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Abstract— The large availability of smart portable devices 

and the growing interest in developing Internet of Things (IoT) 

oriented software components make several heterogeneous data 

available for analysis purposes. In the context of Crisis 

Management Systems, this means that people owning mobile 

devices when involved in natural disasters or terroristic attacks 

may be considered information sources as the classical ones, e.g., 

sensors or surveillance cameras. Including the information from 

the citizens in the situational analysis processes comes with two 

main issues that need to be addressed: i) the source could deliver 

wrong data (voluntarily or by mistake) that damage the integrity 

and the correctness of the analysis, and ii) a significant amount of 

heterogeneous data need to be selected, filtered and aggregated, 

to provide to the operator a real-time snapshot of the situation 

depicted using only credible and relevant information. In this 

paper, we define and implement a relevance labeling strategy 

able to process information coming from heterogeneous sources 

aimed at crisis situations and to provide to the human operator 

all the details he needs. We include provisions for detecting and 

removing redundancies and misleading data that can slow down 

or compromise the process and the a-posteriori analysis. The 

filtering strategy is last applied to events collected for the Secure! 

crisis management service-based system, showing its application 

to three scenarios related to real crisis situations happened in the 

last year. 

Keywords—crisis management system; human sensors; data 

filtering; relevance labeling; data fusion; Twitter;  

I. INTRODUCTION 

One of the most important tasks that must be performed by 
public authorities is to take care and ensure safety and security 
of infrastructures, society and citizens. The management of 
crisis as for example earthquakes or terroristic attacks consists 
of “encompass the immediate response to a disaster, recovery 
efforts, mitigation, and preparedness efforts to reduce the 
impact of possible future crises” [1]. A strong support to this 
activity is provided by Crisis Management Systems that 
implement functionalities to sustain and support the different 
parts of the management process, for example the collection of 
data, data filtering and visualization strategies, and presentation 
techniques aimed to help the human operator managing the 
available knowledge [16]. 

The interest in researching and developing crisis 
management systems grew significantly in the recent years, 
mainly due to the increasing number of information available  

provided by sensors, including humans (human sensors are 
both citizens or trained personnel which provide information, 
e.g., using their smartphones). The set of sensors and humans 
constitute a very large and heterogeneous source of data 
accessible through Internet or dedicated paths. 

As the number of sources of information and the amount of 
data we can retrieve in a defined interval of time are growing 
more and more, the risk of being overloaded, with a dramatic 
slowdown of the crisis reaction process becomes a real 
concern. For this reason, before information can be used by a 
human operator, data need to be processed and filtered to avoid 
the delivery of wrong information and to become more 
readable. Nowadays, a huge amount of crisis data comes from 
the citizens, which can generate Volunteered Geographic 
Information (VGI [8]) and share them as for example through 
SMS, Social Media or Apps, supported by crowd-sourcing [20] 
and crowd-sensing [21] techniques. Crowd-sourcing is the 
process of obtaining needed services, ideas, or content by 
soliciting contributions from a large group (crowd) of people, 
especially from online communities, while crowd-sensing 
refers to the involvement of a large, diffuse group of 
participants in the task of retrieving reliable data from a 
specific field. This information sources make a lot of additional 
data available, but introduces quality issues that cannot be 
ignored [2], requiring the definition and the implementation of 
complex data filtering and aggregation techniques in order to 
reach a satisfactory credibility confidence [22].  

Previous studies and frameworks such as [12], [14] tackle 
the management of crisis data coming from different 
heterogeneous sources, trying to figure out common features 
and merging them into a format that can be presented to the 
crisis management operator or to authorities. The authorities or 
the operators that want to i) interpret this large amount of near 
real-time data, or ii) analyse them for a-posteriori analysis, 
cannot examine each individual available information. Thus, 
they need support (as software modules) that implements 
advanced filtering techniques to show with highest priority the 
information labelled as most relevant. We identify that such 
relevance labelling strategy plays a key role in helping the 
crisis management operators to focus the attention on the right 
events. 

