The cost of formal verification in adaptive CPS. An
example of a virtualized server node

Marcello M. Bersani

Dipartamento di Elettronica, Informazione e Bioingegneria

Politecnico di Milano
Milano, Italy
marcellomaria.bersani@polimi.it

Abstract—Cyber-physical systems (CPS) are large scale sys-
tems highly integrated with the physical environment. Given
the changing nature of physical environments, CPS must be
able to adapt on-line to new situations while preserving their
correct operation. Correctness by construction relies on using
formal tools, which suffer from a considerable computational
overhead especially if executed on-line. As the current system
model of a CPS may change to adapt to the environment, the
new system model has to be verified at run-time prior to its
execution to ensure that the system properties are preserved. CPS
development has mainly concentrated on the design-time aspects,
existing only few contributions that support on-line adaptation.

We undertake a practical exercise to research on the pros and
cons of formal tools to support dynamic changes at run-time. We
formalize the semantics of the adaptation logic of an autonomic
manager (OLIVE) that performs on-line verification for a specific
application, i.e., a dynamic virtualized server system. We explore
the realization of the autonomic manager using formal tools based
on CLTLoc to express functional and non-functional properties
of the managed system. The on-line verification manager services
requests from mobile clients that might require a change in
both the running software components and server services. To
establish if the adaptation preserves the temporal constraints
provided in the specification, i.e., to decide whether a new
client request can be serviced in the modified system, the on-
line verification manager employs CLTLoc satisfiability checking.
In this scenario, we then provide empirical results showing the
temporal costs of our approach.

Index Terms—Cyber-physical systems, virtualization, re-
source management, real-time, linear temporal logic, verification.

I. INTRODUCTION

Cyber physical systems (CPS) [1] are systems with strin-
gent timing properties at the confluence area between embed-
ded, real-time, wireless sensor networks, and control systems.
CPS are new with respect to these traditional fields due to
their scale and the uncertainty created by the surrounding en-
vironment; they can be influenced by other nodes/systems both
sporadically and unexpectedly. Therefore, they should adapt to
new situations while preserving correct operation. In essence,
CPS are adaptive decentralized systems where each one of
their constituent subsystems may have very distinct functional
requirements. This is the case of, for instance, remote mon-
itoring surveillance through mobile nodes that move about
hostile environments with limited (or no) human presence.
Mobile nodes must be efficient in the usage of resources by, for

Marisol Garcia-Valls
Departament of Telematic Engineering
Universidad Carlos III de Madrid
Leganés (Madrid), Spain
mvalls@it.uc3m.es

instance, requesting heavy operations to be performed by other
powerful nodes such as servers. To ensure the temporal and
spatial isolation among the various functionalities, more and
more servers execute virtualized software platforms. The vir-
tualization technology has made significant improvements also
in those domains requiring reliable and predictable execution.
Although virtualization software challenges the predictability
and reliability levels required by real-time systems [2], some
solutions that start to overcome quite a few of the problems are
available to (at least) provide QoS guarantees to soft real-time
domains. To have a flexible software organization of the server,
virtualization offers heterogeneous execution environments in
the same physical machine. As real-time virtualizers guarantee
execution isolation among virtual machines, it is currently
possible to have the coexistence of applications with different
criticality levels and requirements with respect to timeliness,
reliability, or security.

Adaptation in CPS can be related to the principles of
autonomic computing, a term firstly used to describe self-
managing [3] computing systems. An autonomic manager can,
therefore, be included in the server software architecture to
arbitrate the adaptation process, deciding whether the request
of a mobile node can be serviced or not. This decision will
depend on the current resource availability in the system.

The design of the software has to follow rigorous tech-
niques which apply both to the initial design and to the on-
line adaptation of the server. Given that the server software
configuration may have to adapt to new situations (e.g. an
incoming request from a mobile node which may require a
new functionality to be executed/downloaded), the model of
the server will be modified to handle such changes. It must
be verified that the needed incremental server model updates
comply with the system specification. Using formal tools to
carry out the above mentioned on-line verification of the prop-
erties of the new model is a hard task due to the inherent high
overhead imposed by problem solvers. This paper recognizes
that there is not a one-solution fits all needs of dynamic CPS.
Indivitual formal techniques have to be studied for a specific
system (or a kind of systems) to practically assess their limits
in providing a suitable verification means.

This paper provides a practical ilustration of this idea
for a kind of systems such as virtualized servers that rely

on the usage of spatially and temporally isolated partitions
or virtual machines. This is a typical approach in critical
software systems that are transitioning from federated architec-
tures to integrated modular functionality. This is the case of,
e.g., airborne software systems that are based on integrated
modular avionics (IMA). We present the software structure
of a virtualized server focusing on its On-Line Verification
Entity (OLIVE). OLIVE decides if a request from a mobile
node can be serviced and takes the decision while the server
is in execution, providing the answer in bounded time. We
experiment with the usage of temporal logic in OLIVE to
prove that the decision can be taken within the specified time
bounds as required by CPS with an a-priori simulation of the
system adaptation, as we present in this paper. The semantic of
the system behavior is defined in Constraint LTL over clocks
(CLTLoc) [5]. OLIVE is based on MAPE-K model [3], [7].

