
HAL Id: hal-03155038
https://hal.science/hal-03155038

Submitted on 3 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Correct Instantiation of a System Reconfiguration
Pattern: A Proof and Refinement-Based Approach

Guillaume Babin, Yamine Aït-Ameur, Marc Pantel

To cite this version:
Guillaume Babin, Yamine Aït-Ameur, Marc Pantel. Correct Instantiation of a System Reconfiguration
Pattern: A Proof and Refinement-Based Approach. 17th IEEE International Symposium on High
Assurance Systems Engineering (HASE 2016), Jan 2016, Orlando, FL, United States. pp.31–38,
�10.1109/HASE.2016.47�. �hal-03155038�

https://hal.science/hal-03155038
https://hal.archives-ouvertes.fr

Correct instantiation of a system reconfiguration

pattern: a proof and refinement-based approach

Guillaume BABIN∗‡, Yamine AIT AMEUR∗‡ and Marc PANTEL∗‡

∗Université de Toulouse ; INP, IRIT ;

2 rue Camichel, BP 7122, 31071 Toulouse Cedex 7, France
‡CNRS ; Institut de Recherche en Informatique de Toulouse ; Toulouse, France

guillaume.babin@irit.fr, yamine@enseeiht.fr, marc.pantel@enseeiht.fr

Abstract—System substitution can be defined as the capability
to replace a system by another one that preserves the specification
of the original one. It may occur in different reconfiguration
situations like failure management or maintenance. When sub-
stituting a system at runtime, a key requirement is to correctly
restore the state of the substituted one. This paper proposes a
correct by construction generic model for system reconfiguration
defined using formal methods, based on a system substitution
operator. Systems are seen as state transition systems. This
proposal relies on refinement and proofs. The formal development
is conducted with the Event-B method. It consists in defining
system substitution as a system composition operator associated
to proof obligations. A generic formal model is developed using
Event-B. Specific systems instantiate this generic model using a
particular use of refinement-based on the definition of witnesses.
This proposal is illustrated with an electronic commerce service.

Keywords—system substitution, system reconfiguration, proof
and refinement-based methods, Event-B

I. INTRODUCTION

Several formal system development approaches have
proved the efficiency and the scalability of formal meth-
ods for realistic systems using deductive verification, model
checking and abstract interpretation. These approaches have
been integrated into system engineering life cycles and are
currently set up in many engineering domains like aeronautic
and space, transportation systems, medical systems or energy
production. Checking that systems behave correctly is a key
requirement in system engineering. Moreover, the capability to
assert that families of systems behave correctly is often used
for certification purposes to avoid system specific activities.
Formal methods were shown to be good candidates to handle
such verification processes and to supply well-founded argu-
mentation for certification. One of the key properties studied
in system engineering is the capability of a system to react
to changes (e.g. failures, quality of service change, context
evolution, maintenance, etc.). In this context, the objective of
this proposal is twofold: first, to address the design of adaptive,
resilient, dependable, self-⋆ systems etc. which require the
capability to reconfigure running systems (more precisely,
reconfiguration can be seen as the substitution of a system by
another one); second, to put formal methods (more precisely
proof and refinement-based methods) into practice to model a
system substitution operation for a family of systems whose
behavior is characterized by transition systems. The Event-B
method is used to perform the formal developments. Two
different substitution relations are studied. The first one is a

static substitution (corresponding to a cold start) that relies
on refinement to characterize the set of systems that conform
to the same specification. A class of potential implementation
systems are thus characterized by refinement. The second one
addresses the dynamic substitution (substitution at runtime or
warm start). It relies on a composition operator that combines
two systems that refine the same specification. This composi-
tion operator is parameterized by the substitution or reparation
property ensuring that the current state (the state where the
source system is halted) is correctly restored in the substitute
system. Moreover, we identify three substitution modes for
the composition operator: equivalent, degraded or upgraded
substitute systems.

This paper proposes a generic system reconfiguration for-
mal model developed using correct-by-construction stepwise
refinement and proof-based formal methods. Event-B supports
the whole formal development of the system substitution
operator. The developed generic model can be instantiated
to any number of systems to be substituted. The proposed
approach is generic and an instantiation mechanism, based on
a specific refinement with witnesses, is proposed to overcome
the state space explosion problem usually encountered when
model checking-based verification techniques are set up.

We have structured this paper as follows. First, the next sec-
tion gives an overview of the Event-B method. Then, section III
describes the proposed substitution operator through the defini-
tion of a parameterized composition operator for which proof
obligations are synthesized, and section IV describes an appli-
cation of this generalized approach. The mathematical setting
describing the generalization of this approach is presented in
section V. Then, the corresponding Event-B models handling
this generalized model are described in section VI and the
associated instantiation mechanism is described in section VII.
The same case study is used to instantiate this generic model
in section VIII. Then, an assessment of the proposed approach
is shown in section IX, and section X gives some related work.
Finally, a conclusion summarizes our contribution and some
future research paths are discussed in the last section.

II. EVENT-B: A CORRECT-BY-CONSTRUCTION METHOD

An Event-B1 model [1] (see Listing 1) is defined in a
MACHINE. It encodes a state transition system which contains:
variables, declared in the VARIABLES clause, that represent
the states; and events, declared in the EVENTS clause, that

1http://www.event-b.org/

represent the transitions (defined by a Before-After predicate
BA) from one state to another (:| for the becomes operator).