In this paper we present a data filtering and relevance 
labelling solution for systems that have to deal with huge 
amount of data coming from heterogeneous sources that are at 



least both geographical and time referenced. After presenting 
the motivations, the structure and the details of this solution, 
we show the application on the „Secure!‟ [13] case study. 
„Secure!‟ is a framework for Crisis Management System that is 
able to collect and aggregate heterogeneous data from sources 
like webcams, gyroscopic sensors, social media or linked apps 
to provide data to the crisis coordination office. The evaluation 
of this strategy is performed showing three real crisis scenarios 
happened in Italy while a prototype of the „Secure!‟ framework 
was running, collecting data from the above mentioned 
sensors. 

Section II presents the motivations of our work and the 
state of the art on Crisis Management Systems, focusing the 
attention on those managing data coming from heterogeneous 
sources. Section III discusses the target and the structure of the 
relevance labelling strategy, while Section IV contains details 
about our instantiation of the strategy. Section V describes a 
case study, which is used in Section VI to apply the strategy on 
real crisis scenarios. Section VII concludes the paper. 

II. RELATED WORKS AND MOTIVATIONS 

 There are several crisis management works that deepen the 
lessons learned facing emergencies and natural disasters: it is 
possible to find detailed reports about Tahiti earthquake [5], 
Katrina hurricane [6], or fire episodes happened in Russia [7] 
in the summer 2010. In most of these contexts, a strong help on 
managing the consequences of the disasters came from systems 
built with the aim to collect data from sensors or from citizens, 
which provided VGI through telephone alerts or posts on social 
media. As for example, regarding the earthquake that struck 
Port-au-Prince in January 2010 [7], a live crisis map of Haiti 
was launched using the Ushahidi [11] platform. Information on 
the impact of the disaster was initially collected from online 
sources, including social media channels like Facebook and 
Twitter, and alerts received by SMS, sent from citizens that 
wanted to signal their most urgent needs and location. 
Information coming from all sources were geolocated to build 
a crisis map that ten days after the earthquake was recognized 
from the Head of the US Federal Emergency Management 
Association (FEMA) as the most comprehensive and up to date 

map available to the humanitarian community. 

Since the impact of social networks increased widely in the 
last years, several studies were conducted in order to 
understand the best way to fetch data from social network 
sources for crisis management purposes [9]. The focus was 
especially on analysing data coming from tweets , a compact 
source of information that can be easily indexed using the 
hashtags. However, such data obtained from Social Web feeds 
can contain “noise”, misinformation and bias (which can get 
amplified by the viral nature of social media) and will require 
advanced forms of filtering and verification techniques that are 
not needed only considering data from owned and well-known 
sensors. Existing algorithms can be seen in [9], where 
experiments were conducted to assess the capability of such 
instrument to detect anomalies in the data, allowing the system 
to discard the untrusted ones. It is also possible to find open 
source frameworks such as SwiftRiver [10], which enables the 
filtering and verification of real-time data from specific 
channels such as SMS, Email, Twitter and RSS feeds. 

Several works describe architectural solutions for crisis 
management that integrate some of these presented techniques. 
To the best of the authors‟ knowledge the most relevant 
contributions come from [3], [4], [15]: in [3] the authors 
describe a Service Oriented Architecture for planning and 
decision support for environmental information management 
that uses real time geospatial datasets and complex 
presentation tools. Another contribution comes from [4], a 
framework developed with the target to deliver a reliable 
tsunami warning message as quickly as possible, a critical 
activity especially in zones, such as the Asiatic south-east, in 
which these events happen with a higher likelihood. In [15], 
instead, the authors define a framework to support the 
authorities using the social network feeds, trying to geolocate 
and categorize tweets that follows specific “crisis” trends. In 
Table I we summarize characteristics of these existing crisis 
management frameworks with the aim to understand and 
compare how they face key issues. We splitted the Crisis 
Management Process in three blocks: 

 Data Collection and Integration. The operations needed 
to collect, organize and control the significance and the 

TABLE I.  CHARACTERISTICS OF EXISTING CRISIS MANAGEMENT FRAMEWORKS 
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Sensor Type Vehicle Position, Weather Tweets 
Tide Gauge, Seismology, GPS Ocean 

Observation, Weather 

Sensor Data Check 

Temporal and spatial down-sampling 
selectively discard data in order to reduce the 

amount of data transmitted over the network 

Only tweets with specific hashtags, with 

relevance weights  

A module acts as filter reducing the 
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Event Correlation 