The paper is structured as follows. Section II describes
related works. Section III describes the virtualized server
architecture and the role of OLIVE in the context of MAPE-
K adaptation strategy. Section IV presents the formal engine
executed by OLIVE. Section V presents the adaptive server
model. Section VI experimentally validates the approach in
a realistic setting. Section VII draws the conclusions and
discusses the results.

II. RELATED WORK.

As acknowledged by some authors [8], the architectural
model-driven approach is one of the most comprehensive and
widely accepted strategies to develop complex systems such
as CPS that change over time. In a model driven approach,
some form of model of the entire managed system is created
by the autonomic manager, usually called architectural model
that expresses its behavior, requirements, and goals. Changes
are firstly planned and applied to the model to show the
resulting state of the adaptation. If the new state of the system
is acceptable, the plan can then be applied to the managed
system. The architectural model can be used to verify that
the system integrity is preserved when applying an adaptation.
There are few contributions on this side specifically due to the
cost of the verification or due to the number of restrictions
given the possible time between the identification of the
adaptation need and the adaptation transition itself. Some
approaches such as [9] verify the temporal domain exclusively
using simple utilization based schedulability analysis over
distributed service based applications. Other approaches [10]
provide design contracts explicitly including the timing aspects
of the components behavior, but these only focus on the design
of controllers for CPS.

MAPE-K loop [7] is among the most widely adopted
schemes for adaptive systems. It stands for monitor, analyse,
plan, execute, and knowledge, that identifies the set of phases
for defining the evolution of a system’s architectural model,
embedding self-managing properties. Software reconfiguration
schemes over MAPE-K for CPS using Petri nets have been
initially explored in [12]. The monitoring part of MAPE-
K collects data about the system behavior, that is needed

to generate an informed adaptation decision. Monitoring is
handled in [13] as heartbeats, an interface-based solution for
applications to actively monitor and signal their progress levels
with respect to user-defined performance goals. The gathered
information can be exposed to an autonomic manager that will
decide the subsequent adaptation actions. A similar approach
was taken by operating system level resource managers, such
as [14] that monitor real-time multi-tasking applications in
video processing for consumer electronics to extract informa-
tion about the degree of deadline fulfillments, and the number
of attempts to overrun the granted resource budgets.
Moreover, frameworks as [15] and [3] build self-adaptive
distributed systems based on the concept of multi-agents from
artificial intelligence; they use utility functions to establish the
desired goals for controlling the interaction among autonomic
elements that gather domain knowledge to perform reinforce-
ment learning. The approach of [16] designs an autonomic
element, termed as the combination of an autonomic manager
and a managed element. Lastly, the recent work OMA-cy [17]
proposes an Overarching middleware architecture for CPS
that requires the existance of a Fast Verifier component in
the specific CPS functions software layer. OLIVE autonomic
manager is an alternative for the Fast Verifier component.

III. DYNAMIC EXECUTION SUPPORT ARCHITECTURE

The proposed architecture (Figure 1) has a key component
named OLIVE (On-Lilne VErification manager) that follows
the MAPE-K loop principles. OLIVE is an autonomic manager
that handles the adaptation process derived from client requests
by internally maintaining an updated model of the application
logic. The adaptation requires the autonomic manager to build
a tentative new model of the system and verify it on-line to
determine if it conforms to the modified specification. If it
does conform, the tentative model replaces the current one
and becomes the actual current system model.

The architecture of the virtualized server node requires
that the autonomic manager resides in a priviledged zone
of the software stack as it arbitrates the execution of the
system. OLIVE is located in the virtual machine monitor (the
virtualization layer, where the decision process runs) and in the
native operating system (the host OS, where the access to the
system resources is priviledged). At that position, it has access
to the buffer of incoming requests handled by the network
protocol stack so that it can immediately run the decision
process to determine the feasibility of an incoming request.

A specific concretization of the MAPE-K phases into the
OLIVE manager is proposed with the goal of achieving a
time-bounded decision process as required by the real-time
properties of CPS. Figure 2 shows the mapping between
OLIVE and MAPE-K. The roles of the units are shown in
italics. The Execute module is not present as it is outside of
the scope of this paper; a number of proposals for Execute al-
gorithms are available in the literature, consisting of protocols
for transitioning to the verified system model. Some proposed
works are based on enforcing the execution of a selected model

Virtual Machine
(VM)

Virtual Machine
(VM,)

A"‘

A..‘

Guest OS ‘ Guest OS ‘

Virtualisati
Layer
’7 Host OS

Fig. 1. Software design of an adaptive virtualized server

MAPE-K
equivalent

Service

On-line
Y > Request

Verifier
(OLIVE)

Model
Manager

Model | :
Checker

Request
Detector

N Deny

Upadated Service

model

Correctness
check

Extract request
parameters

Fig. 2. Mapping of OLIVE components to MAPE-K entities.

for either low-level software reconfigurations based on services
[9], components [18], or mode change techniques [11].

The operation logic of the autonomic manager is the fol-
lowing. Client requests are detected through OLIVE’s Monitor
module. Upon a request, OLIVE runs the Analyze module to
determine if the request can be served or not according to
the tentative system model; the system model is contained in
the Knowledge module. If the request can be served, the Plan
module applies a strategy for the change and it is enforced
through the Execute module. The Analyze Module of OLIVE
has a submodule named on-line Model Checker entity that
has the objective of verifying the tentative future model during
execution. The Model Checker entity encapsulates the specific
logic for verification. Therefore, if different formal techniques
were to be used, only the Model Checker and the Knowledge
module will have to be changed; the rest of the architecture
remains the same. The on-line verification logic should execute
in bounded time in order to fully meet the requirements of CPS
with respect to timely execution.