Context ctxt_id_2
Extends ctxt_id_1
Sets s
Constants c
Axioms A(s, c)
Theorems Tc(s, c)
End

Machine machine_id_2
Refines machine_id_1
Sees ctxt_id_2
Variables v
Invariant I(s, c, v)
Theorems Tm(s, c, v)
Variant V (s, c, v)
Events

Event Initialisation ,
Any x Where G(s, c, x)
Then v :| D(s, c, x, v′)

Event evt ,
Any x Where G(s, c, v, x)
Then v :| BA(s, c, v, x, v′)

End

Listing 1. Structures of Event-B contexts and machines

A model also contains INVARIANTS and THEOREMS
that represent its relevant properties. A decreasing VARIANT
introduces mandatory convergence properties. An Event-B
machine is related through the SEES clause to a CONTEXT
that contains the relevant sets, constants, axioms and theorems
required to build an Event-B model. The refinement capability,
introduced by the REFINES clause, builds a new model (thus
a new transition system) that contains more design decisions
representing the changes from an abstract level to a less
abstract one. In a refinement, new variables and new events
may be introduced. Gluing invariants are defined to link the
variables of the refined machine with the ones of the refining
machine. This refinement process ensures the preservation of
proved properties and supports the definition of new refined
models.

TABLE I. GENERATED PROOF OBLIGATIONS FOR AN EVENT-B MODEL

Theorems A(s, c) ⇒ Tc(s, c)
A(s, c) ∧ I(s, c, v) ⇒ Tm(s, c, v)

Invariant preservation A(s, c) ∧ I(s, c, v) ∧G(s, c, v, x)
∧BA(s, c, v, x, v′) ⇒ I(s, c, v′)

Event feasibility A(s, c) ∧ I(s, c, v) ∧G(s, c, v, x)
⇒∃v′.BA(s, c, v, x, v′)

Variant progress A(s, c) ∧ I(s, c, v)
∧G(s, c, v, x) ∧ BA(s, c, v, x, v′)
⇒V (s, c, v′) < V (s, c, v)

Once an Event-B machine is defined, a set of proof obli-
gations is generated. They are passed to the prover embedded
in the Rodin platform [2]. Proof obligations associated to an
Event-B model are listed in Table I. The prime notation is used
to distinguish between pre (x) and post (x′) variables. More
details on proof obligations can be found in [1].

III. OUR APPROACH FOR SYSTEM SUBSTITUTION

Studied systems are formalized as the state-transition sys-
tems. According to Figure 1, a system is initialized, then it
evolves (progress) relying on state changes. A failure can
occur during state change. The system may then be repaired,
or isolated (complete failure).

Two main requirements are identified to allow the substi-
tution of SysS by SysT (e.g. in case of failure) :
[Req1.] Static substitution. SysS and SysT are two systems
implementing the same specification Spec.
[Req2.] Dynamic substitution. In case of failure of SysS , the
system SysT is activated at runtime. The state of SysT will
be initialized according to the current state of SysS .

initialisation

progress

fail

repair

complete failure

Fig. 1. Studied system behavior pattern

A. The global system specification

Systems are formalized, within Event-B, as state-transition
systems. Listing 2 shows a generic model representing the
Spec machine for the global system specification. States are
defined as a set of variables. Their correct values are con-
strained by invariants. States are initialized, and transitions are
modeled as events (e.g. evt) that may affect state variables.
These transitions model progress. An inductive invariant (IA)
ensures the correct behavior (safety) of the defined state-
transition system, and an optional variant (VA) ensures reach-
ability.

Context C0
Sets s
Constants c
Axioms A(s, c)
End

Machine Spec Sees C0
Variables vA
Invariant IA(s, c, vA)
Variant VA(s, c, vA)
Events

Event Initialisation ,

Then vA :| DA(s, c, v′
A
)

Event evt ,
Any xA

Where GA(s, c, vA, xA)
Then vA :| BAA(s, c, vA, xA, v

′

A
)

End

Listing 2. An Event-B model for describing a system specification: a context
C0 and a machine Spec

B. Static substitution

Every system refining the global specification is a candi-
date for system substitution. Listing 3 depicts two Event-B
refinements of the specification Spec. They correspond to two
systems SysS and SysT that implement the same specification
Spec. A variable m (for mode) has been added to express
which system is used. Invariants IS and IT define relevant
properties and ensure the preservation of the specification
properties. This refinement fulfills requirement Req1.

Machine SysS
Refines Spec Sees C0
Variables vS ,m
Invariant m = S⇒IS(s, c, vS)
Variant VS

Events

Event Initialisation ,
Then m := S

∧ vS :| DS(s, c, v′
S
)

Event evt Refines evt ,
Any yS
Where m = S

∧ GS(s,c,vS ,yS)
With yS : xS = yS
Then

vS :| BAS(s,c,vS ,yS ,v′
S

)
End

Machine SysT
Refines Spec Sees C0
Variables vT ,m
Invariant m = T⇒IT (s, c, vT)
Variant VT

Events

Event Initialisation ,
Then m := T

∧ vT :| DT (s, c, v′
T
)

Event evt Refines evt ,
Any yT
Where m = T

∧ GT (s,c,vT ,yT)
With yT : xT = yT
Then

vT :| BAT (s,c,vT ,yT ,v′
T

)
End

Listing 3. Event-B models for Sys_S and Sys_T system substitutes for
Spec

C. Dynamic substitution

Two events are introduced (see Listing 4): the first one
records the occurrence of a failure (fail) and halts the
currently running system by setting the variable m to F ; the
second one (repair) transfers the control at runtime from
SysS to SysT by 1) setting the variables of SysT with values
derived from the ones of the interrupted state of SysS . This
assignment is possible and safe thanks to the definition of an
horizontal invariant P1 gluing the state variables of systems
SysS and SysT and 2) initializing the variant for SysT using
a property P2. The variable m is then set to T to transfer the
control to SysT .