Adding value to real time environmental 

data, predicting future states, providing 
operational guidance, … 

Finding Geospatial links for each 

considered tweet (if not existing in the 
message, got from user‟s location) 

Sensor integration from Tsunami 

Service Bus (TSB), including post 
processing and quality checks 

Event Relevance 

Labeling 
Missing. Missing Missing 
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Presentation 

Techniques 

Web Interface allows for a universal access 
and greatly reduces learning time and thus 

attracts more non-GIS professionals 

Browser Presentation component: uses 
web services to retrieve and 

displays information to a watch officer 

Not provided: need of external 
applications that fetch data from 

Tsunami Service Bus (TSB) 

 



integrity of data coming from sensors. 

 Information processing. Once data is structured and 
collected, operations to transform raw data into 
actionable information are conducted. 

 Human Interface. The set of techniques built to present 
the outcomes to the process to the crisis management 
operator. 

Only few studies ([3], [4]) focus the attention on problems 
generated by the simultaneous usage of multiple and 
heterogeneous sensors. This choice leads to obtain more 
accurate information but needs of integration and advanced 
information filtering techniques applicable to the whole set of 
collected data, and not independently for each data flow (as for 
example in [10]).  

Moreover, while in most of these frameworks the analysis 
of the data coming from sensors, the integrity check and the 
integration are performed very carefully by dedicated software 
modules, it seems difficult for a human operator to examine 
these huge sets of correlated data in a reasonable time. For 
example, in [4] the authors describe all the available data 
streams that can be retrieved from sensors (e.g., water height 
control, meteorological feeds), but the data analysis needed to 
understand relations amongst events coming from different 
streams is completely left to the human operator. We can also 
observe how all the works reported in Table I (see Event 
Relevance Labelling category) do not focus the attention on 
selecting the most promising information to be shown to the 
operator, assuming that data-level integrity and filtering 
mechanisms have already checked their validity. 

In such a context, it is difficult to understand the relevance 
of a single value, because it depends on the scenario the 
operator is interested in: if at the same time several events 
happen in different places and the operator is interested only in 
observing one subset of them, he must have the opportunity to 
quickly choose the specific scenario without manually 
selecting the relevant data, saving key amounts of time. 
Moreover, in most of the cases the operator does not have 
enough information to write a query with detailed parameters 
(e.g., specifying a restricted area of a city or an exact time 

window), resulting in an output set that is polluted with 
undesired events. It is important to remark that this relevance 
labelling strategy does not aim to discard the data that are not 
belonging to the relevant set, but only to extract and present to 
the user the most significant items digging in the huge 
knowledge we collected using a wide variety of sensors, 
because the same information could be relevant in a context 
and less relevant in others. Moreover, this support must be 
provided in near real-time [28], since in most of the cases the 
public authorities have to react effectively. 

III. EVENT RELEVANCE LABELLING 

We focus the attention on an operator that wants to analyse 
the collected data following two targets: i) live observation, 
analysing events that happen in real-time aimed to control the 
current state of the environment, and ii) historical studies, 
observing the database aiming to understand past sequence of 
events that may repeat in the future. In both approaches, the 
operator scouts large set of events from a data collection 
system and is interested in detecting the main subset of 
correlated events that can point to a dangerous situation.  

As shown in Figure 1, a strong support on the relevance 
labelling activity comes from the possibility to automatically 
analyse the set of retrieved data and organize them depending 
on the parameters of the involved events. The human operator 
queries the Event Database for stored data and the data 
management system answers with all the events that match the 
search query. These events are sent to the Relevance 
Processor (see Figure 1), which labels each event with a 
relevance score; its output is delivered to the operator, which 
now can analyse the ordered set of data following the 
relevance score and not the data retrieved from the database. 

A. The Relevance Criteria 

To build the relevance labelling strategy it is required to 
define a relevance criteria, to judge each event according to 
rules and label it with a relevance score resulting from the 
application of the rule. The definition of that rule is mandatory 
to tune the relevance labelling algorithm itself, and must be 
chosen thinking about penalizing events that are predicted less 
relevant for the operator of our system. Given a data collection 
system which retrieves data from heterogeneous sources, we 
assume that during a crisis the sensors will start to generate a 
higher number of critical data with common values for some 
features, for example the temporal or spatial ones. As for 
example, during an earthquake gyroscopic sensor alerts and 
tweets referred to that area can raise in number, overcoming 
the others that come from near regions at the same time. In 
this situation, the operator could be interested in focusing his 
attention on this group of related events, analysing them and 
eventually activating reaction strategies (these may range from 
alerting the authorities to dispatching and guiding intervention 
team; reaction strategies are not explored in this paper).  