The two main activities of OLIVE in relation to MAPE-K
loop are further detailed below.

Creation of a tentative future model. The Request Detector
component captures requests from clients which could enforce
new requirements. If so, the current software configuration of
the server has to be modified causing an incremental model
modification. The Model Manager modifies the current system
model which is possibly enriched with the new properties as
expressed in the request. The resulting model is called the
tentative future model. This phase corresponds, in part, to the
Plan phase of MAPE-K loop.

Execution-time verification of the tentative future model. The
tentative future model undergoes validation by means of the
Model Checker entity. The verification result depends on
the fulfilment of the specified utility criteria, e.g., the new

restrictions introduced (or eliminated) by the request, called
incompatibilities. The resulting verification time has a direct
impact on the suitability for CPS domains given their inherent
temporal requirements. This phase differs from the design-
time verification phase in that the execution-time phase must
be time-bounded. This depends on the specific tools and mech-
anisms employed; some may provide bounded-time results if
a small set of changes are given in the future tentative model;
others may yield to unacceptably large times. This phase maps,
in part, to the Plan and Knowledge phases of MAPE-K loop.
The refinement of the creation of a tentative future model with
respect to MAPE-K is that a specific satisfiability check is
used. The tentative model may render unsatisfiable (no further
action is taken) or satisfiable (the tentative model is applied
and becomes the current model).

IV. FORMAL GROUND OF OLIVE

This section describes the formal modeling and validation
engine of OLIVE, i.e., the formal tools used by OLIVE for
rigorous model representation and validation, which relies
on satisfiability checking [22], an alternative approach to
model-checking suitable both for verification and synthesis
of systems. Instead of an operational model (like automata
or transition systems), the server (system) is specified by
a (temporal logic) formula that defines its execution over
time. By verifying the satisfiability of the formula, the engine
determines whether there exists an execution of the server
satisfying the desired behavior, i.e., find a possible allocation
of computational resources in the server to satisfy the node
request with a given requirement. The manager uses CLTLoc
with dense-time clocks to model the server (an off-line model
or a tentative on-line model) and the properties.

A. Basic of CLTL over clocks

Constraint LTL over clocks (CLTLoc) [5] is a semantic
restriction of Constraint LTL (CLTL) [20] allowing atomic
formulae over (R,{<,=}) where the arithmetical variables
behave like clocks of Timed Automata (TA) [21]. A clock
measures the time elapsed since the last time when = = 0, i.e.,
the last “reset” of x. Let V' be a finite set of clock variables
x over R and AP be a finite set of atomic propositions p.
CLTLoc formulae are defined as follows:

p=ploe~cloNd|-p|o(¢)]e(d)]dUg|¢So

where ¢ € N and ~€ {<,=}, o, 0, U and S are the usual
“next”, “previous”, “until” and “since”. An interpretation is a
pair (m,0), where 0 : N x V' — R is a mapping associating
every variable z € V and position in N with value o (%, z)
and 7 : N — p(AP) is a mapping associating each position
in N with subset of AP. The semantics of CLTLoc is defined
as for LTL except for formulae = ~ c. At position ¢ € N,
(m,0),i = o ~ ciff o(i,x) ~ c. Formula ¢ is satisfiable if
(m,0),0 = ¢ for some (m,0), called frace (or model).

The standard technique to prove the satisfiability of CLTL
and CLTLoc formulae is based on of Biichi automata [5], [20]
but, for practical implementation [5], Bounded Satisfiability

Checking (BSC) [22] is employed to avoids the onerous
construction of automata. The outcome of a BSC problem,
obtained by unrolling the semantics of a formula for & steps,
is either an infinite ultimately periodic model or unsat. [4], [5]
show that BSC for CLTLoc is complete and that is reducible
to a decidable Satisfiability Modulo Theory (SMT) problem.
OLIVE performs BSC of a formula representing (the
model or a tentative model of) the virtualized server and the
(temporal) requirements defined in the specification.

B. Property validation in OLIVE.

To model the server in CLTLoc, we discretize the values
of quantitative measures ranging over an infinite domain,
like, for instance, the server load or the utility value (see
Sect. V), in order to elaborate a set of finite domains and
predicates. In propositional LTL-like logical formalism, in fact,
quantitative variables over infinite sets cannot be expressed
with propositional formulae unless a finite partition of the
domains is considered. Given a finite set A and variable z
over A, each element a € A is associated with = by atom p%
so that when p{ holds we then argue that z = a. Despite this,
CLTLoc allows the specification of temporal constraints using
clock variables ranging over R, whose value is not abstracted.
Clock variables represent, in the logical language and with
the same precision, physical (dense) clocks. They appear in
formulae of the form =z ~ ¢ to express a bound c on the
delay measured by clock z. Clocks are associated with specific
events to measure time elapsing over the execution. As they
are reset when the associated event occurs, in any moment, the
clock value represents the time elapsed since the previous reset
and corresponds to the elapsed time since the last occurrence
of the event associated to it. We use such constraints to define,
for instance, the time delay for delivering a service.