Machine SysG
Refines Spec
Sees C0
Variables vS , vT ,m
Invariant m = S ⇒ IS(s, c, vS)

∧ m = T ⇒ IT (s, c, vT)
∧ m = F ⇒ IS(s, c, vS)

Variant VS + VT

Events

Event Initialisation ,
Then

m := S
vS :| DS(s, c, v′

S
)

vT :| ⊤

Event s_evt Refines evt ,
Any xS

Where m = S ∧ GS(s,c,vS ,xS)
Then

vS :| BAS(s,c,vS ,xS ,v′
S

)

Event t_evt Refines evt ,
Any xT

Where m = T ∧ GT (s,c,vT ,xT)
Then

vT :| BAT (s,c,vT ,xT ,v′
T

)

Event fail ,
Where m = S
Then

m := F

Event repair ,
Where m = F
Then

vS , vT :| P1(vS , vT , v
′

S
, v′

T
)

VT :| P2(VS , V
′

T
)

m := T
End

Listing 4. The resulting global system SysG

D. Resulting global system

The resulting system composes systems SysS and SysT
and the events fail and repair into one single Event-B
machine as depicted on Listing 4. The obtained Event-B model
encodes the substitution pattern of Figure 1. The mode m is
set to the initial system (here S). The invariants IS and IT
of each system are preserved, and when a failure occurs, the
failing state preserves invariant IS . Req2 is thus satisfied.

E. System substitution as a composition operator

This proposal can be seen as a parameterized (with
the P1 and P2 parameters) system composition written as
SysS ◦

P1,P2
SysT . It defines the substitution of a system

SysS by another system SysT . Let us study the properties
of this operator, i.e. the associated proof obligations. First, the
events corresponding to SysS and SysT preserve the invariant
because they preserved their respective invariants IS and IT in
the static substitution. Second, the event fail also satisfies the
invariant, since no state variable is modified by this event. The
repair event is the only event concerned by the modification
of the variables. It shall maintain the invariant. According to
Table I, the associated proof obligation is defined as follows.

A(s, c), m = S ⇒ IS(s, c, vS) ∧m = T ⇒ IT (s, c, vT)

∧m = F ⇒ IS(s, c, vS), m = F, P1(vS , vT , v
′

S
, v
′

T
) ∧m

′

= T

⊢ m
′

= S⇒IS(s, c, v
′

S
)∧m

′

= T⇒IT (s, c, v
′

T
)∧m

′

= F⇒IS(s, c, v
′

S
)

The proof obligation for the preservation of the invariant
in the repair event are obtained after simplifications.

A(s, c) ⊢ IS(s, c, vS) ∧ P1(vS , vT , v
′

S
, v
′

T
) ⇒ IT (s, c, v

′

T
) (1)

To conclude, the proof obligation corresponding to equa-
tion (1) is associated to the composition SysS ◦

P1,P2
SysT .

This equation defines the proof obligation associated to the
substitution pattern we studied.

IV. A CASE STUDY

This method has been applied to a case study of a basic
electronic commerce system for web services compensation.
The provided Event-B models are borrowed from [3].

A. The system

The system enables the purchase of a set of products from a
single supplier. A user selects some products in a cart, pays the
corresponding fees, receives an invoice and then the products
are delivered by the logistics part of the system (see Figure 2).

Selection Payment Invoicing Delivery

Fig. 2. High level view of the case study system

We suppose that during the selection step, a failure occurs
due to an error on the supplier side. A failure signal is
triggered. It enables the substitution of the supplier website
by a new system composed of two other suppliers on two
different websites. The two corresponding carts are filled such
that the user does not lose or gain any products in the carts
(corresponding to an equivalent system substitution case).

B. The specification

The model encodes the state-transitions system of Figure 2.

1) The context: The context C_1 introduces STOCKS a
relation associating the available products for each site.

Context C_1
Sets

PRODUCTS // all the products in the world
SITES // all the sites in the world

Constants STOCKS
Axioms

Axm1 : finite(PRODUCTS)
Axm2 : finite(SITES)
Axm3 : card(SITES) ≥ 2
Axm4 : STOCKS = SITES × PRODUCTS

End

Listing 5. The context C_1

2) The top level specification: corresponds to an Event-B
machine (Listing 6) with the events of the state-transitions
system of Figure 2. Only the details of the selection event
are given. It fills a variable carts with an arbitrary cart
which contains the desired products (Grd3), each one of these
products being selected on a single site (Grd4).

Events

Event initialisation ,
Then

seq := 4
P :∈ P(PRODUCTS)

carts := ∅

Event selection ,
Any someCarts Where

Grd1 : seq = 4
Grd2 : someCarts ⊆ SITES × P
Grd3 : ran(someCarts) = P

Grd4 : ∀p. p ∈ ran(someCarts)⇒ card(someCarts−1[{p}]) = 1
Then

seq := 3
carts := someCarts

Event payment , Where Grd1 : seq = 3 Then seq := 2 . . .