In other words, the operator is interested in understanding 
if in a large set of events it is possible to detect a smaller 
subset of them that are linked following some correlation 
rules. Formally, we are looking for a relevance labelling 
function rlf : 

 

Fig. 1. Interaction between the operator and the system 

 



S = rlf (CE, Ω) 

which takes an input set CE of critical events and a generic set 
of parameters Ω related to the chosen implementation 
strategy. The function defines a set of scores that indicates 
what is the relevance in the context of the user query for each 
event in the starting set CE. This is a general formulation of 
the problem that can be extended depending on the 
characteristics of the context, and needs only an event input 
set in association to the Ω parameters. The result is a 
technique with a wide range of applicability, which fetches 
data from the framework dataset and returns a set of relevance 
scores that can be used to improve the quality of the already 
existing framework‟s presentation strategies. 

IV. IMPLEMENTATION OF OUR RELEVANCE LABELLING 

SOLUTION 

We explain below our relevance labelling algorithm that 
implements the rlf function. In our implementation the general 
purpose function above was extended to become a function lf 

[R, NR, W] = lf (CE, α, δ) 

which taking an input set CE of critical events, an 
acceptability threshold α and a sensitivity parameter δ, replies 
with a triple that represents a partition of the input set. Each 
event in CE is labelled as relevant (R), non-relevant (NR) or 
wrong (W), depending on the chosen correlation rules. More 
in detail, the discarded event set W will contain all the events 
that have erroneous or incomplete values for some of their 
features (missing timestamp, wrong geo coordinate values, 
etc.) while the relevant set R will be the largest set of data with 
common characteristics, representing the predicted subset of 
more critical events in the starting set. All the other events will 
be labelled as non-relevant (NR group). 

A. Involved Techniques 

Here follows the listing of the main techniques used to 
build our solution. It is important to highlight that we are 
considering event information coming from heterogeneous 
sources but having common features: in particular, we are 
assuming that each event is at least geo-located and time-
referenced.  

Integrity Check: the target is to detect events that have 
incomplete set of values, wrong or missing fields or that have 
integrity problems. The aim is to avoid pollution of data due to 
events that are not valid, due to malfunctions of the sensors, of 
the database or damaged from adversaries during the delivery 
to the data center. Events with these problems are stored in the 
W set and not considered for further analysis. In addition, an 
alert is sent to the database administrator, who needs to fix the 
detected problem, updating or discarding the information. 

Mean Value: we chose a very simple and fast algorithm to 
verify the dispersion of the event in the space calculating the 
mean value for each common feature (timestamp, latitude, 
longitude). After this computation, for each involved event, 
and for each of its features, we check if the value is close 
enough to the mean for that parameter in a range defined by a 
sensitivity parameter δ. Formally, let CS be the set of events 

with common features F and let be the value for the feature f 

(in F) of the event e (in CS). For each event e, we will check 
the following statement, 

 

where δ = {δf in Real | f in F} contains the tolerance values 
for each feature f in F. It follows that an event is valid for this 
algorithm if and only if the values of all its features are in the 
mean-range of the corresponding δ value. 

K-Medoids Clustering: considering specific event sets, it is 
possible to have subsets of elements with common 
characteristics inside the bigger group. Since the mean value 
step is not able to detect and classify these subsets, we chose 
the K-Medoids clustering algorithm [17] (an evolution of K-
Means [18] one), which partitions the investigated events into 
k clusters by selecting k events as leaders (medoids) and 
assigning all the other events to the neighbourhood of the 
closest leader. This choice of a leader event (medoid) instead 
of leader coordinates (centroid) makes K-Medoids less 
sensitive than K-Means to outliers, keeping a similar 
efficiency in terms of computational time [19]. 