The value of all the propositional variables and clocks
appearing in the CLTLoc model are evaluated at run-time
when the on-line engine is inquired. Upon a service request,
OLIVE: (1) extracts the set of predicates from the request
and the current configuration of the system; (2) generates an
updated model where the initial value of all the variables is
set with the current configuration of the server; (3) verifies the
satisfiability of the model by means of ae?zot tool [5].

The result at step (3) is either SAT or UNSAT. If the model
is unsatisfiable, then the request can not be served and the
manager may reschedule it later, when enough resources will
be available, or may adopt a new (tentative) model. Otherwise,
the CLTLoc trace is a realistic execution of the system which
satisfies the specification and that can be executed at runtime.

The model at (3) can also be endowed with new formulae
which may represent new requirements brought by service
requests. For instance, OLIVE might need to verify if the
system can deliver an already running service before a deadline
that is different from the one specified in the request as new
constraints have been injected into the system because of
an adaption. In a full-logical framework, plugging formulae
refining a specification is simple to integrate and it is just
a matter of conjoining formulae. Alternatively, the CLTLoc

specification can be used to perform off-line model-checking
to design correct-by-construction monitors.

V. ADAPTIVE SERVER DESIGN

A virtualized server system has been designed integrating
the OLIVE autonomic manager. We present a high level
description of the implemented model, that is expressed in
CLTLoc and fed to OLIVE. Later, results of executing OLIVE
component with the ae?zot tool are presented that show the
temporal cost of the on-line decision.

A. Server description overview.

The server runs two virtual machines (or VMs) (V});
each VM can execute services (Sy) as per request of
mobile nodes. Requests to the server have the form
(reqType, Nk, Sk, f,nf), where reqType refers to the type
of request performed (currently only newnode is considered
such that it indicates that a new node wants to request service);
N, refers to the identier of the mobile node making the
request; Sy, is the requested service; f is the set of functional
parameters that includes the incompatibilities (I); nf is the set
of non functional parameters including the service response-
time deadline (dy;), and the priority (pg).

An example of new constraints regarding incompatibility
issues (I) expressed in an adaptation request is: I am node
T requesting service Sy, and I can only execute in the
environment of a virtualized server if there is an encryption
service running (i.e., of type Crypt).

A request, (reqType, Ny, Sk, f,nf), is expanded as shown
in expression (1) in its functional (f into Sy, I) and non-
functional (nf into py,dy) parts. Also, the service type is
indicated in the request as follows:

(reqType, Ny, Sk, Dk, di, 1))]

where Sy refers to the specific requested service; py is the
priority of the mobile node at which it wants to be serviced; dy,
is the maximum response time (deadline) for the completion
of the response; [is the set of restrictions or incompatibilities
imposed by the mobile node in relation to the server operation.

Table I(a) shows the finite sets that represent the discretized
value ranges for the model. The variables identified in Ta-

[Var

VM no. (v)

Service no. (s)

Service types

Server load (increasing order) (1)

[Values |
Vn,y Vb}

Sa,1,5a,2] [Sb,1,5b,2]

[User, Privileged, Critical, Crypt]
[SLo,SL1,SL2,SL3,SLy]

Rule Description
Server load maximum (A on B off) | If [(Va.state = On) A
(17 affects dy,) (Vp.state = On)]A

[(la = VL3) AN (lb = VL,j)] or
[(la = VL3) AN (lb = VLQ)] or
[(la = VL2) A (I = VL3)] then
l=SLy)

TABLE I
(A) BOUNDARIES AND FINITE SETS; (B) DEFINITION OF (MAX) LOAD
VALUE [

ble I(a) are described as follows. Number of virtual machines
is v, and the specific virtual machines in the server are V,
and V,,. The number of services (s) is specified per virtual
machine, where V;, contains two services (Sq,1,9,2), and V3
has two services (Sp,1,.95,2). Service types are in accordance
to their criticality level (User, Privileged, Critical, Cryt).
The type of service is used to model the incompatibilities
(or restrictions) posed by the mobile CPS nodes. Server load
(1) indicates the used capacity of the server derived from the
current services and virtual machine/s that are running. Five
load value ranges are defined (SLg, SLy,SLy,SLs, SLy).

The determination of the load of a system is shown in table
I(b). The server load is the sum of the partial utilizations (I;)
of all virtual machines of the server. In a real-time system,
the utilization can be calculated under a periodic model that
is compatible with a hierarchical scheduling technique for
the virtual machines. As a result, [; = % where C; is the
computation time of V; over an activation lperiod A; (named
T; in real-time scheduling). A virtual machine is assigned
a temporal partition that is a maximum utilization value
that ensures temporal isolation between virtual machines; the
verification of the model checks that the overall utilization
value is not above a specified threshold [11]. Other response
time analysis methods would check if ¢; < dj holds for all
nodes, where ¢, is the response time.

In the current model, the service time value (st) provided
by the server that runs service k in response to a request from
node x depends on the number of currently running services.
This determines the server load (1) as a measure of resource
availability. Additionally, the server load (I) (see Table I(b))
depends on the sum of the individual load caused by each
virtual machine on the server.

Table II(a) models the specification of the server behavior
with respect to the deadline values to be fulfilled, the incom-
patibilities and the node utility. Table II(b) shows the utility
function to determine the benefit for the requests. It indicates
the relation between the request parameters and the obtained
response times (rt;) and the level of fulfillment of incompat-
ibilities (I). The set of threshold values for the response time
(rt = [RTh, RT>, RT3, RT,)) allows to determine the server
load values. We show the utility type for type Critical; similar
analysis is integrated for types Privileged and User.