Event billing , Where Grd1 : seq = 2 Then seq := 1 . . .

Event delivery , Where Grd1 : seq = 1 Then seq := 0 . . .
End

Listing 6. The events encoding the activities of the case study of Figure 2

C. Possible implementations

We define two systems, WS1 and WS2, implementing
(refining) this specification. The two refinements of the
selection event are given in Listings 7 and 8. The first
system, WS1, uses one single cart and one website. It offers
the possibility to add items individually to the cart.

Event addItem_WS1 ,
Any item
Where item ∈ P \ ran(cartWS1)
Then cartWS1 := cartWS1 ∪ {site1 7→ item}

Event selection_WS1 ,
Refines selection
Where ran(cartWS1) = P
Then cart := cartWS1

Listing 7. Refinement of the selection event for one site (WS1).

The second system, WS2, uses two websites with one cart
on each website. A user may add items, one by one, to each
of the carts, by choosing products on both websites. The cart
of the specification is the union of the carts of both websites.

Event addItemA_WS2 ,
Any item

Where item ∈ P \ ran(cartA
WS2

∪ cartB
WS2

)

Then cartA
WS2

:= cartA
WS2

∪ {site2A 7→ item}

Event addItemB_WS2 ,
Any item

Where item ∈ P \ ran(cartA
WS2

∪ cartB
WS2

)

Then cartB
WS2

:= cartB
WS2

∪ {site2B 7→ item}

Event selection_WS2 ,
Refines selection

Where ran(cartA
WS2

∪ cartB
WS2

) = P

Then cart := cartA
WS2

∪ cartB
WS2

Listing 8. Refinement of the selection event for two sites (WS2).

D. Failure and substitution

According to the presented methodology, the next step
consists in introducing the failure and the substitution events.
The basic definitions for failure modes are defined in the
context C_11.

Context C_11 Extends C_1
Sets FAILURE_MODES
Constants OK, NOK
Axioms

axm1:partition(FAILURE_MODES, {OK}, {NOK})
End

Listing 9. Introduction of a context for failure modes

1) Introduction of failures: the failure_WS1 event in-
troduces failures on the first site WS1. It halts the system.

Event failure_WS1 ,
Where

Grd1 : sys = WS1
Grd2 : failureStatus = OK

Then

Act1 : failureStatus := NOK

Listing 10. Failure event for WS1

2) System substitution: the correctness of the substitution
between the two systems relies on the correct restoration of
the carts. Correctness is preserved by the horizontal invariant
defined as cartWS1 = cartAWS2 ∪ cart

B
WS2. It guarantees that

the products contained in the cart cartWS1 already purchased
on WS1 (one website) are split in the carts aCartAWS2 and
aCartBWS2 of WS2 (two websites).

Event Repair_WS1_WS2 ,
Any

aCartA
WS2

,aCartB
WS2

Where

Grd1 : sys = WS1
Grd2 : failureStatus = NOK

Grd3 : aCart
A

WS2
∪ aCart

B

WS2
= cartWS1

Grd4 : aCart
A

WS2
∩ aCart

B

WS2
= ∅

Then

Act1 : sys := WS2
Act2 : failureStatus := OK

Act3 : cartA
WS2

:= aCartA
WS2

Act4 : cartB
WS2

:= aCartB
WS2

Listing 11. The substitution event exploiting the horizontal invariant

The Event-B models we presented are borrowed from
[3]. This simple case study will be used to illustrate the
generalization of system substitution.

V. MATHEMATICAL SETTING FOR SUBSTITUTION

The formal development sketched in the previous section
shall be conducted every time a substitution case needs to be
considered. In this sense, the previous approach provides a
correct substitution mechanism, but it is not generic. Neither
the development nor the verification processes can be reused.
We advocate the use of a generic correct-by-construction
approach. The proposed generalization consists in manipulat-
ing the described systems where systems become first-order
objects manipulated by the Event-B models. States, transitions,
invariants, variants, etc. become objects of the proposed model,
and the described system behavior conforms to Figure 1.

This proposal first expresses the system substitution strat-
egy at a higher level, and then reuses this development for each
specific system substitution. The specific system is obtained
by instantiation of the generic model. Instantiation is defined
by a particular use of refinement. Specific systems, defining
instances, are witnesses of the generic development.

A. Variables and states

Variables, that represent states, belong to a set V ariables.
Their values are taken in the set V alueElements. Vari-
ables are associated to their values by the V aluations ⊆
V ariables 7→ P(V alueElements) function.

B. Initialization and progress

The initialization of the global system selects the first
system to run. The progress event models the assignment
of a new valuation for the system state variables.

C. Systems

Systems belong to the set Systems of all the sys-
tems. A system is a tuple that is defined as system =
〈

variables, variant, invariant, init, progress
〉

, where:

• variables is a set of variables representing the state of
the system: variables ⊆ V ariables

• variant is a function producing the natural value of
the variant from a valuation of the variables: variant ∈
V aluations→ N

• invariant is a predicate defined on the variables values:
invariant ∈ V aluations→BOOL

• init and progress are two before-after predicates record-
ing the state changes.

D. Systems substitution relation

System substitution requires the definition of a relation
associating the source system states with the target system
ones. As defined in equation 2, this relation is given by the
definition of an invariant, named horizontal invariant.