B. Building the Process 

These techniques interact each other following a specific 
flow (depicted in Figure 2) that aims to obtain the better result 
in terms of the highlighted relevant set. The first performed 
step is the integrity check: we need to rule out the events that 
have values so different from the average of the others or 
incomplete to be considered wrong in such a context. These 
constitute the set of events W. On the cleaned event set, the 
mean value algorithm is executed to understand how many 
events are close enough to the mean for each of their features. 
If this number is above the chosen acceptability threshold α, 
these events build the relevant set R, while the others are 
placed in the NR set.  

 

Fig. 2. Relevance labelling strategy 

 



If the number of mean-range relevant events is under the α 
threshold, we need to perform the k-medoid clustering step, 
which tries to split the whole set (cleaned from the events that 
do not pass the integrity check) into k clusters to identify one 
that have at least α events with feature values close to the 
cluster mean ones. Depending on the chosen k value from K 
set (we consider a set of values K to increase the chances of 
success), we perform the k-medoids clustering and, if the 
process has success, we check if it is possible to find a cluster 
that have at least α elements. If this cluster exists, on that set 
we run again the mean value algorithm to determine if this set 
can be seen as the relevant set. If both the initial mean value 
algorithm and the clustering steps are not able to find a 
relevant set, the process ends without giving relevance 
information to the user, but only showing the events W judged 
non-valid from the integrity checker separately from the other 
ones. In this case, the user needs to change the query 
parameter‟s values or add other query filters. 

It is important to highlight the significance of the 
sensitivity δ and threshold α. When the operator queries the 
database, he may be interested in capturing specific events that 
would require a smaller sensitivity value to be captured. If an 
operator is observing an extended area, a small value of δ 
could result useless for relevance labelling, because it is very 
difficult to detect an high percentage (defined from α) of 
events with very similar features in a wide area. The α 
parameter, instead, defines the minimum number of events in 
the relevant set. In our experiments we want to detect a single 
block of related events (the R group): consequently we set this 
value to 50%. It should be remarked that we could lower this 
value to observe more subsets of events. This is a key 
improvement that will be discussed as a future work at the end 
of this paper.  

V. APPLICATION ON A CRISIS MANAGEMENT SYSTEM 

The Secure! system [13] is a Decision Support System 
(DSS, [14]) for crisis management that exploits information 
retrieved from a large quantity and several types of data 
sources available in a target geographical area, in order to 
detect critical situations and command the corresponding 
reactions including guiding rescue teams or delivering 
emergency information to the population via the Secure! app. 
Input data to Secure! come from: social media as for example 
Twitter, Secure! apps (apps that can be installed on 
smartphones and tablets and can be used by civilians or trained 
personnel to send data to Secure!), web sites and feeds, and 
sensor networks available in the infrastructures (e.g., 
surveillance cameras, proximity sensors).  

A. Micro and Macro Events 

 Data are received, collected, homogenized, correlated and 
aggregated in order to produce a situation for the DSS system 
that is ultimately shown to operators in a control room which 
take the appropriate decisions. First, data are collected from the 
heterogeneous set of sensors, processed to extract basic 
information called micro event (e.g., a gun recognized in a 
photo); then, if it is possible, these basic events are correlated 
depending on the values of common features (e.g., similar 
spatial or temporal coordinates). The resulting item is the 

macro event, or Secure! event, composed from several micro 
events, which represents the critical situation at a certain time 
and in a certain place (e.g., the status of a demonstration in a 
part of the city). A basic event taxonomy contains the 
catalogue of micro-events [23] which represents simple real 
events involving one category of entity (e.g., people detection, 
fire presence, recognition of abrupt sounds as explosions, guns 
firing). Hence, micro events contain the texture description of 
the real event, the related timestamp, the involved entity and 
the source that generated it. Sample sources used in Secure! are 
tweets, surveillance cameras and gyroscopic sensors. 

When a critical situation happens, several micro events are 
generated, and afterwards correlated producing a set of macro 
events, which can identity a specific situation through time. 
On the basis of the information contained in the macro events, 
recovery actions can be planned. For example, when a brawl 
between soccer supporters happens, the presence of weapons 
and anomalous people behaviour, detected by sensors or 
humans reporting information, are identified as micro events. 
These micro events can be correlated using spatial and 
temporal data in one or more macro events that describe the 
current status of the brawl. These macro events can be used in 
a crisis management system to support intervention, directing 
police towards the most dangerous crowds of supporters. 