The utility function (f*) is:

ug = f*(rty, satLevely,) 2)

where satLevel;, is the degree of satisfiability of the con-
strains or incompatibilities (). If all the constraints brought
in by the node request are satisfied, the value of satLevel;,
is maximum. If not, a specific verification method is used and
a true/false answer is obtained.

The utility function determining the satisfiability of a re-
quest is directly derived from the expression (2). The utility is
discretized, in accordance to the service types, into acceptable
(High or Normal) and unacceptable (Low) levels.

The provided scenario is set up to observe the temporal cost
of our OLIVE component. In an actual scenario, the values

Incompatibilities for type Critical]

If servType = Critical then there is no Privileged service in the
server (in any VM)
If servT'ype = Critical then there is no User service in the same

If servType = Critical then if there are other services in the same
VM, these are necessarily of type CRY PT

Utility (uy) for type Critical |
If [(px = High) A (rty, < RT1)] then [uy, = High]
If [(pr, = High) A [(RT1 < rt, < RT3)]] then [ug, = Normal]
If [((px = High) A (rt;, > RT3)] then [uy, = Low]

TABLE II
(A) SATISFACTION LEVEL OF THE INCOMPATIBILITIES () IN RELATION TO
THE SERVICE TYPE (servType); (B) UTILITY FUNCTION

assigned to ST in relation to D and RT are separated by a
few orders of magnitude (for a desired response time of 450
ms a typical execution would be 60 ms). The verification time
for this situation is application dependent; e.g., for the case of
an object tracking video analysis, up to one second would be
acceptable; in the case of mobile nodes joining a new system
to replace existing functionality, some minutes are tolerated.

B. Encoding CLTLoc model into OLIVE.

Let W be set {N,H} of priorities (or weights), D
be set {DT;,DTy,DT3, DTy} of deadlines and T be set
{U,P,C,Y} of service types, where U represents “User”,
P represents “Priviledge”, C represents “Critical” and Y
represents “Crypt”. Let V' be a finite set of virtual machines,
S be a finite set of services and N be a finite set of nodes and
F CWxDxT. A non-functional property (or simply feature)
f € Fis atriple (w,d,t), specifing a priority, a deadline and
a service type, which labels a request of a service by a node.
The definition of set F' of features is application specific.

The design of the CLTLoc model considers the following
assumptions: (i) The process of requesting and obtaining a
service by a node, is unique during the time interval along
which the service is executed. In fact, we may identify a
node through its name and an information distinguishing the
instance (of that node) that provides the request. (ii) Between
a request and the service delivery, there is only one virtual
machine on the server which executes the service that is
required by a node. In realistic scenarios, the number of
requests of a node is finite and the value defining this bound
can be assumed as a parameter of the server. (iii) The server
always guarantees the termination of the task associated with
a service request as the system may be equipped with a
scheduler and a resume-after-failure mechanism implementing
reliable computations.

In our model, variables n, d,w and f range over N, D, W
and F'; and variables s and v range over S and V, re-
spectively. The following propositions model events in the
system. re(n,s, f): node n requests service s with feature
f. de(n, s, f): service s, requested by node n with feature
f, is delivered. on(n, s, v, f): service s, requested by node n
with feature f € F, is active on VM v.

re(n,s, f)

rtfle =0

de(n, s, f)

T‘t,fhs ~d

Fig. 3. Events for a node n, service s, virtual machine v and features f. The
dashed line represents the interval where on(n, s, v, f) holds.

The CLTLoc model captures the real-time behavior of the
server from the moment when it receives a service request
to the moment of the delivery, as depicted in Figure 3. The
process starts when a node n issues a request with a request
message re(n,s, f) which specifies the service s and the
requirement to execute the task on the server, through the
feature f. The request is processed immediately by the system
which executes s as soon as there are enough resources for
the service to be executed, i.e., when possible, the system
activates a process, running the service, on virtual machine
v. At this moment, on(n, s, v, f) becomes true and it remains
true as long as the process terminates, where on(n, s, v, f)
becomes false. State on(n, s, v, f) always changes from false
to true after event re(n, s, f) as the time elapsed between the
request and the start of the service represents the overhead
to initiate the process itself on the selected virtual machine
and the time needed to schedule the tasks. When the process
terminates, the server starts releasing the allocated resources
and later notifies node n of the termination of the service by
sending a delivery message de(n, s, f). A service request is
always associated with a specific temporal constraint defining
the maximum tolerated delay for the service delivery which
is specified, at the moment of the request, in f through a
deadline d. To measure the total time elapsed between a
service request and the service delivery, the server allocates
a clock rtfl’s. Although the server guarantees the termination
of the processes, possible failures and scheduling delay, that
are enforced by the system to comply with incompatibilities
and availability of the computational resources, may delay
the service execution. The total time required to complete the
process determines the utility for the user. The value of clock
rtfl)s at the service delivery determines the level of utility that
the server actually provisions a node waiting for a service.