∀SS , ST ∈ Systems.

∀InvH(SS , ST) ∈

states(SS) × states(ST) → BOOL.

substitute_states(SS , ST) =

{(sS , sT) ∈ states(SS) × states(ST) |

InvH(SS , ST)(sS , sT)} (2)

where2 states is a function returning the possible valuations
of a given system: states ∈ System → V aluations, and
InvH is a predicate defining the horizontal invariant involving
the values of the variables of the source and target systems:
InvH ∈ System2 → V aluations2 →BOOL

The invariant InvH links the source and target states.
It fulfills the role of P1 in the proof obligation defined in
equation (1). In the generic model, its definition is given by
an equivalence relation. Its definition entails the definition of
the reparation relation repair ∈ Systems2 × (V aluations→
BOOL)2. It is parameterized by two predicates ψ and ϕ.

∀SS , ST ∈ Systems. ∀ψ ∈ states(SS) → BOOL.

∀ϕ ∈ states(ST) → BOOL.

repair(SS , ST , ψ, ϕ) =

{(sS , sT) ∈ substitute_states(SS , ST) |

InvS(SS)(sS) ∧ ψ⇔ InvS(ST)(sT) ∧ ϕ} (3)

where InvS(SX)(sX) is the value (satisfied or not) of the
system invariant of the system SX in the state sX .

The predicates ψ and ϕ (6= false) define different repara-
tion or substitution modes.

• ψ = True ∧ ϕ = True in the case ST is an equivalent
system substitute,

• ψ 6= True ∧ ϕ = True in the case ST upgrades SS

• ψ = True ∧ ϕ 6= True in the case ST degrades SS

2If E is a set, then E2 denotes the Cartesian product E × E

E. Substitution property

The condition to substitute a system SS by a system ST
is given by the repairable_equiv predicate characterizing the
set of substitute systems.

repairable_equiv(SS) =

∃ST ∈ Systems · repair(SS , ST , True, True) #= ∅ (4)

According to equation (3), here the predicates ψ and ϕ are
set to True in equation (4) to obtain equivalence.

Finally, the generic system of systems setting is given by
a graph characterized by the pair SoS = (Systems, repair)
where Systems is the set of available systems (nodes) and
repair is the relation among the available systems (edges). The
obtained graph of systems may be constrained by additional
properties. For example, a property could be that each system
has at least two substitute systems. This is out of the scope of
this contribution.

VI. AN EVENT-B MODEL FOR SYSTEM SUBSTITUTION

The mathematical setting described above has been com-
pletely formalized3 within the Event-B method. This formal-
ization led to the definition of a context C0 and of two
machines M0 and M1, the latter being the refinement of the
former.

A. Required definitions

The context C0 (Listing 12) implements the theory associ-
ated to the system substitution relation. It defines Systems,
Variables and their possible Valuations. Systems are
sets characterizing the potentially available systems involved
in a substitution. States and Variables are manipulated
by the defined recovery mechanism. Note the introduction
of the system_of function returning the system a state
belongs to. Moreover, it also defines in type10 the type of
the horizontal invariant which associates corresponding repair
states in systems. Property prop8 ensures that this invariant
is well-defined on the states to be recovered. The variant
expression is accessed by the fvar_of function in fun4

which returns, for a given state, the function which computes
the value of the variant, while the varval_of function fun5
returns, for a given state, the value of this variant.

CONTEXT C0
SETS Variables, ValueElements
CONSTANTS Valuations, VariablesSets, Systems, Systems_states, system_of,

HorizontalInvs, varval_of
AXIOMS

set1 : finite (Variables)
set2 : finite (ValueElements)
type1: Valuations ⊆ Variables 7→P (ValueElements)
type2: VariablesSets ⊆ P (Variables)
type3: Systems ⊆ VariablesSets ×(Valuations 7→N)
type4: Systems_states ⊆ Systems ×Valuations
...
type10: HorizontalInvs ∈ (Systems ×Systems) 7→

((Systems_states ×Systems_states) →BOOL)
...
prop1: VariablesSets #= ∅

prop2: ∀ v1,v2 · (v1 ∈ VariablesSets ∧ v2 ∈ VariablesSets ∧ v1 #= v2)
⇒v1 ∩v2 = ∅

prop3: finite (Systems) ∧Systems #= ∅

prop4: ∀ vars ,f_var · (vars 7→ f_var) ∈ Systems ⇒
(∀ val · val ∈ Valuations ⇒

3The complete Event-B development is available on http://babin.perso.
enseeiht.fr/r/HASE_2016_Models.pdf

(val ∈ dom(f_var) ⇔dom(val) = vars))
prop5: Systems_states #= ∅

prop6: dom(Systems_states) = Systems
prop7: ∀ sys_st · sys_st ∈ Systems_states ⇒

dom(prj2(sys_st))= prj1(prj1(sys_st))
prop8: ∀ s1,s2, sst1 , sst2 ,b · ((s1 7→ s2) 7→ {(sst1 7→ sst2) 7→ b}

∈ HorizontalInvs)
⇒(s1 = system_of(sst1) ∧s2 = system_of(sst2))

...
fun1: system_of = (λ syst_st ∈ System_states | prj1(sys_st)))
...
fun4: fvar_of = (λ syst_st ∈ System_states | prj2(prj1(sys_st))))
fun5: varval_of = (λ syst_st ∈ System_states |

fvar_of(sys_st)(prj2(sys_st))))
...