B. Data collection and Storage 

The Secure! system allows to find out heterogeneous data 
streams using the Source Integration Framework (SIF), a set 
of services that provides the management of the sources and 
the extraction of data and metadata (e.g., text, video, image, 
audio). SIF is composed by four low level modules that work 
on a n-modal data source; for example in Social Media and 
Web wrappers, WebCrawler and SMCrawler modules extract 
data to identify persons, companies, cities and other types of 
entities from HTML document, a text or in general Web 
content. Differently, for sensor network and mobile apps, 
SWInterface and ADInterface modules represent an important 
interface between data sources and Secure! framework. The 
heterogeneous data sources are managed using a Wrapper, a 
program that allows decoupling high and low I/O modules and 
normalising output using predefined schema known cartridge 
(e.g. RDF, XML). The data stream extracted from information 
sources is automatically analysed from a process whose goal 
is to manage analysis services on resources (e.g., filtering, 
validation and events domain).  

C. Integration of our solution in Secure! 

The Secure! Integration Framework Architecture is based 
on the SOA paradigm, with a RestFul Web Services approach 
that allows us to define a set of unambiguous identifiers that 
support I/O Interface (XML, JSON) and the canonical HTTP 
operations. The most important web service is the 
getEventWithAndCondition, which allows advanced search on 
macro-events stored on the Secure! database, offering a 
collection data output with JSON mediatype. The operator 
could query the dataset adding filters on the feature values of 
the events: for example, it is possible to ask for events 
generated in a restricted interval of time [t1, t2] adding the 
clauses fromDate=t1 and toDate=t2.  



Our solution depicted in Figure 1 is implemented in Java 
and integrated in Secure! as a RESTful service: when the 
operator performs a query on the Secure! database using the 
abovementioned service, the extracted events are sent to the 
Relevance Processor. It executes the strategy depicted in Fig. 
2 and returns to the operator the three sets of events R, NR, W. 
All the communications are encrypted using a standard SSL 
certificate owned by the operator and checked before every 
transmission that involves the relevance processor module. 

VI. EXERCISING OUR SOLUTION IN SECURE! 

A. Scenarios 

The Secure! system has been subject of an experimentation 
process whose goal is to endorse framework and components 
in a real context. In particular scenarios are: 

 Europa League Match: clashes and vandalism between 
supporters and police in Rome occurred before the 
Roma - Feyenoord European football match. 68 macro 
events were collected and stored in the database 
regarding this happening (18

th
 and 19

th
 February 2015); 

 Political Manifestation: clashes between police and  
violent members of Italian political factions (Lega 
Nord, Casapound) at a manifestation in Rome on the 
27

th
 and 28th February 2015 (52 macro events); 

 Weather Warnings: intense atmospheric events (strong 
winds) raged in Tuscany on the 4

th
 and 5

th
 of March 

2015. The sensors and the micro event correlation 
techniques in Secure! made 65 macro events available 
in the abovementioned time window. 

In Table II it is possible to observe some details related to 
the scenarios. We highlighted the temporal clauses that the 
operator could use, in addition to a textual geographic 
description (Rome, Tuscany), to get this event set. We also 
reported the resulting query and the setup of the sensitivity 
parameters δ = {δlat, δlon, δt} that we used to run the 
experiments reported below. We choose the same δ for each 
scenario to show how the same sensitivity is suitable in a 
scenario and needs of a different tuning in another, although a 
detailed sensitivity analysis of the parameters α, δ is outside of 
the scope of this paper and will be performed as future work. 
Due to the geographical dimension of the considered areas, 
localization uncertainty of the events, which may be up to 
several meters [29], is not significant for our analysis and 
consequently not considered in this work.  

B. Application of the Relevance Labelling Strategy 

We applied our strategy on each scenario, to understand 
how our solution is able to help the human operator to identify 
the main block of related critical events. The following 
evaluations are a-posteriori analysis, since during the 
collection phase of the data related to the three scenarios our 
relevance labelling solution was not implemented. However, 
at the current status of the work, the solution is integrated and 
working inside the Secure! framework.  