Specific formulae model the sequences of events of Fig-
ure 3 by imposing that: (i) a service request re(n,s, f)
always precedes its delivery de(n, s, f) and a service delivery
de(n, s, f) always follows its request re(n, s, f) (Formula (3),
where 0 is an atom that holds only in the origin of the trace);
(ii) the server initiates a thread to run the service, between the
request and the delivery. Hence, when a service request is is-
sued, the service will eventually start on some virtual machine
v (on(n,s,v, f) becomes true, before the service delivery)
and, moreover, when a service delivery occurs, the service
has been started on some virtual machine v (on(n, s, v, f) was
true in the past, after the service request); (iii) the necessary
condition for a service to be executed on v.

re(n, s, f) = o (~re(n,s, f) Ude(n,s. f)) A

de(n, s, f) = 0V e(—~de(n,s, f)S (re(n,s, f) V0)) ®)

We assume that an active execution cannot be preempted,
i.e., when a service has been completed (on(n,s,v, f) be-
comes false) the process that runs the service cannot be
restarted until the delivery.

To measure the time elapsed between a service request
re(n, s, f) and its delivery de(n, s, f), we use a clock rt}, .,
which is reset when re(n, s, f) occurs. The value of 7t _, at
each moment of the computation, stores the time elapsed since
the occurrence of re(n, s, f). To model the system elapsed
time, we define how the server load affects the total duration
of running services in the server. The speed of computation of
the VMs depends on the server load that is, in turn, influenced
by the tasks running tasks. The model captures the relation
between the load and the duration by dividing the computation
into phases which are intervals over the time with constant
load. Each phase has a specific duration, determined by the
load. Intuitively, the model captures how fast, or slow, the
server is in the current phase on the basis of the current load,
i.e., the higher the load, the slower the computation of the
server. The amount of time to complete a phase is defined
at design time or can be estimated by monitoring a deployed
system (Table I shows the conditions to have the maximum
server load). To measure the duration of the phases, we use
a pair of clocks which are alternatively reset when the server
load varies. In any position, the active clock measuring the
current phase is the last one reset in the past.

Beside modeling the duration of phases, the model imposes
also that all the running services are executed at least over
one phase, and within any phase no service can either start
or end. The model defines the total duration of a service in
terms of the smallest computation. For each tuple (n, s, v, f)
we introduce a clock ¢/ which is always reset when s,
requested by n, starts the execution on some v, i.e., when
on(n, s, v, f) becomes true for some v. Formula (4) constraints
the duration of on(n, s, v, f) which remains true for at least
the minimum time required to complete the service, that is,
until the position where ™%/ is greater than or equal to
k(s,v) times the duration ST} of the smallest phase, for some
positive value k(s,v) depending on the service s and the VM
v. The minimum time k(s,v) - ST} is the time that the server
needs to run the service in an empty machine (i.e., when it
is the only service in the system). The value k(s,v) abstracts
the computational power of v and provides and estimation of
the cost of executing service s on v. Its value can be obtained
by monitoring the system or by design assumptions.

on(n, s,v, f) = A
on(n, s, v, f)U(on(n, s, v, f) A% > k(s v)-STy) @

service

Propositions user(s,v), priviledge(s,v) and
critic(s,v) define incompatibilities. For instance, user(s, v)
holds when an active thread executing a service of type “User”
is active. “Crypt” services are modelled by proposition
crypt(s). Proposition vm_1(v,1) is the VM load of v, where
i €{0,...,3}. When vm_1(v, ¢) holds then v is running with
load VL; (see Section V). sv_1(¢) is server load, where
i € {0,...,4} with similar meaning of vm_1(v,%) but for

the server. Proposition utility(n,i), with ¢ € {H, N, L},
models utility function for a node n (H is “high”, N is
“normal” and L is “low”). The value of utility(n,4) is
defined only at the service delivery, i.e., concurrently with
de(n, s, f). The constraints in Table I and Table II defining
the incompatibilities, server load and utility are translated
straightforwardly as they do not have temporal constraints.
The CLTLoc model is defined by the conjunction of all the
formulae described before, globally quantified over the time.

VI. EMPIRICAL RESULTS

This section presents the temporal cost of executing ae?zot
in response to an adaptation event. ac?zot is the arithmetical
plugin of Zot toolkit [19] that implements the procedure for
solving the Bounded Satisfiability Checking (BSC) of CLTLoc
formulae. It translates the CLTLoc input formula through the
reduction in [4] and [5], and it verifies the satisfiability of
the outcome by invoking an external SMT-solver (Microsoft
73, github.com/Z3Prover/z3). All the tests were carried out
by feeding the solver with the CLTLoc formula defining the
server (we name the formula with (%)) and an integer value
k (see IV-A). The solver runs on an Ubuntu Linux machine
14.04.2, Xeon E5530 2.4GHz with 3GB Ram.

The first experiment is devised to measure the scalability
and the cost of real-time verification of the (tentative) server
model. To account for different system implementations, each
experiment is run with a specific value of the server param-
eters: the number of nodes in the system and the number
of the features (priority, deadline and type) that nodes re-
quire. The experiment simulates tight timing requirements over
the service execution: given any initial system configuration,
all service requests re(n,s, f) have to be served within 5
seconds. This amounts to verifying the satisfiability of the
specification (x) conjoined with a formula requiring that any
on(n,s,v, f) eventually holds, within 5 seconds from the
origin. We have considered the following sets of values for
the parameters as we believe that experimenting configurations
with larger value has little interest (the trend is clear from
Fig. 4). The number of nodes, i.e., the cardinality of N, is
chosen over the set {2,4,6,8,10} and the cardinality of F
over the set {4, 6, 8,10, 12} (the maximum number of features
in F' is 24). The set of triples in F' is randomly generated
accordingly with the constraints on service types, priorities
and deadline (see Section V). The values of deadline (DT3)
and response time (RT;) are 50, 100, 200,400ms and of the
service time (S7;) are 5, 20, 40, 60ms. In our experiments, we
fix k = 10, being enough to represent simple (yet significant)
and complex execution of the server. In fact, as & is the number
of events defining periodic executions of the server captured
by the CLTLoc model and 4 x |N| x |F| is the number of
all possible active tasks that are executed in the server in 5
secs., we can represent from 32 up to 480 services over 10
discrete instants. Figure 4 shows the time requirements needed
to check the satisfiability of the CLTLoc model.