END

Listing 12. Context C0 containing basic definitions and properties

B. Systems recovery behavior

The definition of the final obtained model conforms to the
system behavior pattern depicted by the transition system of
Figure 1.

1) The top level specification: The first abstract machine,
M0 manipulates systems without considering system states
yet. The available_systems and current_system

variables define respectively all the available healthy systems
for substitution and the current running system.

MACHINE M0 SEES C0
VARIABLES

current_system, current_system_state
INVARIANTS

type1: available_systems ⊆ Systems
type2: current_system ∈ Systems

EVENTS

Event INITIALISATION , ...

Event Fail , ...

Event Repair , ...

Event Complete_failure , ...
END

Listing 13. Squeleton of machine M0

This machine only defines system modes and the failure
together with the associated reparation. It models the fact that a
system fails, is possibly repaired or isolated (complete_failure)
in the treatment of the failure.

2) First refinement: Machine M1 below refines M0 to
define the final complete generic substitution model. It intro-
duces the variables and the states of the manipulated systems
through two new variables available_systems_states
and current_system_state.

MACHINE M1 REFINES M0 SEES C0
VARIABLES

available_systems, available_system_states
INVARIANTS

type1: available_systems ⊆ Systems_states
type2: current_system_state ∈ System_states
glue1: available_systems = dom(available_system_states)
glue2: current_system = system_of(current_system_state)

VARIANT

varval(current_system_state)
EVENTS

Event INITIALISATION , ...

Event Fail Refines Fail , ...

Event Repair Refines Repair ,
Any ...
Where

...
grd9: HorizontalInvs(current_system 7→ next_system)

(current_system_state 7→ next_system_state)

...
Then

current_system := ...
current_system_state := ...

Event complete_failure Refines complete_failure , ...

Event progress ,
Any new_valuation
Where

grd1: current_system ∈ available_systems
grd2: new_valuation ∈ Valuations
grd3: dom(new_valuation) =

dom(valuation_of(current_system_state))
grd4: fvar_of(current_system_state)(new_valuation)

< varval_of(current_system_state)
Then

act1: current_system_state :=
system_of(current_system_state) 7→ new_valuation

End

END

Listing 14. Extract of the machine M1

Two important gluing invariants are defined. The first
one glue1 denotes that the states of the available sys-
tems are effectively states of the available systems and the
second one glue2 asserts that the current state is a state
of the current running system. Here, the events are refined
to handle the notion of system states. This refinement, 1)
defines varval(current_system_state) as a variant
to record the progress of the running system, 2) introduces
the important event progress to record the behavior of the
current running system. It defines the next state of the running
system and ensures that the variant decreases (grd4), and 3)
refines the repair event by choosing the next system and its
state. Note that the guard grd9 defined in this event guarantees
that the substitute system fulfills the horizontal invariant
corresponding to the substitution property. Depending on this
horizontal invariant, the system is substituted in equivalent,
degraded or upgraded mode.

VII. INSTANTIATION WITH EVENT-B: BY REFINEMENT

A. The instantiation context: the principle

A context C0_instance extending C0 (Listing 12)
is defined with concrete values for sets (Variables,
ValueElements) and constants (Valuations,
VariablesSets, Systems and System_states).

B. Refinement and witnesses for instantiation: the principle

M1 of the generic model is instantiated by C0_instance
context values. It is defined by M2 refining M1. The event
progress is itself refined by the events progress_sysXY
corresponding to the transitions in the specific system defined
in C0_instance. Each transition of the instantiating system
refines the progress event of the machine M1. Concrete
event variables of M2 and abstract variables of M1 are glued
with a witness On Listing 15, the variable new_state is
instantiated by the witness new_state_sysA representing
a concrete system variable for sysA.

Event eventA ,
Any new_state
Where current_system_ok()
Then state := new_state

Event eventC Refines eventA ,
Where current_system = sysA ∧ sysA_ok()
With new_state = new_state_sysA
Then state := new_state_sysA

Listing 15. Instantiation through refinement with witness

VIII. APPLICATION TO THE CASE STUDY

The previous approach applies on the defined case study.

A. The instantiation context: application to the case study

The instantiation context provides concrete values for the
deferred sets of the context C0. Variables, systems, states, etc.
are valued accordingly. Note the presence of the fundamental
axiom axm9 to ensure the correct system substitution. It corre-
sponds to the reparation property introduced in section IV-D2.

CONTEXT C0_instance EXTENDS C0
CONSTANTS

C1, C2a, C2b
Prod1, Prod2, Prod3, Prod4, Prod5
Sys1, Sys2

AXIOMS

axm1: partition(Variables , {C1}, {C2a}, {C2b})
axm2: partition(ValueElements, {Prod1}, {Prod2}, ... , {Prod5})
axm3: Valuations = ({C1} →P (ValueElements))

∪({C2a,C2b} →P (ValueElements))
axm4: VariablesSets = {{C1},{C2a,C2b}}
axm5: Sys1 = {C1} 7→ (λ val ·val ∈ {C1} →P (ValueElements)

| card(ValueElements) −card(val(C1)))
axm6: Sys2 = {C2a,C2b} 7→ (λ val ·val ∈ {C2a,C2b} →P (ValueElements)

| card(ValueElements) −card(val(C2a) ∪val(C2b)))
axm7: Systems = {Sys1,Sys2}
axm8: Systems_states = Systems ×Valuations
axm9: HorizontalInvs = { (Sys1 7→ Sys2) 7→

(λ (sst1 7→ sst2) ·
sst1 ∈ {Sys1} ×({C1} →P (ValueElements))
∧ sst2 ∈ {Sys2} ×({C2a,C2b} →P (ValueElements)) |

bool(valuation_of(sst1)(C1)
= valuation_of(sst2)(C2a) ∪valuation_of(sst2)(C2b)))}

...
END

Listing 16. The instantiation context

B. Use of refinement and witnesses for instantiation : appli-
cation to the case study

The events of the M1 machine are refined (by machine M2)
for instantiation according to the principle of section VII-B.

