system context, this can be used to select

policies based on the ALARP principle (Section V), and, in a

decision-support context, the operator can make his decision

based on a number of different choices.

In systems safety literature, the direct implications of al-

gorithms on safety have been less explored. Work by Seward

et al. [17] uses a POMDP-based approach for autonomous

vehicle navigation: we take inspiration from their approach

in representing hazardous areas as states but they do not

give a firm theoretical basis for their reward value which

gives a high penalty for entering hazardous states to prevent

policies from making decisions that may lead to hazards. We

explicitly use multiple objectives including one of safety risk

instead. Later work by Kolobov [14] give a more theoretical

treatment of a similar concept called “dead end states”

that is analogous of states representing accidents in safety-

critical system processes. His work introduces a number

of different MDP formulations and solving algorithms that

help avoid “dead end states” through problem transformation

which effectively constrains the actions available to the

decision maker to reach “dead end states”. As his work was

based on problems defined with fully observable state spaces

[14], there is no easy adaptation of his work for partially

observable state spaces and assigning a range of severities

that interpolate between ‘no safety effect’ to ‘catastrophic’

accident. However, our work does take inspiration from

concepts of constraining actions, albeit during the planning

process rather than transforming the problem beforehand.

VIII. CONCLUSION

In this paper, we have captured the non-trivial nature

of ensuring that a planner is able to make safe decisions.

We have made the first steps to bridge the gap between an

autonomous planner that just simply optimises some criteria

to one that is able to make safe decisions using a complex

trade-off between multiple-objectives.

Specifically, we have promoted the concept of risk as a

first-class concept in our algorithm. It is treated ‘above’ other

objectives in the sense that it acts as both an optimisation

criteria as well as a hard constraint on what counts as an

“acceptably safe policy”. In doing so, we also recognise

that risk is not something that is to be forgotten at the

end of the planning stage. We provide an example ALARP-

inspired preference selection algorithm which chooses a

policy amongst the other acceptably safe policies that will

be the one that will be executed on the system.

Furthermore, we provide a method to define adequate

models for the purpose of our planning algorithm. These

models are structured to be both manageable from a safety

point of view, and, updated efficiently by the planning

algorithm without losing accuracy that may impact safety.
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