The second experiment illustrates an example of on-line
verification of a server with 4 nodes and 6 features. As

SMT Time (secs)

00
Number of triples f (F)

Number of nodes (N)

Fig. 4. SMT time (secs) w.r.t. number of nodes (N) and features f (F).

explained in Sec. IV-B, OLIVE checks the satisfiability of
formula (x) specifying the system possibly conjoined with
a CLTLoc formula defining the current configuration and a
property. Grounding on the verification outcome, the monitor
defines the strategy for adaptation. In the first experiment,
we assume that, when the online engine is inquired, the
system has the following configuration: node n; requested
for a high priority service s, with type critical and deadline
50ms, 10ms in the past and the service has been executing
since 1ms time unit on virtual machine a (so, its feature is
(H,50,C)). On server b, a high priority service s, requested
by ne more than 120ms ago with type User and deadline
200ms, is starting. Node no is also requesting a critical service
so with high priority and deadline 50ms (so, its feature is
(H,50,C)). First, we verify the feasibility of the service
delivery of re(ng,sq, (H,50,C)) when the service demand
is high. This occurs when the server load is either sv_1(2)
or sv_1(3) or sv_1(4) and corresponds to the case where
the server is active and one (or both) VM is running with
the maximum VM level 3 or both VMs are running with
level 2. We verify whether the delivery de(nz, s2, (H, 50, C))
occurs with a certain utility and, for our experiments,
we consider two values: high (H) and normal (N).
Formula —de(ns, o, (H, 50, C))U(de(ns, so, (H,50,C)) A
utility(ne,u)) defines the reachability of the desired utility
level u, with w = H or u = N. When v = H, the outcome
(UNSAT), obtained in 94 secs. (82 secs. SMT time), proves
that the system cannot serve the incoming request according
to the timing constraints (the delivery must be provided before
100ms from the request to have high utility). However, when
u = N, the system has enough time to deliver the service with
normal utility, between 100ms and 400ms from the request.
The outcome of the solver, obtained in 202 secs. (190 secs.
SMT time), is SAT and the model of the formula shows the
allocation of resources on the server (the tentative model is
correct). In the second experiment, we verify if the following
statement is a property for the system: if the system delivers
the service for request re(ns, sa, (H,50,C)) with high urility
before delivering the service for node no and nq, then it is
not possible to service the latter with high utility. To prove
the property, the negated formula translating the statement
is conjoined with the specification. The outcome (SAT), that
is obtained in about 210 secs. (197 secs. SMT time), shows
a counterexample. The delivery de(ns, 2, (H, 50, C)) occurs
before the delivery of the running tasks, that are dealt with high

utility after de(nas, s2, (H,50,C)). However, the statement is
a property of the system if the current configuration has server
level equal to 3 (the outcome is UNSAT and it is obtained in
110 secs. (88 secs. SMT time)).

Finally, we show an example of off-line verification where
no initial configuration is given. In this case, if a formula is
a property for the system, then the property holds for all the
executions and for all initial configurations that may occur
when the on-line engine is invoked. We verify the property
saying that if the server terminates the execution of a critical
service, say s1, with high priority and deadline equal to 50ms
and the delivery is provided with high utility then, when the
server terminates the execution, the service level is either 1
or 2. The property holds as the solver returns UNSAT in no
more than 110 secs. (98 secs. SMT time).

The previous results allows us to obtain an estimation of
the upper bound of the temporal cost of the correctness check
of the tentative model.

VII. DISCUSSIONS AND CONCLUSION

We presented a practical approach to research the limits
of formal tools based on full CLTLoc to support the practical
design of dynamic CPS, with particular interest to autonomic
manager for on-line verification of the tentative models of
adaptive systems. We designed a specific open virtualized
server containing the on-line verification manager (OLIVE)
which is based on MAPE-K and employs a logic view and
reasoning about the architectural model. We demonstrated
experimentally that the use of formal verification, provisioning
temporal boundaries for the decisions over the server oper-
ation, is possible but suitable for on-line verification when
small systems and k values are considered. We point out
the cost of solving complex CLTLoc specifications, whose
theoretical complexity may, in general, yield to unfeasible
on-line verification processes. In fact, modeling real-time
executions of the server, where the relation between the
computation delay and server load and the temporal relation
among events matter, required a model that is affected by a
combinatorial blow-up. This drawback is unavoidable in the
current setting and characterizes also the approaches based on
Timed automata which can be considered as an alternative to
CLTLoc, being equivalent to CLTLoc [6]. In addition, their
inherent operational nature is not suitable to model logical
constraints on quantitative measures, like the servers load,
the incompatibilities and the utility function, resulting into an
elaborated representation which, on the other hand, is very
natural in a logical language.