MACHINE M2 REFINES M1 SEES C0_instance
EVENTS

Event INITIALISATION , ...

Event failure_sys1 Refines failure , ...

Event failure_sys2 Refines failure , ...

Event repair_sys1_to_sys2 Refines repair ,
· · ·
Where

sys1_cart = new_sys2_cart1 ∪new_sys2_cart2
· · ·

Event complete_failure Refines complete_failure , .

Event progress_sys1 Refines progress , ...

Event progress_sys2 Refines progress , ...
END

Listing 17. The instantiation machine obtained by refinement

For instance, the progress event is refined by the
progress_sys1 event describing the progress for system
WS1. It corresponds to the event addItem_WS1 of Listing 7.
The witness (with clause) of the event progress_sys1
consists in adding a product in the cart C1 of the website
site1 as done in event addItem_WS1.

Event progress_sys1 ,
REFINES progress
ANY new_prod
WHERE

grd1: current_system = Sys1
grd2: Sys1 ∈ available_systems

grd3: new_prod ∈ ValueElements
grd4: new_prod /∈ sys1_cart

WITH

new_valuation: new_valuation = {C1 7→ (sys1_cart ∪{new_prod})}
THEN

act1: sys1_cart := sys1_cart ∪{new_prod}
act2: current_system_state :=

Sys1 7→ {C1 7→ (sys1_cart ∪{new_prod})}
END

Listing 18. The generic progress event of machine M2

IX. ASSESSMENT

A. Proof statistics

TABLE II. RODIN PROOFS STATISTICS

Event-B Generated proof Automatic Interactive

Model Obligations proofs proofs

Context C0 7 5 2

Machine M0 5 5 0

Machine M1 28 22 6

Instantiation context C0_context 3 2 1

Instantiation machine M2 54 39 15

Total 97 73 24

B. Model checking or proof-based verification

Note that model checking techniques can be applied to
automatically check the correctness of the instantiation. State
exploration is possible since the sets have finite number of
values in the context C0_instance. The instantiation mech-
anism defined above is based on refinement. The approach is
scalable and does not face the state explosion problem. The
key point for scalability concerns the instantiation of specific
systems. Indeed, the development presented above is a generic
one, defined at a meta-level, where the proof obligation asso-
ciated to the correctness of the system substitution obtained in
section III-E act as meta-theorem.

Event of the model

Event evt ,
Any x
Where

grd1: G(s, c, v, x)
Then

act1: v :| BA(s, c, v, x, v′)
End

Instantiation by a witness

Event ref_of_evt ,
Refines evt
Where grd1: G(s, c, v, y)
With x: x = y // witness
Then

act1: v :| BA(s, c, v, y, v′)
End

Listing 19. Proof based instantiation

The use of the ANY generalized substitutions shows that
the development considers any transition system described
by a template corresponding to Figure 1 together with the
associated invariants expressed in the corresponding Event-B
models. According to the proof obligation associated to the
ANY substitution described in Table I, one proof strategy is
to exhibit a witness for the parameter x. Two proof techniques,
experimented in this paper have been developed. 1) The first
one uses model checking with the ProB [4] model checker. We
did not give the details of this approach in this paper. 2) The
second technique relies on a proof-based approach (can be used
if model checking fails) to check instance correctness. Such an
approach consists in defining another model which refines the
one presented in section V. Like in section VII, each ANY
event is refined by an event with a witness for each parameter.

The event refinement strategy is shown in Listing 19. The
witnesses can be any transition system matching the pattern of
Figure 1 whatever its size is. This second verification technique
requires interactive proof efforts and ensures scalability.

C. Correct-by-construction formal methods

The proposed approach is a generic one. The context
C0 describes the manipulated systems concepts (systems,
variables, HorizontalInvs, etc.). The concepts are
manipulated as first-order objects in the machines M0 and
M1 in order to encode the behavior pattern described with
the events Initialization, progress, fail, repair
and complete_failure. Let’s note that the concept of
transition is not manipulated as first order objects and thus
not defined within the context C0. One may wonder why
the transitions between states are not defined in this context
C0. There are two main reasons for that: first, transitions
are not explicitly manipulated by the substitution mechanism
introduced in this paper. Second, the Event-B method provides
a powerful built-in inductive proof technique based on invariant
preservation by the events (see table I). The only proof effort
relates to the correct event refinement. Note that in traditional
correct-by-construction techniques like Coq [5] or Isabelle [6],
classical inductive proof schemes are offered. One has first to
describe the inductive structure associated to the formalized
systems, then to give a specific inductive proof scheme for
this defined inductive structure and finally to prove the correct
instantiation. In the kernel definition of these techniques, the
inductive process associated to transition systems correspond-
ing to the pattern of Figure 1 and the refinement capability are
not available as a built-in inductive proof process. transition
together with corresponding inductive proof principles and
the instantiation of transitions because event refinement is not
available. Unlike Event-B, another meta-level is needed.