With the support of the generated log files, which includes 
the macro-event and the computed relevance, we summarized 

these results with the graphical support of Google Maps, still 
keeping in mind the third dimension of analysis, which is the 
temporal one and cannot be graphically shown in Figure 3 and 
Figure 4. The red pin markers in Figure 3 and Figure 4 point 
to the geo-location of the events belonging to the relevant set 
R, while the yellow circles highlight the less relevant ones 
NR. In Table III it is possible to observe the results of the 
relevance labelling algorithm for the considered scenarios. 

C. Europa League Match in Rome 

As it is possible to observe in Figure 3, the macro events 
for this scenario refer to the area of Rome nearby the stadium, 
which was involved by the football match, but most of them 
are located in other two separate areas of the city. In that case, 
the relevance labelling algorithm considers all the retrieved 
events as valid, without detecting any integrity or value 
problems, and then tries to execute the mean algorithm, which 
in this case labels the 24% of events as R group. Since our 
threshold α is set on 50% of the whole CE group, this partial 
result has to be discarded, and the clustering step becomes 
necessary. The clustering process reveals that is possible to 
consider four distinct subsets of events, where the biggest one 
is composed by the 63% of the events of the starting set, all 
referred to the area of Campo de’ Fiori, where some collisions 
among policemen and Feyenoord supporters occurred [25]. 

 

Fig. 3. Geo-location detail for events in “Europa League Match” scenario. 

 

TABLE II.  SCENARIOS AND PARAMETERS DETAILS 

Scenario 
Query Clauses δ 

fromDate toDate δlat δlon Δt 

Europa League Match 18th Feb 19th Feb 0.06 0.06 4h 

query:getEventWithAndCondition?Rome&fromDate=18022015&toDate=19022015 

Political Manifestation 27th Feb 28th Feb 0.06 0.06 4h 

query:getEventWithAndCondition?Rome&fromDate=27022015&toDate=28022015 

Weather Warnings 4th Mar 5th Mar 0.06 0.06 4h 

query:getEventWithAndCondition?Tuscany&fromDate=04032015&toDate=05032015 

 



The others are related to events i) happened at the stadium 
while the match was being played, ii) related to the authorities 
alerts delivered in the morning  that pointed to the more 
probable dangerous zones and iii) alerts linked to the 
vandalisms at the Barcaccia fountain [24]. Since the main 
cluster contains more than the 50% of events and all of them 
are in the range of the mean value calculation restricted to this 
cluster, the relevance labelling marks all the events in this 
cluster (the red pins in Figure 3) as R, so these are the events 
that go to the attention of the human operator with priority. 

D. Political Manifestation in Rome 

In this scenario, the outcome of the relevance labelling 
algorithm follows a different flow compared to the previous 
case study. First of all, 5 events (9% of the retrieved ones) are 
detected with feature values that are not valid (W set): an in-
depth view of the raw data shows us that the latitude and 
longitude values are set to a null value, meaning that the geo- 
localization for that events coming from Twitter encountered 
some problems. Once these events are discarded, the mean 
value step find a set large enough to be considered the relevant 
one, composed by the 59% of the events in the starting set and 
labelled in Figure 4 as red pins. Looking at the image we can 
see that while most of the relevant events are grouped 
together, one seems not belonging to the same category. As 
abovementioned, the algorithm do not use only spatial 
parameters, and this event is considered relevant as well as the 
others even if it is located in a different position because its 
timestamp value is very close to the other red ones, that were 
created after the manifestation. The other events, marked with 
yellow circles in the figure, are related to the procession and 
the following political meeting, which did not create any 

problem to the authorities and happened before the clashes 
between demonstrators and police officers. It is important to 
remark that is possible to reduce the tolerance of the mean 
algorithm changing the sensitivity parameter δ to consider as 
related only events with more (or less) similar feature values.  

E. Weather Warnings in Tuscany 

 The last considered scenario allows us to explore the case 
in which our strategy is not able to detect a relevant subset of 
the starting group. Since the 65 weather warnings collected in 
this scenario are located in different cities of the Tuscany 
region and in different time slots of the day, neither the mean 
algorithm nor the clustering converge to a relevant group. In 
these contexts, the operator has to investigate a smaller area of 
Tuscany, consider a restricted time window or add new 
clauses focusing the attention on a more specific scenario. 
From the point of view of the relevance labelling strategy, 
when the retrieved events are splitted in more than two smaller 
clusters, it is needed to lower α value. This requires an update 
of the algorithm that we planned to complete as future work.   