Our approach is the first developed attempt, based on a
dense time temporal logic, that experiments on the support of
adaptation of CPS exemplified for a virtualized server design,
taking a practical step to research the applicability of pure
logical models in practice, for correct construction of dynamic
CPS and on-line verification. It also points out the need of ad-
hoc approaches to perform on-line verification and discourages
the use of general formalisms, like full LTL/CLTLoc and TA
which have PSPACE-c theoretical complexity.

ACKNOWLEDGMENT

This work has been partly supported by the Salvador de
Madariaga Programme for International Research Stays from
the Spanish Ministry of Education (PRX12/00252); by projects
REM4VSS (TIN 2011-28339), M2C2 (TIN2014-56158-C4-3-P)
funded by the Spanish Ministry of Economy and Competitiveness
and Italian project PRIN 2010/11 (CUP D41J12000450001).

REFERENCES

[1] K.D. Kim, PR. Kumar. Cyber Physical Systems: A Perspective at the
Centennial. Proceedings of the IEEE, vol. 100 (13), pp. 1287-1308. 2012.

[2] M. Garcia-Valls, T. Cucinotta, C. Lu. Challenges in real-time virtualiza-
tion and predictable cloud computing. Journal of Systems Architecture
60(9), pp. 726-740. 2014.

[3] J. O. Kephart, D. M. Chess. The vision of autonomic computing. Com-
puter, vol. 36(1), pp. 41-50. Jan. 2003.

[4] M. M. Bersani, A. Frigeri, M. Rossi, P. San Pietro, Completeness of the
bounded satisfiability problem for constraint LTL. Reachability Problems,
LNCS 6945. 2011.

[5] M. M. Bersani, M. Rossi, P. San Pietro A tool for deciding the satisfia-
bility of continuous-time metric temporal logic Acta Informatica. DOI:
10.1007/s00236-015-0229-y. 2015.

[6] M. M. Bersani, M. Rossi, P. San Pietro A Logical Characterization of
Timed (non-)Regular Languages. MFCS, Springer 8634. 2014.

[7] IBM Corporation. An architectural blue print of autonomic computing.
Tech. report, 4" ed. 2006.

[8] M. C. Huebscher, J. A. McCann. A survey of autonomic computing -
Degrees, models and applications. ACM Computing Surveys, vol. 40(3).
2008.

[9] M. Garcia-Valls, L. Fernandez Villar, I. Rodriguez Lopez. iLAND: An
enhanced middleware for real-time reconfiguration of service oriented
distributed real-time systems Transactions on Industrial Informatics 9(1),
pp. 228-236. 2013.

[10] M. Toerngren, S. Tripakis, P. Derler, E.A. Lee. Design Contracts for
Cyber-Physical Systems: Making Timing Assumptions Explicit. Tech Rep.
UCB/EECS-2012-191. UC Berkeley. 2012.

[11] K. W. Tindell, A. Burns, A. J. Wellings. Mode Changes in Priority
Pre-emptively Scheduled Systems. Proc. of the IEEE Real-Time Systems
Symposium. 1992.

[12] M. Garcia-Valls, D. Perez-Palacin, R. Mirandola. Time sensitive adapta-
tion in CPS through run-time configuration generation and verification.
Proc. of 38" IEEE Annual Computer Software and Applications Con-
ference (COMPSAC), pp. 332-337. 2014.

[13] MIT CSAIL. Application heartbeats
http://code.google.com/p/hearbeats/ (on-line). 2014.

[14] M. Garcia-Valls, A. Alonso, J. Ruiz, A. Groba. An architecture for a
quality of service resource manager middleware for flexible multimedia
embedded systems Proc. 3" Int’l Conference on Software Engineering
and Middleware (SEM). LNCS, vol. 2596, pp. 36-55. 2003.

[15] G. Tesauro. Reinforcement Learning in autonomic Computing: A Man-
ifesto and Case Studies. IEEE Internet Computing, vol. 11(1). 2007.
[16] J. Panerati et al. On self-adaptive resource allocation through reinforce-
ment learning. Proc. NASA/ESA Conference on Adaptive Hardware and

Systems (AHS), pp. 23-30. 2013.

[17] M. Garcia Valls, R. Baldoni. Adaptive middleware design for CPS:
Considerations on the OS, resource managers, and the network run-time.
Proc. 14*" Workshop on Adaptive and Reflective Middleware (ARM).
Co-located to ACM ACM/IFIP/USENIX Middleware. 2015.

[18] J. Cano, M. Garcia-Valls. Scheduling component replacement for timely
execution in dynamic systems. Software: Practice and Experience, vol.
44(8), pp. 889-910. 2013.

[19] Deepse. ae2zot tool. https://github.com/fm-polimi/zot (on-line). 2015.

[20] S. Demri, D. D’Souza, An automata-theoretic approach to constraint
LTL. Information and Computation 205 (3), pp. 380-415. 2007.

[21] R. Alur and D. L. Dill. A theory of timed automata. Theoretical
Computer Science, vol. 126, no. 2, pp. 183-235. 1994.

[22] M. Pradella, A. Morzenti and P. San Pietro. Bounded Satisfiability
Checking of Metric Temporal Logic Specifications. TACM vol. 22, pp.
20:1-20:54. 2013.

project.