X. RELATED WORK

Formal modeling of system reconfiguration has been stud-
ied by several authors. Regarding proof and refinement-based
methods, the Event-B method has been applied to model
fault-tolerance mechanisms in the field of critical multi-agent
system by [7]. The authors used refinement at the heart of the
approach. State-based formalisms illustrated by Event-B were
also exploited by [8] in order to develop fault-tolerant system
by modeling fault tolerance requirements, fault assumptions
and modes of the system behavior through an additional
viewpoints. In [9] Abstract State Machines (ASMs) model
a combination of state-transition models with architectural
descriptions. Other approaches studied system re-configuration
as well. Model checking of timed automata has been used
by [10] to model and study the robustness of self-adaptive
decentralized systems. Some approaches used process alge-
bras. Analysis of unplanned reconfiguration in dependable
systems has also been modeled with process algebra [11].
Behavioral matching between substitute systems was defined
by a bisimulation relation. Finally, there exists other ap-
proaches, offering an evolving number of systems, to define
reconfigurable Byzantine-fault-tolerant distributed system [12].

XI. CONCLUSION

This paper addresses the problem of correct system recon-
figuration, where systems are described as state-transition sys-

tems. It provides a stepwise correct-by-construction approach
that generalizes ad hoc system reconfigurations. This one relies
on 1) the definition of a system that implements (i.e. refine)
the same specification and 2) a system reconfiguration operator
parameterized by a reparation property, namely a horizontal
invariant. This one ensures that, when a failure occurs, the
state of the source system is correctly restored to the state of
the target system. Moreover, the approach is generic and it
can be instantiated to any number of systems, thus it ensures
scalability. An instantiation mechanism based on the definition
of witnesses has been defined. Note that, since instantiation is
performed by refinement, solely the last refinement step shall
be proved at each instantiation. It corresponds to checking that
the witnesses belong to the set of systems. From a method-
ological point of view, when instantiation by model checking
does not scale up, one may use the defined instantiation
mechanism based on witnesses. The whole proposed approach
has been modeled within the Event-B method. Finally, the
approach developed in this paper has been defined for system
reconfiguration, but it can be deployed for other cases like
redundancy with dissimilar systems or system monitoring.

REFERENCES

[1] J.-R. Abrial, Modeling in Event-B: System and Software Engineering,
1st ed. New York, NY, USA: Cambridge University Press, 2010.

[2] J.-R. Abrial, M. Butler, S. Hallerstede, T. S. Hoàng, F. Mehta, and
L. Voisin, “Rodin: an open toolset for modelling and reasoning in Event-
B,” International Journal on Software Tools for Technology Transfer,
vol. 12, no. 6, pp. 447–466, 2010.

[3] G. Babin, Y. Aït-Ameur, and M. Pantel, “Formal verification of runtime
compensation of web service compositions: A refinement and proof
based proposal with Event-B,” in Services Computing (SCC), 2015

IEEE International Conference on, June 2015, pp. 98–105.

[4] J. Bendisposto, J. Clark, I. Dobrikov, P. Karner, S. Krings, L. Laden-
berger, M. Leuschel, and D. Plagge, “Prob 2.0 tutorial,” in Proceedings

of the 4th Rodin User and Developer Workshop, ser. TUCS Lecture
Notes, 2013.

[5] Y. Bertot and P. Castéran, Interactive theorem proving and program

development: Coq’Art: the calculus of inductive constructions, ser. Texts
in Theoretical Computer Science. Springer Verlag, 2004.

[6] T. Nipkow, L. C. Paulson, and M. Wenzel, Isabelle/HOL - A Proof

Assistant for Higher-Order Logic, ser. Lecture Notes in Computer
Science. Springer, 2002, vol. 2283.

[7] I. Pereverzeva, E. Troubitsyna, and L. Laibinis, “A refinement-based
approach to developing critical multi-agent systems,” International

Journal of Critical Computer-Based Systems, vol. 4, no. 1, pp. 69–91,
2013.

[8] I. Lopatkin and A. Romanovsky, “Rigorous development of fault-
tolerant systems through co-refinement,” School of Computing Science,
University of Newcastle upon Tyne, Tech. Rep., January 2014.

[9] R. Mirandola, P. Potena, and P. Scandurra, “Adaptation space explo-
ration for service-oriented applications,” Science of Computer Program-

ming, vol. 80, Part B, pp. 356 – 384, 2014.

[10] M. U. Iftikhar and D. Weyns, “A case study on formal verification of
self-adaptive behaviors in a decentralized system,” vol. 91, 2012, pp.
45–62.

[11] A. Bhattacharyya, “Formal modelling and analysis of dynamic re-
configuration of dependable systems,” Ph.D. dissertation, Newcastle
University School of Computing Science, January 2013.

[12] R. Rodrigues, B. Liskov, K. Chen, M. Liskov, and D. Schultz,
“Automatic reconfiguration for large-scale reliable storage systems,”
Dependable and Secure Computing, IEEE Transactions on, vol. 9, no. 2,
pp. 145–158, March 2012.