F. Algorithm Performance 

To evaluate the capabilities of the algorithm both in terms 
of labelling speed and effectiveness, we conducted 
experiments using the Secure! macro events collected in the 
first 6 months of the 2015 using Twitter, 3 gyroscopic sensors 
(placed in Piazza dei Miracoli in Pisa) and authorities‟ 
security alerts. In the tests we simulate a large group of 
queries that an operator can run on the database, varying the 
values for the query clauses fromDate and ToDate and calling 
the service in different dates and with different time window 
size. For each run of the tests, the output of the relevance 
labelling strategy was saved for statistical analysis purposes. 
We conducted the experiments on a machine with an Intel(R) 
Core(TM) i7-4510U CPU @ 2.00GHz, 8GB RAM and each 
test is repeated 10 times keeping the system unaltered to 
optimize repeatability [26] conditions of each run. 

In Table IV we can observe the average results of these 
tests, classified based on the outcomes of the relevance 
labelling process. As already described in Section IV, the 
outcome can be i) successful, using only the mean algorithm 
or with clustering support, ii) or not, when seems not possible 
to identify a relevant subset with at least α events. In each 
experiment, we measured the time spent for the labelling 
activity, assuming that the data are already available on the 
machine and provided as input to the service. This allows 
evaluating the performances of our strategy without 
considering delays due to the event fetching policy, which can 
vary depending on the location of the operator (same machine 
of the database, query trough LAN, etc.). In Table IV we can 
notice that our strategy is able to identify a relevant subset for 
about 2/3 of the possible user queries in the abovementioned 

 

Fig. 4. Geo-location detail for events in “Political Manifestation” scenario. 

 

TABLE IV.  RELEVANCE LABELLING PERFORMANCE 

Outcome Label 
Outcome 

Result % 

Time (ms) 

Mean Clustering Total 

Mean Successful 50.0 1.87 Not Needed 1.87 

Clustering Successful 16.7 4.20 14.63 18.83 

Unsuccessful Labelling 33.3 3.50 22.85 26.35 

All 100.0 2.80 20.11 12.86 

 

TABLE III.  RELEVANCE LABELLING FOR THE CHOSEN SCENARIOS 

Scenario R NR W Label 

Europa League Match 43 25 0 Clustering Successful 

Political Manifestation 32 18 5 Mean Successful 

Weather Warnings - - 0 Unsuccessful Labelling 

 



portion of the Secure! database, and half of the cases are 
managed using the mean algorithm, which is fast and give 
responses at average in less than two milliseconds. Otherwise, 
the clustering step becomes mandatory and the relevance 
labelling time increases a lot, reaching its maximum when the 
process has no success: in this case we execute the mean 
algorithm and the clustering step, trying all the possible 
combinations and stopping the process only at the end.  

VII. CONCLUSIONS 

This paper presented the design, development and 
assessment of a relevance labelling strategy for crisis 
management systems that can retrieve and process huge 
amounts of data coming from heterogeneous sources. The aim 
is to provide a relevance labelling strategy that supports the 
human operator to decode and classify the alerts delivered to 
the decision making center of a crisis response team, assigning 
on each event a label that predicts its relevance for the user. 
Events with higher relevance scores will be presented before 
the others, helping the operator to quickly clarify the context 
to maximize the effectiveness of the response.   

Our future work will include further analysis aimed to 
understand the influence of the threshold α and sensitivity δ 
parameters. Considering α values lower than 50% will allow 
us to get different relevant subsets of the starting group CE, 
managing crisis situations in which we have to take notice of 
simultaneous critical events. An effective tuning of the δ 
parameter, instead, will allow tailoring the relevance labelling 
algorithm to the needs of the operator, e.g., to narrow the area 
of interest. He could specify the granularity of the analysis 
that is suitable for his purposes and, afterwards, the value of 
the δ parameter. Since the development of the component in 
the Secure! framework is now complete, further analysis will 
be conducted online, executing the relevance labelling tool as 
an integrated module. 
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